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� A model was made of the AGR control rod mechanism.
� The aim was to better understand the performance when shutting down the reactor.
� The model showed good agreement with test data.
� Sensitivity analysis was carried out.
� The results demonstrated the robustness of the system.
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A model has been made of the primary shutdown system of an Advanced Gas-cooled Reactor nuclear
power station. The aim of this paper is to explore the use of sensitivity analysis techniques on this model.
The two motivations for performing sensitivity analysis are to quantify how much individual uncertain
parameters are responsible for the model output uncertainty, and to make predictions about what could
happen if one or several parameters were to change. Global sensitivity analysis techniques were used
based on Gaussian process emulation; the software package GEM-SA was used to calculate the main
effects, the main effect index and the total sensitivity index for each parameter and these were compared
to local sensitivity analysis results. The results suggest that the system performance is resistant to
adverse changes in several parameters at once.

� 2016 Published by Elsevier B.V.
1. Introduction

The United Kingdom has seven Advanced Gas-cooled Reactor
nuclear power stations (AGRs), which provide around 20% of its
electricity. The AGR design was developed in the 1970s and is
unique to Britain. The primary shutdown mechanism is provided
by the control rods which absorb the neutrons needed to sustain
a chain reaction of uranium fissions in the reactor core. The control
rods are continually raised and lowered in order to maintain a crit-
ical reaction. A reactor typically has around 80 control rods, each
with its own actuator. Should the reactor exceed its normal operat-
ing conditions, the control rods will be released by an electromag-
netic clutch and insert into the core under gravity, shutting down
the reactor. This system was designed experimentally and is regu-
larly tested to ensure the rods will enter the core quickly enough
to shutdown the reactor with a sufficient safety margin. The large
amounts of collected data and modern modelling techniques, give
an opportunity to understand and monitor the primary shut down
system performance at a more detailed level; this is beneficial for
managing the plant commercially and for giving early warning of
any potential performance issues. The objective of this paper is to
develop a mathematical model of the system and explore the use
of probabilistic sensitivity analysis on this model. A future intended
use for the model is as a condition monitoring tool, where system
identification techniques are used to estimate parameter values
which fit the model output to a set of insertion test data. The
parameter values will then be used to attempt to assess the condi-
tion of the system components.

Sensitivity analysis is concerned with how a model’s inputs
affect its output. In the context of modelling control rods there
are two main uses for sensitivity analysis. The first is to investigate
how the uncertainty of individual model parameters is responsible
for the uncertainty of the model output. This is useful when devel-
oping and refining the model, as effort can be focused on the most
important parameters. The second use for sensitivity analysis is for

http://crossmark.crossref.org/dialog/?doi=10.1016/j.nucengdes.2016.06.005&domain=pdf
http://dx.doi.org/10.1016/j.nucengdes.2016.06.005
http://dx.doi.org/10.1016/j.nucengdes.2016.06.005
http://www.sciencedirect.com/science/journal/00295493
http://www.elsevier.com/locate/nucengdes


Fig. 1. Schematic of control rod system.
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making predictions about the effects of changing parameters on
the performance of the system, i.e. what will be the effect on model
output if one or several model parameters deviate from their orig-
inal values?

It is relatively straightforward to assess the local sensitivity of a
model to its parameters, by partially differentiating the model out-
put with respect to different parameters. However this method is
not particularly informative because it fails to take into account
nonlinear responses. A slightly more informative technique
involves running the model for a range of parameter values, keep-
ing the others constant. Both of these methods fail to take into
account the fact that sensitivity to a parameter could vary as other
parameters change. For a model with many parameters assessing
the effects of all possible parameter combinations is challenging
(Saltelli et al., 2000). Global sensitivity analysis techniques investi-
gate the entire range of the possible input space using statistical
methods; these can be time consuming and still require careful
interpretation.

Monte Carlo analysis can be used to sample from the probabil-
ity distribution of model outputs, given a set of probability distri-
butions of model inputs. These output distributions can be used
to infer global sensitivity qualities (Doubilet et al., 1985; Helton,
1993). Whilst this is effective, it can be extremely computationally
expensive, especially if there are many parameters of interest. A
way of reducing the expense of global sensitivity analysis given a
computationally expensive model is to use a surrogate model – a
model of a model. This still requires many model runs but far fewer
than Monte Carlo analysis. A technique based on Fourier amplitude
sensitivity testing (FAST) provides an elegant way of estimating the
contribution of input uncertainty to output uncertainty, however
this method is limited to investigating the main effects of parame-
ters and does not give information regarding interactions (McRae
et al., 1982; Saltelli et al., 1999).

Choosing sensitivity analysis techniques requires a compromise
between robustness, computational cost, ease of implementation
and conceptual simplicity. Within the nuclear industry, robustness
is generally preferred at the expense of computational cheapness
(Cornell, 1986). In the current case, the purpose of the model and
sensitivity measures is to assist in decision making and increase
understanding of the system. It is desirable that the meaning of
the measures used and the concepts behind them are sufficiently
intuitive that someone with little knowledge of sensitivity analysis
is able to confidently use them.

The technique chosen in this investigation is a Bayesian
approach to surrogate modelling developed in Oakley and
O’Hagan (2002), which will be introduced in more detail below.
It was chosen as it is both computationally efficient and robust,
and although the mathematics behind it is relatively demanding,
the basic principles are not difficult to understand.

The paper is laid out as follows: Section two introduces the
model of the control rod system. Section 3 describes the system
identification techniques used to estimate unknown model param-
eters. Section 4 gives an outline of the sensitivity analysis tech-
niques used. The results are presented in Section 5 and the paper
finishes with some conclusions in Section 6.
2. The model

A schematic of the system of interest is shown in Fig. 1 and a
more detailed sketch of the brake system is given in Fig. 2. The gov-
ernor shaft is connected to the motor by an electromagnetic clutch
(not shown). If power to the clutch is lost then the governor shaft
will be released and the rods will insert into the core. A two-stage
braking mechanism is attached to the governor shaft. The primary
brake is driven by flyweights and is dependent on the rod velocity.
The secondary brake is driven by a lead screw, which is connected
to the bevel shaft by gears (not shown). Key assumptions made
during the derivation of the model structure are:

� The effects of the chain friction, bearing friction, gear/sprocket
efficiency and the friction between the side walls of the core
and the rods are lumped together in a single, scaled friction
parameter Ff which acts as a constant force resisting the rod
motion.

� The coefficient of friction between the governor and the brake is
a constant.

� The drag forces from the coolant gas are directly proportional to
the velocity of the rods and do not depend on the displacement.

� All components are assumed to be fully rigid, except the springs
in the brake mechanism.

The action of the brake is sufficiently complicated that there are
9 distinct stages of rod motion. Each stage is described by 2 simul-
taneous differential equations, one for the motion of the rods and
one for the motion of the flyweights. The points at which the model
switches between stages are dictated by the position of the fly-
weights and the rods. The equations describing the rod’s motion
are shown below and a description of how they were derived is
given in the appendix.

Stage 1.
x refers to the position of the rod and hf is the flyweight angle.

The rod acceleration, €x, is given by,



Fig. 2. The primary and secondary brake mechanisms.
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€x ¼ Mg þMcgx� h _x� Ff

M þMcxþ I
ð1Þ

the acceleration of the flyweights, €hf is given by,

€hf ¼ Ca _x2 �Mfgc � ðkbhf �MpgÞb� Fusgnð _hf Þ
ðIf þMpb

2Þ
ð2Þ

the values c and d are dependent on hf .

c ¼ L1sinðaþ hf Þ ð3Þ
d ¼ L1cosðaþ hf Þ ð4Þ
Ca ¼ Mf ðaþ cÞR2d ð5Þ
when hf reaches hspring the rod begins stage 2 of its motion.

Stage 2.
The rods acceleration, €x, is still given by Eq. (1). During this

phase the flyweights are stationary at hf ¼ hspring . when,

Ca _x2 �Mfgc � ðkbhspring �MpgÞb� Fu

b
¼ k1n0 ð6Þ

the rod will begin stage 3 of its motion.
Stage 3.
The rods acceleration, €x, is still given by Eq. (1). The flyweight

acceleration is given by,

€hf ¼ Ca _x2 �Mfgc � ðkbhf �MpgÞb� Fusgnð _hf Þ � ðk1bhf þ CbÞb
ðIf þMpb

2Þ
ð7Þ

when hf ¼ hmax the rod will begin stage 4.
Stage 4.
The rod acceleration, €x, is given by,

€x ¼ Mg þMcgx� h _x� Ff � C1 _x2 þ C2

M þMcxþ I
ð8Þ

where,

C1 ¼ l
Mf ðaþ cÞd

b
R3 ð9Þ

C2 ¼ lRðkbhfmax þ k1bhfmax þ Cb þMfgc=b�MpgÞ ð10Þ
during this phase the flyweights are stationary at hf ¼ hfmax. When
the rod reaches the final 1.5 m of its travel the rod begins stage 5
of its travel.
Stage 5.
The rod acceleration, €x, is given by,

€x ¼ Mg þMcgx� h _x� Ff � ðC1 _x2 � C2Þ � ðC3x� C4Þ
M þMcxþ I

ð11Þ

where,

C3 ¼ lk2RCr ð12Þ
C4 ¼ lk2Rðxubrake � L2 � icÞ ð13Þ
when Eq. (20) becomes negative the rod will begin stage 6 of its
travel.

Stage 6.
The rod acceleration, €x, is given by,

€x¼MgþMcgx�h _x�Ff �ðC1 _x2�C8hf �C9Þ�ðC10þC11hf þC12xÞ
MþMcxþ I

ð14Þ

where,

C8 ¼ lRbðkþ k1Þ ð15Þ
C9 ¼ lRðMfgc=bþ Cb �MpgÞ ð16Þ
C10 ¼ lRk2ðic þ L2 � xubrake � bhfmaxÞ ð17Þ
C11 ¼ lRk2b ð18Þ
C12 ¼ lRk2Cr ð19Þ
the acceleration of the flyweights is given by,

€hf ¼Ca _x2 �Mf gc�ðkbhf �MpgÞb�Fusgnð _hf Þ�ðk1bhf þCbÞb�ðC5 þC6hf þC7xÞ
ðIf þMtb

2Þ
ð20Þ

where,

C5 ¼ k2bðic þ L2 � xubrake � bhfmaxÞ ð21Þ
C6 ¼ k2b

2 ð22Þ
C7 ¼ k2bCr ð23Þ

when the flyweight angle reaches hspring the rod will begin stage 7.
Stage 7.
The rod acceleration is given by,

€x¼MgþMcgx�h _x�Ff �ðC1 _x2�lRFrs�C14Þ�ðC10þC11hf þC12xÞ
MþMcxþ I

ð24Þ



M. Scott et al. / Nuclear Engineering and Design 305 (2016) 514–523 517
where,

C14 ¼ lRðMfgc=b�MpgÞ ð25Þ
the flyweights are stationary at hf ¼ hspring .

Frs ¼ Ca _x2 �Mfgc � ðkbhf �MpgÞb� Fusgnð _hf Þ � ðC5 þ C6hf þ C7xÞ
b

ð26Þ
when the reaction force Frs is equal to zero the rod will begin stage
8 of its motion

Stage 8.
The rod acceleration is given by,

€x¼MgþMcgx�h _x�Ff �ðC1 _x2�C13hf �C14Þ�ðC10þC11hf þC12xÞ
MþMcxþ I

ð27Þ
where,

C13 ¼ lRbðkÞ ð28Þ
C14 ¼ lRðMfgc=b�MpgÞ ð29Þ
the acceleration of the flyweights is given by,

€hf ¼ Ca _x2 �Mfgc � ðkbhf �MpgÞb� Fusgnð _hf Þ � ðC5 þ C6hf þ C7xÞ
ðIf þMtb

2Þ
ð30Þ

when hf ¼ hfbrake2 the rod will begin the last stage of its travel.
Stage 9.
The rod acceleration is given by,

€x ¼ Mg þMcgx� h _x� Ff � 2C1 _x2 þ C15

M þMcxþ I
ð31Þ

where,

C15 ¼ 2ðlRðkbhfbrake2 þMfgc=b�MpgÞÞ ð32Þ
the flyweights are stationary at hfbrake2.
Table 1
Description and expected value of model parameters.

Parameter Description

M (kg) Mass of control rods
Mc ðkg=mÞ Mass of chain
L1 ðmÞ Dimension (see Fig. 2)
L2 ðmÞ Dimension (see Fig. 2)
a ðmÞ Dimension (see Fig. 2)
b ðmÞ Dimension (see Fig. 2)
l ðNm=NÞ Brake coefficient of friction
k1 ðN=mÞ Main spring stiffness
k2 ðN=mÞ Reaction spring stiffness
k ðN=mÞ Return spring stiffness
hfspring ðdegreesÞ Flyweight angle when thrust block comes into contact wi
hfmax ðdegreesÞ Flyweight angle when primary brake engages
hfbrake2 ðdegreesÞ Flyweight angle when secondary brake fully engaged
h ðN=m=sÞ Viscous drag coefficient
Ff ðNÞ Combined friction force
Fu ðNmÞ Friction resisting flyweight movement
I ðkgmÞ Combined scaled rotational inertia of all rotating compon
R ðradians=mÞ Ratio of governor shaft rotation to rod movement
Mp ðkgÞ Combined mass of the thrust bearing, thrust block and up
Mt ðkgmÞ Combined mass of the 3 faceplates, friction disks, thrust b
If ðkgmÞ Rotational inertia of flyweights about pinion
Mf ðkgÞ Mass of flyweights
n0 ðmÞ Initial compression of main spring
ic ðmÞ Initial compression of reaction springs
Cr Ratio of leadscrew movement to rod movement
xbrake ðmÞ Rod position when secondary brake first engages
a ðdegreesÞ Flyweight angle when rod is at rest
The model relies on 28 parameters which represent physical
attributes of the system e.g. spring stiffnesses, masses, coefficients
of friction etc. These parameters are listed in Table 1. Some of the
parameters (the gear ratios and the mass of the rods) are accu-
rately known quantities. Many of the parameters were estimated
using 3D models of the system which are accurate to a tolerance
of 1mm. There were some parameters which are not possible to
measure directly or estimate analytically with any accuracy; these
were the friction terms, spring stiffnesses, and the viscous drag
coefficient.

The possible values of the unknown parameters were inferred
using a Bayesian framework, which combines prior knowledge of
the parameters with measured data from the system to give prob-
ability distributions of parameter values (the techniques used are
described in Section 3). The values of the unknown parameters
could vary while a control rod mechanism is in service, because
it is possible that they are sensitive to temperature, pressure, wear
or contaminants; for this reason, these parameters are estimated
on an insertion-by-insertion basis.

The sensitivity analysis methods used in this investigation
require the model to give a univariate output. The value chosen
here is the distance the rod has inserted 4.5 s after it has been
released, which was chosen as it is used as a key measure of how
well the primary shutdown system is performing. The design spec-
ification is that the rods must have inserted at least 6.8 m after
4.5 s to shutdown the reactor with a sufficient safety margin. It is
desirable that the rods enter the core as quickly as possible, while
not traveling fast enough to cause any damage.

3. Bayesian system identification

Bayesian inference provides a powerful method of estimating
probability distributions for parameters using prior knowledge
about the system and measured data. It uses Bayes theorem:

PðwjDÞ ¼ PðDjwÞPðwÞ
PðDÞ ð33Þ
Estimated using Expected value

Accurately known 173
3D drawings 2.0
3D drawings 0.016
3D drawings 0.027
3D drawings 0.021
3D drawings 0.013
System ID 8.1
System ID 184,000
System ID 12,300
System ID 860

th main spring 3D drawings 7.9
3D drawings 8.1
3D drawings �8.5
System ID 36
System ID 330
System ID 0.45

ents 3D drawings 240
Accurately known 190

per faceplate 3D drawings 1.6
earing and thrust block 3D drawings 2.8

3D drawings 0.00030
3D drawings 0.89
3D drawings 0.018
3D drawings 0.017
Accurately known 0.0015
Accurately known 6.2
3D drawings 55



Fig. 3. Histogram of samples generated from the k1 posterior distribution.
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where w is a vector of model parameters and D is a set of measured
data. PðwÞ is the set of prior probability distributions representing
belief in the parameter values before the data has been seen.
PðDjwÞ is the likelihood: the probability that the measured response
D will have been witnessed given that one believes the system is
represented by the model with parameters w. The likelihood
depends on the level of noise the data is corrupted with. If it is
assumed that the noise is Gaussian then its variance can be included
as an unknown parameter in w. PðDÞ is a normalising constant,
which ensures the posterior distribution integrates to one.

PðwjDÞ is the posterior probability distribution for the parame-
ters: the probability that the parameters take a certain value given
that the system, correctly represented by the model, produced the
data D. To evaluate PðwjDÞ analytically is problematic due to the
difficulty of finding PðDÞ and the nonlinear nature of the model.
It is possible to draw samples from the posterior allowing a picture
of it to be built up, but this is often difficult due to the complex
geometry of the posterior and the small size of the posterior rela-
tive to the prior. Markov Chain Monte Carlo (MCMC) methods pro-
vide a popular way of attempting to overcome these difficulties.

The Metropolis algorithm (Metropolis et al., 1953) is one of the
most widely used MCMC methods, and is the technique employed
in the current work. It works on the principle that it is possible to
evaluate a function f ðwÞ which is proportional to the posterior, it is
therefore possible to calculate the relative probability of two
parameter vectors. The Markov chain in the metropolis algorithm
is generated as follows:

1. An initial parameter vector, wcurrent is generated.
2. A variation on wcurrent is proposed: wnew by taking a random

sample from the proposal density, a Gaussian distribution with
a mean of wcurrent .

3. The ratio Rm ¼ f ðwnewÞ=f ðwcurrentÞ is calculated, if Rm > 1 then
wnew is accepted as the new wcurrent . If Rm < 1 then there is a
probability of Rm that the new vector will be accepted.

4. Repeat from step two.

It can be shown that the resulting Markov chain is ergodic and
has a stationary distribution equal to PðwjDÞ. Consequently, once
converged, the Markov chain can generate samples from the
posterior.

MCMC techniques provide a very powerful tool; however, they
have several drawbacks: Many iterations of the Markov chain are
required and each iteration requires a run of the model, so MCMC
methods are infeasible if the model is time consuming to run. It can
take many iterations for the Markov chain to converge on its sta-
tionary distribution. It is possible for the chain to become stuck
in local traps: locally optimal but globally sub-optimal areas of
the parameter space. Choosing the correct proposal density width
for each parameter is a crucial factor with regard to the successful
application of MCMC algorithms.

In an attempt to address some of these problems a novel variant
of Simulated Annealing which was proposed in Green (2015) has
been employed. The algorithm utilises a ‘‘temperature” variable b
which controls the likelihood’s effect on the posterior. If b ¼ 0 then
the posterior is equal to the prior and when b ¼ 1, the posterior is
as defined in Eq. (33). When the Markov chain is first initiated b is
close to zero, after every N iterations its value is increased until it
reaches 1. This gradual transition from prior to posterior increases
the chances of the Markov chain escaping from local traps.

Choosing the rate at which b is varied (the annealing schedule)
is important. Annealing too fast will make the chain less likely to
escape local traps, but annealing too slowly will take an unneces-
sary amount of time. The optimum rate of annealing is not a con-
stant, it often needs to be slower towards the start of the process
and faster towards the end. It is hypothesised in Green (2015) that
the optimum schedule is that where the change in information
content of the target distribution is constant. This is achieved by
selecting the next b value as that which increases the absolute
value of the Shannon entropy by a pre-defined constant, DS, which
is negative. Choosing an appropriate value for DS requires some
trial and error as it will be different for different problems. In the
current case, the best value of DS was found to be �0.2.

The algorithm used here also automatically tunes the width of
the proposal densities. For each value of b the variance of the pos-
terior is used to give the variance of the proposal density for the
next stage. At the start of the process the proposal density is equal
to the prior, so the Markov chain searches the entire possible
parameter space. As b increases the posterior narrows and the
Markov chain focuses on a smaller area.

Using the mean values of the Markov chain from the final stage
of the annealing process as its initial values, and the tuned pro-
posal densities; the Metropolis algorithm has a much better chance
of quickly converging on a stationary distribution in the correct
region of the parameter space.

Parameter distributions were estimated using data from eleven
different test insertions. In order to estimate a parameter distribu-
tion, the simulated annealing algorithm was run, followed by
200,000 iterations of the Metropolis algorithm. An example his-
togram showing the posterior distribution of the main spring stiff-
ness for one of the test insertions is given in Fig. 3. Using the mean
values of the posterior distributions, the model was able to give a
good fit to each of the sets of test data, a plot of the modelled and
measured rod positions during an insertion is shown in Fig. 4. The
maximum and minimum values from all of the distributions were
used to inform the parameter ranges used for sensitivity analysis.

4. Bayesian sensitivity analysis

This section introduces the sensitivity measures which are used
in this analysis and gives a brief description of the theory behind
the GEM-SA package which was used to infer them (O’Hagan and
Kennedy, 2004). For a more detailed description of these measures
and how they are inferred, (see Oakley and O’Hagan, 2002 and
Worden and Becker, 2012).

4.1. The emulator

The sensitivity analysis technique used here involves the use of
an emulator - a model of the model. The model is treated as an



Fig. 4. Plot of measured rod position and modelled rod position during an insertion
test.
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unknown function, with the possible ranges of the input parame-
ters specified by probability distributions. A selection of input vec-
tors are sampled from these distributions, using a Maximin Latin
Hypercube design to ensure complete, even coverage of the input
space. The model is then run using these vectors as inputs to pro-
vide the training data for creating the emulator.

If it is assumed that the model is a smooth function of its inputs,
then a response surface can be fitted to the training data using a
least squares regression and the output can be estimated for any
set of inputs. Early use of emulators in sensitivity analysis involved
using the response surface to perform Monte Carlo analysis at a
reduced cost (Helton, 1993). In the current case the response sur-
face is used to provide the mean of the multivariate Gaussian prob-
ability distribution which represents the prior belief in the value of
the model output. The prior distribution is then conditioned on the
training data to give a posterior distribution over functions, which
can be used to infer many global sensitivity values, the ones of
interest will be described below. This technique is described in
detail in Oakley and O’Hagan (2002).

4.2. Main effects and interactions

The model output, y can be decomposed into main effects and
interactions of its input parameters, x (x denotes the vector of n
input parameters fx1; . . . ; xng)

y ¼ EðYÞ þ
Xn

i¼1

ziðxiÞ þ
X

i<j

zi;jðxi;jÞ
X

i<j<k

zi;j;kðxi;j;kÞ þ � � � þ zi;j;kðxÞ ð34Þ

where,

ziðxiÞ ¼ EðYjxiÞ � EðYÞ ð35Þ

zi;jðxi;jÞ ¼ EðY jxi; jÞ � ziðxiÞ � zjðxjÞ � EðYÞ ð36Þ

zi;j;kðxi;j;kÞ ¼ EðY jxi; j; kÞ � zi;jðxi;jÞ � zi;kðxi;kÞ � zj;kðxj;kÞ � ziðxiÞ
� zjðxjÞ � zkðxkÞ ð37Þ

ziðxiÞ is the main effect of xi; zi;jðxi;jÞ is the first order interaction
between xi and xj; zi;j;kðxi;j;kÞ is the second order interaction etc. Y is
the random variable corresponding to the function output, EðYÞ is
the expected value of the output considering all possible combina-
tions of inputs.

The main effect of a parameter is the output of the model with
the parameter held constant, averaged over all of the other
parameters’ possible values. This can be plotted over the parame-
ter’s possible range and gives a good visual representation of the
model’s sensitivity to that parameter. A plot of the interactions
shows the effect of varying two or more parameters simultane-
ously (in addition to their main effects) averaged over the rest of
the parameter space.

4.3. Variance based measures

The variance of the main effect is known as the main effect index
(MEI) and it can be written as,

MEIi ¼ varfEðY jXiÞg ð38Þ
This is the expected amount that the uncertainty of the model out-
put would be reduced if the true value of xi was known.

The total sensitivity index (TSI) is the variance caused by a
parameter and any interaction involving that parameter,

TSIi ¼ varðYÞ � varfEðY jX�iÞg ð39Þ
It can also be thought of as the remaining variance if the true values
of all of the parameters except xi are known (�i refers to the com-
plement of the subset i).
5. Results and discussion

5.1. The first run of sensitivity analysis

When performing global sensitivity analysis, choosing the
shape and width of the parameter distributions is important.
Choosing an incorrectly wide distribution means that a parame-
ter’s importance could be overestimated and an incorrectly narrow
one would underestimate importance. All of the parameters are
assumed to have uniform distributions.

The purpose of the first run of sensitivity analysis performed
here is to investigate how the uncertainty in individual model
parameters is responsible for the uncertainty of the model output.
This can be used to decide which parameters are most important
when developing the model, as well as giving insight into how
the system behaves. There are 25 parameters which were investi-
gated here out of 28 in total (the mass of the rods, the gear ratios
and the gravitational constant are all known accurately and are not
going to change). 18 of the parameters were measured from 3D
drawings of the system which were made to a tolerance of 1mm,
this tolerance was used to estimate the parameter ranges. Proba-
bility distributions for the other 7 parameters were estimated
using Bayesian system identification, however these distributions
were estimated assuming that the other parameter values were
accurate, so the ranges used have been doubled.

At this point it is worth noting the difference between subjec-
tive and objective uncertainty in parameter values. Subjective
uncertainty results from a lack of accurate knowledge of the sys-
tem, e.g. a dimension which is not accurately known. Objective
uncertainty results from the fact that some elements in the system
behave in a stochastic way, for instance, brake pad friction coeffi-
cients have been shown to vary unpredictably (Ostermeyer, 2003).

The MEIs and TSIs of the parameters which were responsible for
more than 1% of the output variance are shown in Table 2. It can be
seen that more than half of the output variance arises from the
brake friction term l. It is also clear from the table that the vast
majority of the variance arises from the main effects of parameters,
since the values of the MEIs are close to the values of the TSIs. The
sum of the MEIs is 95%, so interactions account for only around 5%
of the output variance.

Plots of the main effects for selected parameters are shown in
Fig. 5–8. Alongside these are plots of the model output with all



Table 2
Main effect index and total sensitivity index values for most important parameters from the first run of sensitivity analysis.

Parameter Range Main effect index (%) Total sensitivity index (%)

Mass of flyweights (kg) 0.76–1.02 2.6 3.2
Angle – hspring (degrees) 5.1–10.2 2.2 2.7
Dimension – L1 (m) 0.014–0.019 6.0 6.8
Angle – hfmax (degrees) 5.3–10.8 1.0 2.3
Main spring stiffness (N/m) 170,000–230,000 2.2 2.5
Brake coefficient of friction (Nm/N) 0.014–0.031 48.0 53.2
Combined friction force (N) 250–600 2.8 3.7
Reaction spring stiffness (N/m) 10,000–18,000 19.1 23.0
Initial compression of reaction springs (m) 0.015–0.019 1.6 2.8

Fig. 5. Main effect plot and one at a time plot for the reaction spring stiffness.

Fig. 6. Main effect plot and one at a time plot for the main spring stiffness.
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of the parameters held at their expected values, except the param-
eter of interest which is varied across a range of values. It should be
noted that the y-axis limits are not the same on the main effects
plots and the corresponding one-at-a-time (1AAT) plots. A common
theme across all of the parameters is that the expected model out-
puts from the main effects plots are higher (the rod has inserted
further) than the corresponding model output from the 1AAT plots.
This is because, on average, the model is more sensitive to the
change in a parameter when it increases the distance the rod
inserts than when it decreases it. This can be seen in Fig. 7 which
shows that the output is more sensitive to a decrease in brake fric-
tion than an increase. The fact that the system is generally less sen-
sitive to parameters when they slow down the rod’s insertion
suggests that the system is more likely to remain safe, but it is
not the case for all parameters.

Fig. 8 shows that plotting the main effects can obscure a local
nonlinearity in the response to a change in a parameter. While in
the current case the model is fairly insensitive to the parameter,
it does highlight the fact that when looking at the global behaviour
it is possible to miss details in the local behaviour.



Fig. 7. Main effect plot and one at a time plot for the brake friction coefficient.

Fig. 8. Main effect plot and one at a time plot for the angle ‘‘thetaspring”.

Table 3
Main effect index and total sensitivity index values from the second run of sensitivity analysis.

Parameter Range Main effect index (%) Total sensitivity index (%)

Brake coefficient of friction (Nm/N) 0.026–0.06 32.8 35.6
Reaction spring stiffness (N/m) 12,000–24,000 7.2 8.6
Combined friction term (N) 330–1000 12.8 13.8
Main spring stiffness (N/m) 90,000–184,000 43.8 45.8
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5.2. The second run of sensitivity analysis

The purpose of the second run was to investigate what could
happen if parameters were to change. Only four parameters were
investigated; the brake friction coefficient l, the general friction
term Ff , the main spring stiffness and the reaction spring stiffness.
These parameters were chosen because they could feasibly change
during the lifetime of the reactor, and because the model was not
shown to be totally insensitive to them during the first run of sen-
sitivity analysis. The authors currently do not have quantitative
information regarding how these parameters could change, so
the ranges chosen are speculative. Each parameter was varied,
from its expected value in the direction that would have a detri-
mental effect on the systems performance, i.e. which would slow
the speed of the rod’s insertion.

Table 3 shows the MEIs and TSIs from the second run of sensi-
tivity analysis where fewer parameters were considered with an
extended range. Again it can be seen that there is a relatively small
contribution from the interactions. The results suggest that the
most influential parameters are the brake friction coefficient and
the main spring stiffness. However, it is not known how likely
these parameters are to change, and by how much; it is not possi-
ble to truly state which are the most influential parameters with-
out this information.

Figs. 9–12 show the main effects and 1AAT plots. The main
effects show the rod inserting less far than the 1AAT plots. This



Fig. 9. Extended main effect plot and one at a time plot for the combined friction force.

Fig. 10. Extended main effect plot and one at a time plot for the main spring stiffness.

Fig. 11. Extended main effect plot and one at a time plot for the reaction spring stiffness.
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Fig. 12. Extended main effect plot and one at a time plot for the brake friction coefficient.
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is to be expected since the main effects are the outputs averaged
over the other parameters ranges, and the other parameters are
varied from their expected values in the direction which slows
the rod’s insertion. The main effects plots also show much lower
sensitivity to each of the parameters compared to the 1AAT plots.
This shows that if parameters change causing the rod insertion to
become slower, then the system will become less sensitive to other
parameters changing. This suggests that unless a component dras-
tically fails, the system is likely to stay safe.

6. Conclusions

The aim of this paper was to develop a model of the AGR pri-
mary shutdown system and explore the use of probabilistic sensi-
tivity analysis techniques on this model, with the objective of
shedding light on the contribution of parameters to model uncer-
tainty and the system’s performance.

The results show that the majority of model uncertainty comes
from the brake friction, this is because the value of the friction
coefficient is uncertain and the model is sensitive to changes in
brake friction. However, the brake friction is an objectively uncer-
tain parameter, it can vary due to changes in reactor conditions or
wear of the brake disks. It is intended to further develop the model
as a diagnostic tool, which interprets test data in order to monitor
the values of the objectively uncertain parameters. In order to
refine the model for this purpose, only the accuracy of the subjec-
tively uncertain parameters can be improved. In this case the mass
and dimensions of the flyweights are the most important parame-
ters and their values should be verified, whereas parameters such
as the return spring stiffness and the flyweight rotational inertia
have very little effect on the model output and require no further
investigation.

The results from the second round of sensitivity analysis imply
that the system ought to be resistant to changes in several param-
eters at once; a component’s properties would have to change dra-
matically before the system becomes unsafe. Extension of
operating lives is a strategy in use to optimise the AGR fleet as part
of the UK energy mix, and some initial periods of life extension
have already been implemented. These results demonstrate the
robustness of the primary shutdown system, suggesting that con-
trol rod system is unlikely to be a limitation for any further life
extension.

It is made clear in these results that while these global sensitiv-
ity analysis techniques use information from the entire range of
the possible parameter space, they do not fully describe the mod-
el’s sensitivity to these parameters, because details (such as non-
linearities) can be lost when averaging over the other possible
parameters. This study has shown that it can be useful to show
local sensitivity analysis results alongside the global ones as it pro-
vides context for comparison.
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