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Abstract 

Osteogenesis imperfecta entrains changes at every level in bone tissue, from the 

disorganisation of the collagen molecules and mineral platelets within and 

between collagen fibrils, to the macro-architecture of the whole skeleton. 

Investigations using an array of sophisticated instruments at multiple scale 

levels have now determined many aspects of the effect of the disease on the 

material properties of bone tissue.  

The brittle nature of bone in osteogenesis imperfecta reflects both increased 

bone mineralisation density Ȃ the quantity of mineral in relation to the quantity 

of matrix within a specific bone volume Ȃ and altered matrix-matrix and matrix 

mineral interactions. Contributions to fracture resistance at multiple scale 

lengths are discussed, comparing normal and brittle bone. 

Integrating the available information provides both a better understanding of 

the effect of current approaches to treatment Ȃ largely improved architecture 

and possibly some macro-scale toughening - and indicates potential 

opportunities for alternative strategies that can influence fracture resistance at 

longer length scales. 

 

Introduction and background 

Multiple genetic mechanisms give rise to bone fragility (Table 1). Osteogenesis 

imperfecta (OI) is in danger of becoming a catch-all term for early-onset bone 

fragility. The key feature that discriminates OI from other early-onset bone 

fragility conditions is the hyper-mineralisation of the bone material itself Ȃ hence the alternative name ǲbrittle bone diseaseǳ Ȃ although increased mineralisation 

density is not the only contributor to brittleness. Mutations in the type I collagen 

synthesis and processing pathways, along with defects in accessory proteins 

such as PEDF (type VI OI) and those associated with reduced type I collagen 

production (type V OI) all share the bone material hyper-mineralisation 

phenotype.  

This review of bone material properties in OI describes the multiscale 

abnormalities from a molecular level up and also assesses their contribution to 

the brittle phenotype in both animal model systems and, where available, in 

human tissue.  

 

Normal bone tissue; molecular to fibrillar scale 

In the healthy skeleton, mineral accounts for 65-70% of bone mass, water 

around 10% with the remainder being matrix proteins, principally type 1 

collagen, and a small amount of citrate (approximately 2%). (1) Each type 1 

collagen molecule comprises two type 1 collagen Ƚͳ and one type ͳ collagen Ƚʹ 
chains. The internal core of each trimer is hydrophobic.  

Each individual heterotrimeric collagen molecule (also called tropocollagen) is 

approximately 1.5nm wide and 300nm long. (2) The individual collagen 

molecules self-assemble(3) into a structure that is clearly recognisable by 

electron microscopy (EM), initially held together by non-covalent interactions. 

(4) The mature structure is formed of overlapping and cross-linked type I 

collagen molecules in a quasi-hexagonal array of groups of five collagen 

molecules, (5) staggered with respect to one another by approximately a quarter 

of their length (actual overlap on average 67-68 nm), successively longitudinally aligned but separated from the next successive molecule by a ǲgap spaceǳ. The 

arrangement results in the banded appearance under EM that is well 



documentedǡ the lighter bands corresponding to the ǲgap spaceǳ of ͵ nmǤ These groups of ͷ collagen molecules might reasonably regarded as ǲmicrofibrilsǳǤ  
Collagen molecules are joined to one another by two types of crosslink, 

enzymatic and non-enzymatic. Enzymatic crosslinks are the result of the activity 

of lysyl oxidase and lysyl hydroxylase. (6) Initially such crosslinks are divalent. 

With increasing maturity some become trivalent; (6) these include the 

pyridinoline and pyrrole crosslinks that when cleaved during collagen 

degradation can be measured as biomarkers reflecting bone resorption. The non-

enzymatic crosslinks are the result of apparently spontaneous reactions between 

sugars such as pentosidine and exposed amino acid residues. (7) The number of 

non-enzymatic crosslinks increases with age. (7) Karim also observed variation 

in the accumulation of non-enzymatic crosslinks between cancellous and cortical 

bone. (8) Enzymatic crosslinks are usually regarded as contributing positively to 

bone strength; non-enzymatic crosslinks, by contrast, are widely held to 

adversely affect bone material properties. (9) 

The collagen molecules within each microfibril group coil gradually around each 

other, with specific kinks that create pockets and potential binding sites for other 

matrix proteins (5) as well as interactions with cells through integrin-binding. 

(10) [INSERT Figure 1 here; use ORGEL doi_10.1073_pnas.0502718103 - figure 

3E] 

The non-collagenous proteins within bone have been suggested to have a range 

of functions, from the formation of collagen fibrils and initiation of mineral 

platelet formation, to mineral maturation and collagen cross-linking. (11) In 

addition, osteopontin and osteocalcin are proposed to have roles in energy 

dissipation at the microfibrillar level through the formation of dilatational voids 

(12) and, additionally for osteopontin, through the forming, loss and reforming 

of sacrificial bonds with divalent cations such as calcium. (13, 14) 

The individual microfibril groups are separated from their near neighbours by 

so-called ǲgap channelsǳǤ (15) Water molecules both within and between the 

microfibrils contribute to the overall stability of the whole structure through the 

formation of multiple hydrogen bonds. (16) Individual fibrils are 80-100nm in 

diameter; fibril length is indeterminate. (17) 

 

Molecular changes in Osteogenesis Imperfecta 

The vast majority of OI (more than 85% of cases) is caused by mutations in one 

of the two genes encoding the type I collagen molecules. (18) In broad terms, for ǲclassical O)ǳ as described by Sillence, (19) null alleles (i.e. absent or non-

functional gene product) in the COL1A1 gene, resulting in reduced amounts of normal Ƚͳ chain give rise to a milder phenotype; missense mutations (point 

mutation giving rise to altered amino acid sequence) in either COL1A1 or 

COL1A2 give rise to more severe phenotypes, including lethal disease. No clear 

skeletal phenotype has been identified arising from a heterozygous COL1A2 null 

allele. Both collagen genes code for a repetitive, staggered (Gly-X-Y)n amino acid 

sequence; the small glycine amino acid is key to the ability of the heterotrimer to 

coil tightly, with the glycine side chain folded into the centre of the triple helix. 

Most mutations causing more severe OI result from the substitution of glycine by 

another amino acid that disrupts tight coiling of the triple helix, delaying the 

process and allowing additional post-translational modification of the collagen 

molecules to take place, distorting its 3-D structure. The heterotrimeric collagen 

protein secreted eventually into the matrix is thus structurally significantly 

different to normal. The tropocollagen molecules nevertheless self-assemble to 



create fibrils; the severity of the bone disease that results seems likely to be a 

consequence both of the alterations in the 3-dimensional fibrillar structure and 

also the specific siting of the mutation. In particular, two ǲmajor ligand binding 

regionsǳ in tropocollagen are identified as sites of interaction with other matrix 

proteins that, when disrupted as a result of mutation in the type I collagen genes, 

often have a severe or lethal OI phenotype. (20) 

 

Fibrillar changes in OI 

Much of the exploration of fibrillar mechanics in OI has been undertaken using 

the oim mouse model, which carries a mutation in the cola-2 gene. (21) In oim-/- 

mice, homozygous for the mutation, the altered Ƚʹ chain of the type 1 collagen 

heterotrimer is unable to associate with the Ƚͳ chains and the type 1 collagen 

molecule is thus a homotrimer of Ƚͳ chainsǤ The mice have a moderately severe 
OI phenotype; they are smaller at birth and grow less well than wild type 

littermates, have low bone mass, fracture with minimal trauma, and develop 

bone deformities. At a tissue level, cortical thinning and reductions in trabecular 

number are seen on light microscopy, along with a lack of lamellar architecture 

and increased osteocyte density. (21)  

At an ultrastructural level, collagen content is reduced by 20% (22) and a 

reduction in the size of the D-space within oim-/- collagen fibrils of 

approximately 1% vs wild type across a range of D-space sizes from 60-70nm 

has been observed using atomic force microscopy. (23) The individual 

tropocollagen molecules are more prone to kinking (24) and there is more water 

associated with the tropocollagen and between the microfibrils (25). The bone 

matrix compressive elastic modulus of oim-/- tibia by nanoindentation was 

reduced by 20% compared to wild type; in addition, resistance to plastic 

deformation was 8% higher, implying reduced toughness. (26) The overall 

picture that emerges from the mouse model reports is of a disorganised bone 

matrix, more loosely woven, less capable of responding to normal mechanical 

inputs, and less able to absorb and dissipate energy that might lead to fracture. 

 

Mineralisation of bone matrix 

Collagen in sites outside the skeleton and teeth should not mineralise. This 

implies either the presence of one or more inhibitors of mineralisation in non-

skeletal sites, or the presence of factors that promote mineralization in bone, or 

both. In remodeling sites, mineralisation of osteoid is linked both to local mineral 

concentrations and the incorporation of osteoblasts into the matrix (27)Ȃ clearly, 

osteoblasts are not present in non-mineralising tissues. During endochondral 

ossification occurring with growth or fracture repair, matrix vesicles create 

mineral crystals within themselves that then seed into the local environment as 

they grow and rupture the vesicle walls. (28) The incorporation of mineral into 

tissue in endochondral ossification begins with the calcification of the 

cartilaginous matrix laid down by hypertrophic chondrocytes, with longitudinal 

septae more heavily calcified than transverse septae. The invasion of endothelial 

cells precedes the ingress of both osteoclasts, which remove the transverse 

septae, and osteoblasts, which deposit bone onto the remaining longitudinal 

calcified cartilage cores to form the bony trabeculae of the primary spongiosa. 

(29) 

Remodelling of the primary spongiosa takes place over a defined space in close 

proximity to the growth plate; (30, 31) the precise mechanisms controlling 

remodelling here are unclear. In remodelling sites in the rest of the skeleton, a 



variety of inter-linked mechanisms have been identified that regulate the site 

and degree of mineralisation activity, including the presence of mineralisation 

inhibitors such as pyrophosphate (32) and osteopontin (33), and the potential 

mineral nucleation initiator bone sialoprotein which may act in concert with 

alkaline phosphatase. (34) Multiple other factors may also have a role, recently 

reviewed in Staines et al. (35) In both endochondral ossification and matrix 

mineralisation, however, it seems likely that an initial phase of amorphous 

mineral deposition precedes the formation of more highly organised mineral. 

(36, 37) 

 

Bone mineralisation in OI 

In most cases of OI, mineralisation processes seem to be in place and normally 

functioning. Two exceptions, however, may be the types V and VI OI initially 

identified as having distinct bone histological appearances (type V mesh-like 

under polarised light; type VI osteomalacic) at the level of light microscopy. (38, 

39) Type V infants initially display altered metaphyseal modelling suggestive of a 

delay in endochondral ossification, (40) with a subsequent increase in 

metaphyseal density, but no alteration in mineralisation rate or extent of 

remodelling sites in the trabecular bone of transiliac bone biopsies. (38) By 

contrast, although there is a clear mineralisation defect at remodelling sites in 

type VI patients, (39) there is no apparent defect in endochondral ossification. 

Despite these appearances at a light microscopic level, primary osteoblasts from 

type V OI patients demonstrate increased mineralisation in culture,(41) and 

bone tissue from type VI patients have been shown to have hyper-mineralised 

bone tissue by back scattered electron imaging. (42) These findings suggest that 

the final degree of mineralisation at small length scales is not directly dependent 

on the rate of mineralisation observed at larger scale lengths.  The genetic 

origins of these forms Ȃ an activating mutation in IFITM5/BRIL for type V, (43, 

44) and loss of function in SERPINF1 (encoding pigment epithelium derived 

factor, PEDF) for type VI (45, 46) Ȃ suggest no direct connection with collagen 

synthesis or processing. However, reduced type 1 collagen production has been 

reported recently in primary cultured osteoblasts from type V patients, (41) and 

PEDF binds to the secreted collagen heterotrimer at two distinct sites. (47) 

IFITM5/BRIL may have a role in PEDF regulation; osteoblast PEDF production 

was reduced and typical type VI histology seen in a patient with a novel 

inactivating mutation in IFITM5/BRIL. (48)  

 

Mineral platelets There is general agreement that the mineral plateletǯs long axis is aligned with 
the long axis of the collagen fibrils (49) and that some staggering of the platelets 

occurs. (50) There is, however, a lack of consensus concerning the exact spatial 

relationships of the collagen molecules with the mineral platelets that contribute 

to the material properties of bone.  

This may reflect the variety of techniques and preparation methods used, the 

hydration state of the samples (51) and the difficulty in creating model systems 

that allow accurate recapitulation of the microfibrillar-mineral platelet 

relationships in vivo. (50) The platelets appear to grow and mature over time; 

hence older bone has a higher mineralisation density. The platelets extend 

beyond the individual fibrils into the gap channels; estimates of the distribution 

of mineral between the intra and extra-fibrillar regions vary, but typically are 

around one third inside, two thirds outside. (15) 



The mineral platelets are composed of hydroxyapatite; estimates of their size 

vary, (52) in part as a function of their maturity but also again reflecting the 

methodologies used to provide the estimates and the conditions in which such 

estimates are made. A recent study using ion-milled cryogenic femoral bone 

found consistent platelet sizes of 5nm thick, 70nm wide and >200nm long. (53) 

The platelets may be arranged in stacks, (1) so that several are placed side by 

side in a particular gap channel, or extending between fibrils across a series of 

gap channels. (15) Whilst their long axes align with that of the adjacent collagen 

fibril, the planes of stacks around and between fibrils may not be similar; there is 

some evidence that they vary significantly across local areas. (54) 

In addition to the highly ordered mineral platelet arrays/stacks, there is a 

disorganised hydrogen-phosphate phase, with both the ordered and disordered 

mineral elements being strongly associated with both citrate and water. (1)  A 

recent paper suggests that citrate acts to maintain the ordered platelet parallel 

arrays and also holds non-platelet hydrogen-phosphate in a relatively immobile, 

highly hydrated phase between the platelets, thus maintaining a degree of 

disorder and preventing crystals increasing in size or thickness (which would 

result in increased bone fragility). (1)  This arrangement could be conceptualised 

as a series of stacked multilayer sandwiches (see Figure 2c). Water may also play 

an important role in the interactions between matrix and mineral. (55) Layered 

water provides multiple hydrogen bonds at interfaces between mineral platelets, 

and also allows interactions between platelets and fibrils. (56) Molecular 

dynamics simulations indicate that water can significantly alter the interactions 

between platelets and fibrils during loading. (57) 

 

Mineral platelets in OI 

Investigations of mineral platelet size and orientation, and the effects of mineral 

on intrinsic material properties in OI have been undertaken in both human 

tissue and in mouse models. There is general agreement that mineral platelet 

size is reduced; (58) that there are more, thinner, platelets; (59) that the 

composition of the platelets is altered in terms of the ratio of phosphate to 

carbonate; (23) and that although the alignment of the platelets is generally 

concordant with the fibrils, there is less overall homogeneity of alignment of 

platelets within the tissue, (58) likely reflecting matrix disorganisation. Overall, 

tissue mineralisation density is increased in OI, more so in more severely 

affected individuals, (60) and even more so specifically in those with c-

propeptide cleavage site mutations, (61) BMP-1 mutations (62) and in OI type VI. 

(42) The roles of water and citrate have not been studied in OI bone; simulation 

studies of mineralised OI bone have not been undertaken as yet.  

The overall increase in tissue mineralisation density is likely to be a major 

contributor to the brittle nature of OI bone tissue. It is possible that the observed 

changes listed above reflect increased size of fibrillar gap channels, or possibly 

the orientation of stacks of platelets across the gap channels, in a manner similar 

to that suggested by Alexander (15) (see also Figure 2). 

 

Energy dissipation in bone and fracture toughening mechanisms 

Fractures occur when the force acting at a particular site or sites in bone exceed 

the capacity of the bone to dissipate the related energy without suffering damage 

that results in a substantial loss of structural integrity. Testing bone material 

properties for factors related to fracture resistance is not straightforward Ȃ 

elegantly reviewed in Wagermaier et al. (63)  



Intrinsic material properties that contribute to increased fracture resistance 

include those that promote plasticity and toughness i.e. ductility, energy 

absorption and dissipation. (64, 65) This requires cooperative deformation of 

mineral and matrix and is accomplished through multiple mechanisms including 

inter and intrafibrillary crosslink breakages, (6) shearing between mineral 

platelets, (66) sliding of mineral platelets relative to the fibrils, fibril deformation 

and platelet deformation. (67) Fritsch and colleagues have proposed layered 

water-induced ductile sliding of minerals followed by rupture of collagen 

crosslinks based on a continuum micromechanics model, upscaled for elastic 

properties and then applied to a multi-scale representation of bone materials. 

(68)  A multiscale model summarising toughening mechanisms has been 

proposed by Ritchie. (65)  

Toughness is a measure of energy dissipation and cannot be easily estimated in 

an anisotropic material. Both strength and toughness are influenced by 

inhomogeneity (30) and interface properties, (64) which can be highly localised. 

Fracture resistance extends beyond the intrinsic material properties of bone to 

encompass all levels of scale up to the whole bone. (17) Whilst stiffness can be 

considered as an averaged property across a material, strength and toughness cannotǤ Strength is affected by the ǲweakest linkǳ problem. (63) In addition, scale 

matters in strength testing Ȃ small defects can result in large decreases in 

strength; as scale reduces, the number and size of defects possible decreases and 

sample strength increases as a consequence.  

At scales beyond those at which material properties are assessed, extrinsic 

biomechanical factors act to shield an existing crack from forces that would 

extend that crack Ȃ usually on a scale of 10-1000 microns, i.e. osteonal level. (69) 

Fibre orientation can affect crack propagation, and the successive alteration in 

fibre orientation within the concentric lamellae of an osteon is thought to reflect 

such an adaptation in bone. (70, 71) Osteonal borders, defined by cement lines, 

act as barriers to crack propagation, deflecting cracks into more tortuous paths. 

(72) Cement lines are also found around remodeled bone packets.  Mechanisms 

have to be able to operate in high strain situations i.e. real life rather than the 

laboratory where the strain rates are often very low. Experimental evidence 

suggests that the crack-shielding mechanisms are more effective at preventing crack propagation when they are dealing with the lower ǲevery dayǳ strainsǡ (73) 

rather than the higher strains more often associated with a fall or moderate 

degree of trauma likely to result in fracture in real life. With higher strains, 

cracks are seen to be straighter, crossing osteons rather than deflecting around 

them, with less energy dissipation. (74) 

Accumulated microdamage may contribute to increased fracture risk (75) if 

appropriate remodelling of damaged areas is not undertaken. 

Intrinsic mechanisms of fracture resistance are also affected by strain rate; 

higher strain rates are associated with increased material stiffness and reduced 

ductility (post-yield plastic deformation). Thus at abnormally high strain rates, bone behaves as if it is more ǲbrittleǳǤ (74) Many studies have reported the occurrence of microcracks ǲaheadǳ of a 
propagating fracture (76)Ȃ the production of these microcracks consumes and 

dissipates energy that might otherwise be used to further propagate the crack. 

Bridging across cracks also increases bone toughness, removing some of the load 

from the propagating crack. (77, 78) Similar results have been shown in both 

C57B6 and CH3 mice using submicron resolution synchrotron imaging. (79) 



Fracture resistance is difficult to measure in vivo. A novel approach using 

microindentation has been developed that provides information on the ability of 

bone to resist a localised force Ȃ effectively, the resistance of separation of 

mineralised fibrils - at an intermediate scale. (80) The output for the in vivo, 

hand-held device ȋOsteoprobe̻Ȍ is given as ǲBone Material Strengthǳ and is 
reported to be reduced independently of bone mineral density in patients with 

fragility fractures. (81) Multiple outputs are provided by the ex vivo benchtop device ȋBioDent̻ȌǢ ǲindentation distanceǳ and ǲindentation distance increaseǳ 
indicate the extent to which the probe penetrates initially and further after 10 

cycles of indentation into a bone sample and are thought to reflect fracture 

resistance. (82) 

 

Fracture resistance in OI bone 

When a long OI bone breaks, the fracture line tends to be transverse, suggesting 

that some of the mechanisms that normally promote energy dissipation are 

abrogated. At lower scale lengths in OI, multiple factors likely interact to reduce 

the ability of the disorganised matrix to effectively absorb or dissipate fracture-

causing energy. In the oim mouse, these include fewer enzymatic and more non-

enzymatic crosslinks with associated increased mineralisation density and 

consequent reduced material elasticity and toughness, (26, 83) as well as 

smaller, more densely packed mineral platelets with disordered orientation. (26) 

These features likely impact on the ability of bone to dissipate energy through 

sacrificial bond  breakage, sliding of platelets relative to fibrils and shearing 

between platelets. 

At longer scale lengths, oim-/- mice demonstrate reduced stable crack extension, 

crack-initiation toughness and crack-growth toughness with increasing severity 

of OI and amounts of woven bone; in addition, increased cortical vascular 

porosity in oim reduces stable crack growth. (83, 84) Although excessive woven 

bone is not a clear feature in human OI bone biopsies, increased cortical porosity 

is, and likely also contributes to increased fracture risk.(85-88) Figure 2 

summarises the factors contributing to bone fragility at the different scale 

lengths. 

In the oim-/- mouse, use of microindentation showed an increase in initial 

indentation distance and total indentation distance in one study, (23) but no 

relationship of microindentation outcomes was found with stress intensity 

fracture toughness in another. (89) Microindentation has not been applied in 

vivo in OI as yet.  

 

Effects of current interventions in OI 

The therapeutic options currently employed or under investigation in the 

treatment of OI in humans either reduce bone remodelling (bisphosphonates, 

(90, 91) denosumab (92, 93)) or increase bone formation (PTH (94), anti-

sclerostin antibodies (95)). None of these interventions have been found to affect 

tissue material properties in OI bone. 

However, improved femoral geometry and biomechanical strength in the brtl OI 

mouse was offset by reduced predicted (not measured) elastic modulus 

following 12 weeks of alendronate treatment. (96)  

Tissue mineralisation density is not affected by pamidronate therapy in children 

with OI and material properties are not worsened. (97) Two groups have found 

an increase in non-enzymatic cross-linking following ͵ yearsǯ bisphosphonate 

treatment in healthy beagles. (98, 99) In the earlier study, no clear changes in 



intrinsic material properties were shown; the most recent work found reduced 

toughness (post-yield plastic deformation) in alendronate-treated bone, in 

association with an increase also in the phosphate to carbonate ratio of mineral 

crystals reflecting slower bone remodelling and increased mineral crystal 

maturity.  

Thus for the most commonly used intervention, bisphosphonates, there is 

evidence for improved extrinsic biomechanical properties consequent on macro-

scale architectural change (increased bone width, increased cortical thickness, 

reduced cortical porosity, retention of new trabeculae in growing bone(86)) 

which in mild OI may result in reduced fracture risk. (90, 100) There is no 

evidence, however, that bisphosphonates alter bone material properties in such 

a way as to further reduce fracture risk. It follows that there is a limit to what 

current treatment can achieve regarding fracture risk reduction in terms of off-

setting increased bone mass and improved macro-architecture against the poor 

material properties that characterise OI bone.  

Anti-TGFȾ antibody treatment of two moderate-severe mouse models of OI 

(crtap-/- and Col1a2tm1.1Mcbr mice; not oim-/-) has been reported to restore bone 

architecture and reduce hyperosteocytosis, but did not affect bone material 

properties. (101)  

In terms of future therapeutic interventions, new approaches to improving the 

intrinsic material properties of bone would appear attractive but may not be 

practicable given the underlying issue of matrix disorganisation. Increasing the 

proportion of normal collagen within the matrix would require implementation 

of cellular or genetic approaches.  Murine (oim-/-) studies suggest that 

mesenchymal stem cells (MSCs) can engraft and produce normal collagen 

ameliorating the OI phenotype and reducing bone brittleness, (102-104) and 

human chorionic cells transplanted into newborn oim-/- mice also improved the 

clinical phenotype. (105) Previous human studies of bone marrow 

transplantation shon little mesenchymal lineage engraftment and failed to 

deliver clear benefit (106, 107) but the recent report of fetal stem cell infusion 

both before and after delivery in a child thought to have type IV OI was 

encouraging. (108) 

Ex vivo manipulation of cells ex vivo and then their reintroduction has been 

widely discussed following the recent successful treatment of a child with 

leukaemia. In OI, an approach of this type could substantially impact on tissue 

phenotype. (109) An alternative approach using siRNAs to knock down mutant 

alleles in MSCs ex vivo has been shown to reduce mutant collagen production by 

42% in fibroblasts from the Brtl mouse model of OI. (110)  

 

Summary 

The characteristic material feature of bone in OI is its brittleness, and this helps 

differentiates OI from other disorders associated with early onset bone fragility. 

The brittleness is contributed to both by increased mineralisation density due to 

smaller more densely packed mineral platelets and increased numbers of non-

enzymatic crosslinks. The bone matrix is looser, allowing more space between 

collagen molecules and fibrils for other matrix proteins as well as the mineral 

platelets. At longer scale lengths, the contribution of abnormal architecture to 

fragility is substantial Ȃ increased cortical porosity, thinner cortices and 

narrower bones all contribute to an increase in fracture risk. Current therapies 

really address only these macro-architectural abnormalities, although there is 

limited evidence that bisphosphonates may improve toughening.  Until, however, 



there are therapies that can address the abnormalities at shorter scale lengths, it 

seems unlikely that there will be substantial improvements in outcome for those 

with more severe forms of OI. Such therapies are likely to be those that allow the 

production of larger quantities of normal collagen, and likely require cell or 

gene-targeting approaches. 



 

Table 1. Early onset bone fragility syndromes 

 

Collagen related 

Gene Protein Hyper-

mineralised? 

Phenotype(s) 

   Collagen molecule 

COL1A1 Type 1 collagen Ƚͳ chain Yes Mild-lethal OI (18) 

High bone mass in C-

propeptide cleavage site 

defects (61) 

Caffey disease with defect at 

p.Arg1014Cys (111) 

COL1A2 Type ͳ collagen Ƚʹ chain Yes Mild-lethal OI (18) 

High bone mass in C-

propeptide cleavage site 

defects (61) 

 

   Collagen folding 

PPIB Cyclophilin B Yes Moderate-lethal OI (112) 

LEPRE1 Prolyl-3-hydroxylase Yes Severe-lethal OI (113) 

CRTAP Cartilage associated 

protein 

Yes Severe-lethal OI (114, 115); 

Cole-Carpenter features 

(116) 

   Collagen stability 

FKBP10 FKBP65; 65kD FK506-

binding protein 

? Moderate-severe OI; Bruck 

syndrome (OI with 

contractures); (117) 

Kuskokwim syndrome 

(contractures alone) (118) 

PLOD2 Lysyl hydroxylase 2 ? Bruck syndrome (119) 

SERPINH1 Heat Shock Protein 47 ? Severe OI, pyloric stenosis, 

skin bullae, renal stones 

(120) 

SPARC Secreted protein, acidic, 

cysteine-rich; osteonectin 

Yes Notable sarcopenia (121) 

 

   Collagen processing/cleavage 

BMP1 Bone morphogenetic 

protein 1; tolloid 

Yes High bone mass, 

hyperosteoidosis (122) 

 



 

Osteoblast lineage/function 

Gene Protein Hyper-

mineralised? 

phenotype 

   Wnt-signalling pathway 

LRP5/6 Lipoprotein receptor-

related protein 5/6 

No Homozygous Ȃ osteoporosis 

pseudoglioma syndrome; (123) 

Heterozygous Ȃ osteoporosis 

and/or vitreoretinopathy (124) 

WNT1 Wingless-type MMTV 

integration site family, 

member 1 

No Homozygous Ȃ severe OI; some 

have brain malformation; 

autism,  learning difficulties in 

some. (125) 

Heterozygous Ȃ early onset 

osteoporosis, normal growth 

(126) 

 

   Osteocyte dysfunction 

PLS3 Plastin 3  ? X-linked early onset severe 

osteoporosis without other OI 

features (126) 

 

   Mineralisation regulation 

SERPINF1 Pigment epithelium 

derived factor 

Yes Slowly progressively worsening 

OI; osteoid mineralization 

defect (no endochondral defect) 

(45) 

IFITM5/ 

BRIL 

Interferon-induced 

transmembrane protein 5, 

or, bone-restricted 

IFITM5-like 

Yes Severe OI; metaphyseal 

dysplasia and sclerosis, 

hypertrophic callus, 

interosseous membrane 

calcification. (43, 44, 127) 

 

   Osteoblast lineage 

SP7/OSX Specificity Protein 7; 

Osterix 

? Typical OI features (128) 

 

 

   ER-related 

P4HB Prolyl 4-hydroxylase; 

protein disulfide 

isomerase 

? Cole-Carpenter syndrome; 

craniosynostosis, ocular 

proptosis, hydrocephalus (129) 

TMEM38B Trimeric Intracellular 

Cation Channel Type B; 

TRIC-B 

? Severe osteopenia and limb 

fractures without vertebral 

fractures (130) 

CREB3L1 Old Astrocyte Specifically 

Induced Substrate - OASIS 

? Severe OI; cardiac failure (131) 

NBAS Neuroblastoma Amplified 

Sequence 

? Early onset osteoporosis, 

recurrent acute liver failure, 

developmental delay (132) 

SEC24D Component of COPII 

complex 

? Cole-Carpenter syndrome; 

craniosynostosis, ocular 



proptosis, hydrocephalus (133) 

 

   Linker enzyme deficiency 

XYLT2 Xylosyltransferase II ? Vertebral fractures, cataracts, 

heart defects (134) 

 



 

Figure 1 Ȃ from Orgel  - Use only parts E and F 

 

 

 
 

Legend:- 

Inter-relationships of tropocollagen molecules within an individual microfibril 

shown in E; continuous packing of microfibrils with N and C terminal ends 

labelled in F. Longitudinally compressed by a factor of 5. The arrows in F indicate 

where neighbouring microfibrils interdigitate.  
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Legend 

a. Macro scale ȂOI bone is narrower, cortices are thinner, there are fewer 

trabeculae; bone mass is reduced. 

b. Sub-macro scale Ȃ increased cortical porosity in OI bone; a larger number 

of vascular channels as well as pores that coalesce and form larger voids. 

c. Fibrillar level Ȃ fibrils are less consistent in size and shape in OI. The ǲweaveǳ is looserǡ allowing more water and mineral between and within 
fibrils. Mineral platelets are smaller, thinner and more closely packed. 

Results in hypermineralisation and increased brittleness. 

d. Molecular level Ȃ increased numbers of non-enzymatic crosslinks (green) 

reduce collagen molecules ability to absorb energy and increase bone 

stiffness further. 
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