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Cardinal characteristics at κ in a small u(κ) model
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Abstract

We provide a model where u(κ) = κ+ < 2κ for a supercompact cardinal
κ. [10] provides a sketch of how to obtain such a model by modifying the
construction in [6]. We provide here a complete proof using a different mod-
ification of [6] and further study the values of other natural generalizations
of classical cardinal characteristics in our model. For this purpose we gen-
eralize some standard facts that hold in the countable case as well as some
classical forcing notions and their properties.

Keywords: generalized cardinal characteristics, forcing, supercompact
cardinals
2000 MSC: 03E17, 03E35, 03E55

1. Introduction

Cardinal invariants on the Baire space ωω have been widely studied and
understood. Since 1995 with the Cummings-Shelah paper [5], the study of
the generalization of these cardinal notions to the context of uncountable
cardinals and their interactions has been developing. By now, there is a
wide literature on this topic. Some key references (at least for the purposes
of this paper) are [2], [5] and [13].

In [6] Džamonja and Shelah construct a model with a universal graph at
the successor of a strong limit singular cardinal of countable cofinality. A
variant of this model, as pointed out by Garti and Shelah in [10], witnesses
the consistency of u(κ) = κ+ < 2κ (Here u(κ) = min{|B|: B is an base for a
uniform ultrafilter on κ}). See also [4].
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Here we present a modification of the forcing construction used by Džamonja
and Shelah, which allows us to prove that if κ is a supercompact cardinal
and κ < κ∗ with κ∗ regular, then there is a generic extension of the universe
in which cardinals have not been changed and u(κ) = κ∗. The idea of our
construction originates in [8] and states that if after the iteration κ is still
supercompact (which can be guaranteed by using the Laver preparation)
and we take a normal measure U on κ in the final extension, then there
is a set of ordinals of order type κ∗ such that the restrictions of U to the
corresponding intermediate extensions coincide with ultrafilters which have
been added generically (see Lemma 10). In addition, to obtain u(κ) = κ∗ we
further ensure that each of these restricted ultrafilters contains a Mathias
generic for its smaller restrictions, yielding then an ultrafilter generated by
these κ∗-many Mathias generics.

Moreover our construction allows us to decide the values of many of
the higher analogues of the known classical cardinal characteristics of the
continuum, as we can interleave arbitrary κ-directed closed posets cofinally
in the iteration. The detailed construction of our model is presented in
Section 3, while our applications appear in Section 4.

Thus our main result, states the following:

Theorem 1. Suppose κ is a supercompact cardinal, κ∗ is a regular cardinal
with κ < κ∗ ≤ Γ and Γ satisfies Γκ = Γ. Then there is forcing extension in
which cardinals have not been changed satisfying:

κ∗ = u(κ) = b(κ) = d(κ) = a(κ) = s(κ) = r(κ) = cov(Mκ)

= add(Mκ) = non(Mκ) = cof(Mκ) and 2κ = Γ.

If in addition γ < κ∗ → γ<κ < κ∗, then we can also provide that i(κ) = κ∗.
If in addition (Γ)<κ∗

≤ Γ then we can also provide that p(κ) = t(κ) = h(κ) =
κ∗.

In addition, we establish some of the natural inequalities between the
invariants (in the countable case these are well known).

2. Preliminaries

Let κ be a supercompact cardinal. Recall that this means that for all
λ ≥ κ there is an elementary embedding j : V → M with critical point κ,
j(κ) > λ and Mλ ⊆ M .

One of the main properties of supercompact cardinals that will be used
throughout the paper is the existence of the well-known Laver preparation,
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which makes the supercompactness of κ indestructible by subsequent forcing
with κ-directed-closed partial orders.

Theorem 2 (Laver, [12]). If κ is supercompact, then there exists a κ-cc
partial ordering Sκ of size κ such that in V Sκ, κ is supercompact and remains
supercompact after forcing with any κ-directed closed partial order.

The main lemma used to obtain this theorem is the statement that for
any supercompact cardinal κ there exists a Laver diamond. That is, there is
a function h : κ → Vκ such that for every set x and every cardinal λ, there
is an elementary embedding j : V → M with critical point κ, j(κ) > λ,
Mλ ⊆ M and j(h)(κ) = x.
Given such a function, the Laver preparation Sκ is given explicitly as a re-
verse Easton iteration (Sα, Ṙβ : α ≤ κ, β < κ), defined alongside a sequence
of cardinals (λα : α < κ) by induction on α < κ as follows.

• If α is a cardinal and h(α) = (Ṗ , λ), where λ is a cardinal, Ṗ is an Sα

name for a < α-directed closed forcing, and for all β < α, λβ < α, we
let Ṙα := Ṗ and λα = λ.

• Otherwise, we let Ṙα be the canonical name for the trivial forcing and
λα = supβ<α λβ .

One of the main forcing notions we will use is the following:

Definition 3 (Generalized Mathias Forcing). Let κ be a measurable cardi-
nal, and let F be a κ-complete filter on κ. The Generalized Mathias Forcing
Mκ

F has, as its set of conditions, {(s,A) : s ∈ [κ]<κ and A ∈ F}, and the
ordering given by (t, B) ≤ (s,A) if and only if t ⊇ s,B ⊆ A and t \ s ⊆ A.
We denote by 1F the maximum element of Mκ

F , that is 1F = (∅, κ).

In our main forcing iteration construction we work exclusively with gen-
eralized Mathias posets Mκ

U , where U is a κ-complete ultrafilter. In our
applications however, we will be working with arbitrary κ-complete filters.

Definition 4. A partial order P is:

• κ-centered if there is a partition {Pα | α < κ} of P such that for each
α < κ, every pair of conditions p, q ∈ Pα has a common extension in
Pα;

• κ-directed closed if for every directed set D ⊆ P of size |D|< κ there
is a condition p ∈ P such that p ≤ q for all q ∈ D.
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3. The small u(κ) model

Let Γ be such that Γκ = Γ. We will define an iteration 〈Pα, Q̇β : α ≤
Γ+, β < Γ+〉 of length Γ+ recursively as follows:

If α is an even ordinal (abbreviated α ∈ EVEN), let NUF denote the set
of normal ultrafilters on κ in V Pα . Then let Qα be the poset with underlying
set of conditions {1Qα} ∪ {{U} × Mκ

U : U ∈ NUF} and extension relation
stating that q ≤ p if and only if either p = 1Qα , or there is U ∈ NUF
such that p = (U , p1), q = (U , q1) and q1 ≤Mκ

U
p1. If α is an odd ordinal

(abbreviated α ∈ ODD), let Q̇α be a Pα-name for a κ-centered, κ-directed
closed forcing notion of size at most Γ.

We define three different kinds of support for conditions p ∈ Pα, α < Γ+:
First we have the Ultrafilter Support USupt(p), that corresponds to the set
of ordinals β ∈ dom(p) ∩ EVEN such that p ↾ β 
Pβ

p(β) 6= 1Qβ
. Then the

Essential Support SSupt(p), which consists of all β ∈ dom(p) ∩ EVEN such
that ¬(p ↾ β 
Pβ

p(β) ∈ {1̌Qβ
} ∪ {(U ,1U ) : U ∈ NUF}) (for the definition

of 1U see Definition 3). Finally, the Directed Support RSupt(p), consists of
all β ∈ dom(p) ∩ODD such that ¬(p ↾ β 
 p(β) = 1Q̇β

).

We require that the conditions in PΓ+ have support bounded below Γ+

and also that given p ∈ PΓ+ if β ∈ USupt(p) then for all α ∈ β ∩ EVEN,
α ∈ USupt(p). Finally we demand that both SSupt(p) and RSupt(p) have
size < κ and are contained in sup(USupt(p)), i.e. Supt(p) (the entire support
of p) and USupt(p) have the same supremum.

Now, we want to ensure that our iteration preserves cardinals. Let P :=
PΓ+ .

Lemma 5. P is κ-directed closed.

Proof. We know that Mκ
U , as well as all iterands Qα for α ∈ ODD, are

κ-directed closed forcings. Take D = {pα : α < δ < κ} a directed set of
conditions in P. We want to define a common extension p for all elements
in D. First define dom(p) =

⋃

α<δ dom(pα). For j ∈ dom(p) define p(j) by
induction on j. We work in V Pj and assume that p ↾ j ∈ Pj .

We have the following cases:

• if j is even and j /∈
⋃

α<δ SSupt(pα), then using compatibility we
can find at most one normal ultrafilter U such that for some α < δ,
pα ↾ j 
 pα(j) = (U ,1U ). If there is such a U define p(j) = (U ,1U ),
otherwise p(j) = 1Qj

.

• If j is even and j ∈ SSupt(pα) for some α < δ, then again using
directedness it is possible to find a single ultrafilter U such that for
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α < δ with j ∈ SSupt(pα), pα ↾ j 
 pα(j) ∈ U ×Mκ
U , and 
Pj

Mκ
U is

κ-directed closed. In the extension V Pj we can find a condition q such
that q ≤ pα(j) for all α < δ. Define p(j) = q.

• If j is odd, use the fact that in the Pj extension Qj is κ-directed closed
on the directed set Xj = {pα(j) : α < δ < κ} to find p(j) a condition
stronger than all the ones in Xj .

For any p ∈ Pβ , β < Γ+ let Pβ ↓ p denote the set {q ∈ Pβ : q ≤ p}.

Lemma 6. Let p ∈ PΓ+ and let i = supUSupt(p) = supSupt(p). Then
Pi ↓ (p ↾ i) is κ+-cc and has a dense subset of size at most Γ.

Proof. It is enough to observe that Pi ↓ (p ↾ i) is basically a < κ-support
iteration of κ-centered, κ-directed closed forcings of size at most Γ. Then
the proof is a straightforward generalization of Lemma V.4.9 – V.4.10 in
[11].

Lemma 7. Let {Aα}α<Γ be maximal antichains in P below p ∈ P. Let j∗ =
supSupt(p). Then there is q ∈ P such that q ↾ j∗ = p, Supt(q)\Supt(p) ⊆
USupt(q) and for all α < Γ, the set Aα ∩ (Pi∗ ↓ q) is a maximal antichain
in Pi∗ ↓ q (and hence in P ↓ q), where i∗ = supSupt(q).

Proof. Let P̄ := Pj∗ ↓ p and let w ∈ P̄. Then there is a condition r extending
both w and an element of A0 and we can find p1 such that p1 ↾ j∗ = p and
r ∈ Pj1 ↓ p1, where j1 = supSupt(p1). Since P̄ has a dense subset of size
at most Γ, in κ+-steps we can find q0 such that q0 ↾ j∗ = p and every
condition in P̄ is compatible with an element of A0 ∩ (Pj∗0

↓ q0), where
j∗0 = supSupt(q0).

Since we have only Γ many antichains {Aα}α<Γ in Γ steps we can obtain
the desired condition q.

Corollary 8. If p 
 Ẋ ⊆ κ for some P-name Ẋ, then there are q ≤ p and
j < Γ+ such that Ẋ can be seen as a Pj ↓ q-name.

Proof. For each α < κ fix a maximal antichain Aα of conditions below p
deciding if α belongs to Ẋ. Then, let q be the condition given by Lemma 7
and take j := sup Supt(q). Then q ≤ p and Ẋ can be seen as a PsupSupt(q) ↓
q-name.
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Corollary 9. Let p 
 ḟ is a P-name for a function from Γ into the ordinals.
Then there is a function g ∈ V and q ≤ p such that q 
 ḟ(α) ∈ g(α) for
α < Γ and |g(α)|≤ κ for all α. In particular, P preserves cofinalities and so
cardinalities.

Proof. Let Aα be a maximal antichain of conditions below p deciding a value
for ḟ(α). Use Lemma 7 to find q ≤ p such that Aα ∩ P ↓ q is a maximal
antichain in P ↓ q for all α < Γ. Finally define the function g ∈ V as follows:
g(α) = {β : ∃r ≤ q such that r 
 ḟ(α) = β}.

We now present the key lemmas that will allow us to construct the
witness for u(κ) = κ∗.

Lemma 10. Let κ be a supercompact cardinal and κ∗ be a cardinal satisfying
κ < κ∗ ≤ Γ, κ∗ regular. Suppose that p ∈ P is such that p 
 U̇ is a normal
ultrafilter on κ.1 Then for some α < Γ+ there is an extension q ≤ p such
that q 
 (U̇α = U̇ ∩ V [Gα]). Moreover this can be done for a set of ordinals
S ⊆ Γ+ of order type κ∗ in such a way that ∀α ∈ S(U̇ ∩ Vα ∈ V [Gα]) and
U̇ ∩ V [GsupS ] ∈ V [GsupS ]. Here U̇α is the canonical name for the ultrafilter
generically chosen at stage α.

Proof. Let α0 = supUSupt(p). Then Pα0 ↓ p is κ+-cc and has a dense subset
of size at most Γ. Thus there are just Γ-many Pα0 ↓ p-names for subsets of
κ. Let X̄ = (Ẋi : i < Γ) be an enumeration of them.

We view each condition in P as having three main parts. The first part
corresponds to the choice of ultrafilters in even coordinates — the “U”s of
r = (U , r1) for iterand conditions r; we call this the Ultrafilter Part. The
next part corresponds to the coordinates where we have in addition non-
trivial Mathias conditions (coordinates in SSupt), we call it the Mathias
part. Finally the odd coordinates, where the forcing chooses conditions in
an arbitrary κ-centered, κ-directed closed forcing (coordinates in RSupt),
we call the Directed Part.

Extend p0 = p to a condition p1 deciding whether Ẋ0 ∈ U̇ , and let p′1 be
the condition extending p0 with the same ultrafilter part as p1 and no other
change from p0. Then extend p′1 again to a condition p2 which also makes a
decision about Ẋ0 but either its Mathias or directed parts are incompatible
with the ones corresponding to p1; and correspondingly extend p′1 on its
ultrafilter part to p′2.

1This is possible because κ is still supercompact in V P.
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Continue extending the ultrafilter part, deciding whether or not Ẋ0 ∈ U̇
with an antichain of different Mathias and directed parts until a maximal
antichain is reached. This will happen in less than κ+-many steps. If the
resulting condition is called q1 and has support α1 < Γ+ (without loss of
generality it is an odd ordinal), then the set of conditions in Pα1 ↓ q1 which
decide whether or not Ẋ0 belongs to U̇ is predense in Pα1 ↓ q1.

Repeat this process Γ-many times for each element in X̄ until reaching
a condition q2 with the same property for all such names. Then do it for all
Pα1 ↓ q2 names for subsets of κ and so on. Let q be the condition obtained
once this overall process closes off with a fixed point. It follows, that if G is
P generic containing q then U̇G∩V [Gα] is determined by Gα and therefore it
is a normal ultrafilter Uα on κ in V [Gα]. Now extend q once more to length
α+ 1 by choosing U̇α to be the name for Uα = U̇G ∩ V [Gα].

This argument gives us the desired property for a single α < Γ. To have
it for all α ∈ S ∪ {supS} we just have to iterate the process κ∗-many times
(this is possible because κ∗ < Γ), and then by cofinality considerations we
see that moreover U̇ ∩ V [GsupS ] ∈ V [GsupS ].

Remark: Note that we can choose the domains of our conditions such
that they have size Γ.

Take S to be a set with the properties of the lemma above; this set will
be fixed for the rest of the paper.

Now, using our Laver preparation Sκ and Laver function h we choose a
supercompactness embedding j∗ : V → M with critical point κ satisfying
j∗(κ) ≥ λ where λ ≥ |Sκ ∗ P|, Mκ ⊆ M and j∗(h)(κ) = (P, λ). Then
j∗(Sκ) = Sκ ∗ Ṗ ∗ Ṡ∗ for an appropriate tail iteration Ṡ∗ in M . Also if we
denote P′ = j∗(P) applying j∗ to Sκ∗Ṗ we get j∗(Sκ∗Ṗ) = Sκ∗P∗Ṡ∗∗(P′)M .

Consider then j0 : V [GSκ ] → M [GSκ ][GP][H] where GSκ ∗ GP ∗ H
is generic for j(Sκ ∗ Ṗ). We want to lift again to j∗ : V [GSκ ][GP] →
M [GSκ ][GP][H][GP′ ] where P′ = j0(P). We will do this by listing the maxi-
mal antichains below some master condition in P′ extending every condition
of the form j0(p) for p ∈ GP. The obvious master condition comes from
choosing a lower bound p∗0 of j0[GP].

2

This condition has support contained in j[Γ+] and for each i < Γ+ odd
chooses the filter name U̇j(i) to be j0(U̇i) as well as a j(κ)-Mathias name
with first component x̌i, the Mathias generic added by GP at stage i of
the iteration. However we will choose a stronger master condition p∗ with

2This exists because j0[GP] is directed and the forcing is sufficiently directed-closed
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support contained in j[Γ+] as follows.
(∗) If i < Γ+ is an even ordinal and for each A ∈ Ui there is a GPi

-name
Ẋ such that A = XGPi and a condition p ∈ GPi

such that j0(p) 
 κ ∈ j0(Ẋ),
then p∗(j(i)) is obtained from p∗0(j(i)) by replacing the first component xi
of its j(κ)-Mathias name by xi ∪ {κ}.

Otherwise p∗(j(i)) = p∗0(j(i)).

Lemma 11. The condition p∗ is an extension on p∗0. If GP′ is chosen to
contain p∗, j∗ is the resulting lifting of j0 and U is the resulting normal
ultrafilter on κ derived from j∗, then whenever Ui is contained in U , we
have that xi ∈ U

Proof. To show the first claim, it is enough to show that for all i < Γ+ the
condition p∗i defined as p∗ but replacing xj(l) by xj(l)∪{κ} for l < i satisfying
(∗) extends p∗0. We do this by induction on i. The base and limit cases are
immediate. For the successor one, suppose we have the result for i and we
want to prove it for i + 1. Let GP∗

j (i)
be any generic containing p∗i ↾ j(i)

and extend it to a generic GP∗ containing p∗i . Hence, using the induction
hypothesis GP∗ also contains p∗0 and therefore gives us a lifting j∗ of j0.

Now, any p ∈ GP can be extended (inside GP) so that the Mathias
condition it specifies at stage i is of the form (s,A) ∈ Mκ

Ui
where s ⊆ xi and

A ∈ Ui. Then using (∗) we infer A = XGPi where j0(q) 
 κ ∈ j0(Ẋ) for
some q ∈ GPi

.
But then, since p∗0 ∈ GP∗ , j0(q) is an element of GP∗

j (i)
and therefore

κ ∈ j0(Ẋ)
G

P
∗

j(i) = j∗(A).

It follows that the j(κ)-Mathias condition specified by p∗i+1(j(i))
G

P
∗

j(i)

with first component xi ∪ {κ} does extend

(xi, j
∗(A)) = (xi, j0(Ẋ)

G
P
∗

j(i) ) ≤ (s, j0(Ẋ)
G

P
∗

j(i) ).
This means that p∗i ↾ j(i) 
 p∗i+1(j(i)) ≤ (s, j0(Ẋ)) = j0(p)(j(i)) and

thus p∗i+1 extends j∗0(p) for each p ∈ GP and then also extends p∗0.
To see the second claim, note that if Ui ⊆ U , then κ ∈ j∗(A) for all

A ∈ Ui which implies that (∗) is satisfied at i. Then κ ∈ j∗(xi) and so
xi ∈ U .

Theorem 12. Suppose κ is a supercompact cardinal and κ∗ is a regular
cardinal with κ < κ∗ ≤ Γ, Γκ = Γ. There is a forcing notion P∗ preserving
cofinalities such that V P∗

|= u(κ) = κ∗ ∧ 2κ = Γ.

Proof. We will not work with the whole generic extension given by P. In
fact we will chop the iteration in the step α = sup(S) (as in the Lemma 10)
this is an ordinal of cofinality κ∗. Define P∗ = Pα.

8



Take G to be a P∗-generic filter, the fact that 2κ = Γ is a consequence
of the fact that, the domains of the conditions obtained in Lemma 10 can
be chosen in such a way that they all have size Γ.

To prove u(κ) = κ∗ we consider the ultrafilter U∗ on κ given by the
restriction of U (Lemma 10). Then by the same lemma note that for all i ∈ S
the restriction of U to the model V [Gi] belongs to V [Gi+1] and moreover,
this is the ultrafilter UG

i chosen generically at stage i.
Furthermore by our choice of Master Conditions the κ-Mathias generics

ẋi belong to U . Then U∗ is generated by ẋi for i ∈ S.
The other inequality u(κ) ≥ κ∗ is a consequence of b(κ) ≥ κ∗ and Propo-

sition 13.

Proposition 13. b(κ) ≤ r(κ) and r(κ) ≤ u(κ).

Proof. The first is the consequence of the following property that can be
directly generalized from the countable case: there are functions Φ : [κ]κ →
κ↑κ and Ψ : κ↑κ → [κ]κ such that whenever Φ(A) ≤∗ f then Ψ(f) splits A.

For the second one, it is just necessary to notice that if B is a base for a
uniform ultrafilter on κ, then B cannot be split by a single set X. Otherwise
neither X nor κ \X will belong to the ultrafilter.

4. The generalized cardinal characteristics

In the following subsections 4.1 - 4.6 we systemize those properties of
the generalized cardinal characteristics which will be of importance for our
main consistency result.

4.1. Unbounded and Dominating Families in κκ

Definition 14. For two functions f, g ∈ κκ, we say f ≤∗ g if and only
if there exists α < κ such that for all β > α, f(β) ≤ g(β). A family F

functions from κ to κ is said to be

• dominating, if for all g ∈ κκ, there exists an f ∈ F such that g ≤∗ f .

• unbounded, if for all g ∈ κκ, there exists an f ∈ F such that f �∗ g.

Definition 15. The unbounding and dominating numbers, b(κ) and d(κ)
respectively are defined as follows:

• b(κ) = min{|F|: F is an unbounded family of functions from κ to κ}.

• d(κ) = min{|F|: F is a dominating family of functions from κ to κ}.

9



Definition 16 (Generalized Laver forcing). Let U be a κ-complete non-
principal ultrafilter on κ.

• A U-Laver tree is a κ-closed tree T ⊆ κ<κ of increasing sequences with
the property that ∀s ∈ T (|s|≥ |stem(T )|→ SuccT (s) ∈ U)}.

• The generalized Laver Forcing Lκ
U consists of all U-Laver trees with

order given by inclusion.

Proposition 17. Generalized Laver forcing Lκ
U generically adds a dominat-

ing function from κ to κ.

Proof. Let G be a Lκ
U -generic filter. The Laver generic function in κκ, lG, is

defined as follows: lG = ∩{[T ] : T ∈ G} where [T ] is the set of branches in
T .

To show that lG is a dominating function it is enough to notice that,
for all f ∈ κκ and all T ∈ Lκ

U , the set Tf = {s ∈ T : ∀α((|stem(T )|≤ α <
|s|) → s(α) > f(α))} is also a condition in Lκ

U and Tf ≤ T . By genericity
we conclude that V [G] |= ∀f ∈ V ∩ κκ(f ≤∗ lG).

Lemma 18. If U is a normal ultrafilter on κ, then Mκ
U and Lκ

U are forcing
equivalent.

Proof. The main point that we will use in this proof is that, when U is
normal we have the following “Ramsey”-like property: For all f : [κ]<ω → γ
where γ < κ, there is a set in U homogeneous for f .

Also it is worth to remember that in the countable case if U is a Ramsey
Ultrafilter M(U) ≃ L(U). Thus, we want to define a dense embedding
ϕ : Mκ

U → Lκ
U . Take (s,A) a condition in Mκ

U and define the tree T = T(s,A)

as follows:

• σ = stem(T ) will be the increasing enumeration of s.

• If we already have constructed τ ∈ Tα, with τ ⊇ σ, then τa〈α〉 ∈ Tα+1

if and only if α ∈ A and α ≥ sup{τ(β) : β < α}.

• In the limit steps just ensure that τ ∈ Tα if and only if τ ↾ β ∈ Tβ .

Note that T is a condition in Lκ
U . For the limit steps note that if τ ∈ Tα

for α limit, then the set SuccT (τ) ⊇
⋂

β<α SuccT (τ ↾ β).
Now, consider the map ϕ : (s,A) → T(s,A). Since this map preserves ≤,

it is enough to prove that the trees of the form T(s,A) are dense in Lκ
U . For

that, take an arbitrary T ∈ Lκ
U and define:
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f({α, β}) =











1
if ∀s ∈ T with α ≥ sup{s(γ) : γ < |s|}

(α ≤ β → β ∈ SuccT (s))

0 otherwise

Using the Ramsey-like property we can find a set B ∈ U homogeneous for
f . The color of B cannot be 0 because T is a Laver tree. Now, knowing that
f ′′[B]2 = {1}, we can define s = ran(stem(T )) and A = B∩SuccT (stem(T ))
and conclude that T(s,A) ≤ T as we wanted.

Corollary 19. If U is a normal ultrafilter on κ then Mκ
U always adds dom-

inating functions.

4.2. κ-maximal almost disjoint families

Definition 20. Two sets A and B ∈ P(κ) are called κ-almost disjoint
if A ∩ B has size < κ. We say that a family of sets A ⊆ P(κ) is κ-
almost disjoint if it has size at least κ and all its elements are pairwise
κ-almost disjoint. A family A ⊆ [κ]κ is called a κ-maximal almost disjoint
(abbreviated κ-mad) if it is κ-almost disjoint and is not properly included in
another such family.

Definition 21. a(κ) = min{|A|: A is a κ-mad family}

Proposition 22. b(κ) ≤ a(κ)

Proof. Suppose a(κ) = λ, let A = {Aα : α < λ} be a κ-almost disjoint
family where λ < b(κ). For each α < κ, let Ãα = Aα \

⋃

δ<α(Aα ∩ Aδ).

Since A is κ-ad, we have |Ãα| = κ, also Ãα ∩ Ãβ = ∅ for all α, β < κ. Thus,
Ãα =∗ Aα. (Here ∗ means modulo a set of size < κ).

Whenever g ∈ κκ, define eαg = next(Ãα, g(α)), the least ordinal in Ãα

greater than g(α). Let Eg = {eαg : α < κ}. Then Eg contains one element

of each Ãα, so it is unbounded in κ. Also |Eg ∩Aα|< κ, for all α < κ.
Now when κ ≤ α < λ. Each Aα ∩ Aγ , has size less than κ, so we can

fix fα such that for all γ < κ all elements of Aα ∩ Aγ are less than fα(γ).
Where fα(γ) = sup(Aα ∩Aγ) + 1.

Now consider {fα : α < λ}, which is a family of λ < b(κ) functions,
therefore there exists g ∈ κκ with the property fα <∗ g, for all α.

As consequence we have that Eg ∩ Aα has size less than κ, for all α
because if eγg ∈ Eg ∩ Aα then eγg ∈ Ãα and eγg > g(α), so fα(γ) > eγg > g(γ)
which is only possible for a set of less than κ values.

Therefore, A is not maximal. Then b(κ) ≤ λ.
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Definition 23. Let A = {Ai}i<δ be a κ-almost disjoint family. Let Q̄(A, κ)
be the poset of all pairs (s, F ) where s ∈ 2<κ and F ∈ [A]<κ, with extension
relation stating that (t,H) ≤ (s, F ) if and only if t ⊇ s, H ⊇ F and for all
i ∈ dom(t) \ dom(s) with t(i) = 1 we have i /∈

⋃

{A : A ∈ F}

Note that the poset Q̄(A, κ) is κ-centered and κ-directed closed. If G
is Q̄(A, κ)-generic then χG =

⋃

{t : ∃F (t, F ) ∈ G} is the characteristic
function of an unbounded subset xG of κ such that ∀A ∈ A(|A ∩ xG|) < κ.

Proposition 24. If Y ∈ [κ]κ\IA, where IA is the κ-complete ideal generated
by the κ-ad-family A, then 
Θ(A,κ) |Y ∩ ẋG|= κ.

Proof. Let (s, F ) ∈ Q̄(A, κ) and α < κ be arbitrary. It is sufficient to show
that there are (t,H) ≤ (s, F ) and β > α such that (t,H) 
 β ∈ Y̌ ∩ ẋG.
Since κ\

⋃

F is unbounded and Y /∈ IA, we have that |Y \
⋃

F |= κ. Take any
β > α in Y \

⋃

F and define t′ = t∪{(β, 1)}∪{(γ, 0) : sup(dom(t)) < γ < β}.
Then (t′, H) is as desired.

4.3. The Generalized Splitting, Reaping and Independence Numbers

Definition 25. For A and B ∈ ℘(κ), say A ⊆∗ B (A is almost contained in
B) if A\B has size < κ. We also say that A splits B if both A∩B and B\A
have size κ. A family A is called a splitting family if every unbounded (with
supremum κ) subset of κ is split by a member of A. Finally A is unsplit if
no single set splits all members of A.

• s(κ) = min{|A|: A is a splitting family of subsets of κ}.

• r(κ) = min{|A|: A is an unsplit family of subsets of κ}.

Definition 26. A family I = {Iδ : δ < µ} of subsets of κ is called κ-
independent if for all disjoint I0, I1 ⊆ I, both of size < κ,

⋂

δ∈I0
Iδ ∩

⋂

δ∈I0
(Iδ)

c is unbounded in κ. The generalized independence number i(κ)
is defined as the minimal size of a κ-independent family.

Proposition 27. If d(κ) is such that for every γ < d(κ) we have γ<κ < d(κ),
then d(κ) ≤ i(κ)

The proof will be essentially a modification of the one for the countable
case (Theorem 5.3 in [1]). To obtain the above proposition, we will need the
following lemma.
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Lemma 28. Suppose C = (Cα : α < κ) is a ⊆∗-decreasing sequence of
unbounded subsets of κ and A is a family of less than d(κ) many subsets of
κ such that each set in A intersects every Cα in a set of size κ. Then C
has a pseudointersection B that also has unbounded intersection with each
member of A.

Proof. Without loss of generality assume that the sequence C is⊆-decreasing.
For any h ∈ κκ define Bh =

⋃

α<κ(Cα ∩ h(α)), clearly Bh is a pseudoint-
ersection of C. Thus, we must find h ∈ κκ such that |Bh ∩ A|= κ for each
A ∈ A.

For each A ∈ A define the function fA ∈ κκ as follows: fA(β) = the
β-th element of A ∩ Cβ . The set {fA : A ∈ A} has cardinality < d(κ), then
we can find h ∈ κκ such that for all A ∈ A, h �∗ fA (i.e. XA = {δ < κ :
fA(δ) < h(δ)} is unbounded).

Then Bh will be the pseudointersection we need. Note that Bh ∩ A =
⋃

α<κ(Cα ∩A) ∩ h(α) ⊇
⋃

α∈XA
(Cα ∩A) ∩ fA(α) which is unbounded.

Proof of Proposition 27. Suppose that I is an independent family of car-
dinality < d(κ), we will show it is not maximal. For this purpose choose
D = (Dα : α < κ) ⊆ I and let I ′ = I \ D.

For each f : κ → 2 consider the set Cα =
⋂

β<αD
f(β)
β where D0 = D and

D1 = Dc, also define A = {
⋂

I0 \
⋃

I1 : I0 and I1 are disjoint subfamilies of
I of size < κ}. Since |I|<κ < d(κ), the family A has size < d(κ).

Then, using the lemma before there exists a pseudointersection Bf of
the family (Cα : α < κ) that intersects in an unbounded set all members of
A. Then if f 6= g we have |Bf ∩Bg|< κ (Moreover, we can suppose they are
disjoint).

Now, fix two disjoint dense subsets X and X ′ of 2κ. Take Y =
⋃

f∈X Bf

and Y ′ =
⋃

f∈X′ Bf , note that Y ∩ Y ′ = ∅. Then it is enough to show that
both Y and Y ′ have intersection of size κ with each member of A. We write
the argument for Y (for Y ′ i is analogous).

Take J0, J1 ⊆ I both of size < κ, call J ′
0, J

′
1 their intersections with I ′.

There exists α < κ such that if Dβ belongs to J0 or J1, then β < α and
using the density of the sets X fix f ∈ X such that, if Dβ ∈ J0 ∪ J1, then
f(β) = 0 or 1 respectively. Hence:
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⋂

J0 \
⋃

J1 =
⋂

J ′
0 \

⋃

J ′
1 ∩

⋂

{β:Dβ∈J0∪J1}

D
f(β)
β

⊇
⋂

J ′
0 \

⋃

J ′
1 ∩

⋂

β<α

D
f(β)
β

∗ ⊇
⋂

J ′
0 \

⋃

J ′
1 ∩Bf which is unbounded. (1)

Lemma 29. Let I be an independent family of size κ. Then there is a
κ-centered forcing notion Q̂(I, κ) that adds a set Y ∈ [κ]κ such that:

1. in V Q̂(I,κ), I ∪ {Y } is independent;

2. ∀Z ∈ V ∩ [κ]κ such that Z /∈ I, V Q̂(I,κ) |= I ∪ {Z, Y } is not indepen-
dent.

Proof. Let BI be the Boolean algebra generated by I. Note that BI is
κ-complete. Since I is not maximal, there is X0 ⊆ κ such that for all
B ∈ BI both B ∩ X and B ∩ Xc are of size κ. Thus in particular, I ∪
{X0} is independent. Recursively construct an increasing chain {Iα}α<δ of
independent families and a family X = {Xα}α<δ ⊆ [κ]κ such that

1. Iα+1 = Iα ∪ {Xα}; if α is a limit then Iα =
⋃

β<α Iα;

2. ∀α < δ∀B ∈ BIα we have |Xα ∩B| = |Xc
α ∩B| = κ.

Then in particular X forms a κ-complete filter base. Extend X to a κ-filter
G, which is maximal with respect to the following property:

∀X ∈ G∀B ∈ B(I)(|B ∩X| = |B ∩Xc| = κ).

Thus in particular for all X /∈ G either there is Z ∈ G such that X ∩Z is of
size < κ, or there is B ∈ BI such that either |Y ∩B| < κ, or |Y c ∩B| < κ.

Let Q̂(I, κ) := Mκ
G and let G be Q-generic. Then Y := xG =

⋃

{s :
∃F (s, F ) ∈ G} is as desired. Indeed. To see (a) note that it is enough to show
that for all B ∈ B(I) both xG ∩B and xcG ∩B are forced to be unbounded
in κ. That 
 |ẋcG ∩ B̌| = κ follows from the fact that given B ∈ B(I),

 X̌ ∩ B̌ ⊆∗ ẋcG ∩ B̌ for arbitrarily X ∈ G. To see that 
 |xG ∩ B| = κ,

proceed by contradiction. That is suppose there is B ∈ BI , (s,A) ∈ Q̂(I, κ)
and α < κ such that (s,A) 
 ẋG ∩ B̌ ⊆ α̌. Since B ∩ A is unbounded
in κ, we can choose β ∈ B ∩ A such that β > max{sup(s), α}. Then
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(s∪{β}, A \ (β+1)) ≤ (s,A) and (s∪{β}, A \ (β+1)) 
 β ∈ ẋG ∩ B̌ which
is a contradiction.

To see part (b), take Z ∈ (V ∩ [κ]κ) \ I. If Z ∈ G, then 
 ẋG ⊆∗ Z
and so 
 |ẋcG ∩ Z| < κ. If Z /∈ G, then either there is X ∈ G such that
|X ∩Z| < κ and so 
 |ẋG∩ Ž| < κ, or there is B ∈ BI such that |X ∩B| < κ
or |Xc ∩B| < κ. Therefore 
 (I ∪ {Z, ẋG} is not independent).

4.4. The generalized pseudointersection and tower numbers

Definition 30. Let F be a family of subsets of κ, we say that F has the
strong intersection property (SIP) if any subfamily F ′ ⊆ F of size < κ has
intersection of size κ, we also say that A ⊆ κ is a pseudointersection of F
is A ⊆∗ F , for all F ∈ F . A tower T is a well-ordered family of subsets of
κ that has no pseudointersection of size κ.

• The generalized pseudointersection number p(κ) is defined as the min-
imal size of a family F which has the SIP but no pseudointersection
of size κ.

• The generalized tower number t(κ) is defined as the minimal size of a
tower T of subsets of κ.

Lemma 31. κ+ ≤ p(κ) ≤ t(κ) ≤ b(κ)

Proof. First we prove κ+ ≤ p(κ): Take a family of subsets of κ, B = (Bα :
α < κ) with the SIP. Then we can construct a new family B′ = (B′

α : α < κ)
such that B′

α+1 ⊆ B′
α and B′

α ⊆ Bα for all α < κ. Simply define B′
0 =

B0, B
′
α+1 = Bα+1 ∩ B′

α and for limit γ, B′
γ =

⋂

α<γ B
′
α. Note that this

construction is possible thanks to the SIP.
Then, without loss of generality we can find κ-many indexes β where it

is possible to choose aβ ∈ B′
α \ B′

α+1. Hence the set X = {aβ : β < κ} is a
pseudointersection of the family B′ and so of B.

p(κ) ≤ t(κ) is immediate from the definition and, t(κ) ≤ b(κ) was proven
in Claim 1.8, [9].

4.5. The generalized distributivity number

Definition 32. The Generalized Distributivity Number h(κ) is defined as
the minimal λ for which P(κ)

/

< κ is not λ+-distributive. A poset P is
λ+-distributive if any intersection of ≤ λ-many dense open sets of P is open
dense.

Proposition 33. t(κ) ≤ h(κ) ≤ s(κ)
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Proof.
• t(κ) ≤ h(κ): Let δ < t(κ) and Dα for α < δ open dense sets in P(κ)

/

< κ.
Fix A ∈ [κ]κ and recursively define Aα, α ≤ δ with A0 = A and Aβ ⊆∗ Aα

for all β > α and Aα+1 ∈ Dα. (In the limit steps this is possible because
δ < t(κ)). Finally Aδ ∈

⋂

α<δ Dα.

• h(κ) ≤ s(κ): Let S be an splitting family of subsets of κ. For each S ∈ S,
the set DS = {X ∈ [κ]κ : X is not split by S} is dense open. Because S is a
splitting family we obtain

⋂

S∈S DS = ∅.

4.6. Cardinals from Cichón’s diagram at κ

When κ is uncountable and satisfies κ<κ = κ, it is possible to endow 2κ

with the topology generated by the sets of the form [s] = {f ∈ 2κ : f ⊇ s},
for s ∈ 2<κ. Then it is possible to define nowhere dense sets and meager sets
as κ-unions of nowhere dense sets. Hence, we can consider the Meager Ideal
Mκ and study the cardinal invariants associated to this ideal. Specifically
we are interested in the cardinals in Cichón’s Diagram.

• add(Mκ) = min{|J |: J ⊆ Mκ and ∪J /∈ Mκ}

• cov(Mκ) = min{|J |: J ⊆ Mκ and ∪J = 2κ}

• cof(Mκ) = min{|J |: J ⊆ Mκ and ∀M ∈ Mκ∃J ∈ J s.t. M ⊆ J}

• non(Mκ) = min{|X|: X ⊂ 2κ and X /∈ Mκ}

If in addition κ is strongly inaccessible we have a similar diagram as in
the countable case (For specific details about these properties see [3]):

--

-

--

6

66

6

2κcof(Mκ)

d(κ)

cov(Mκ)add(Mκ)

b(κ)

non(Mκ)

κ+

Figure 1: Generalization of Cichón’s diagram (for κ strongly inaccessible)

Also, the well known relationships between the classical cardinal invari-
ants (See [1]) hold , namely:
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Lemma 34.
add(Mκ) = min{b(κ), cov(Mκ)} and cof(Mκ) = max{d(κ), non(Mκ)}.

5. Applications

Until the end of the paper let κ, κ∗, Γ, α and P∗ be fixed as in Theo-
rem 12.

Theorem 35. Let G be P∗-generic. Then V [G] satisfies add(Mκ) = cof(Mκ) =
non(Mκ) = cov(Mκ) = s(κ) = r(κ) = d(κ) = b(κ) = κ∗.

Proof. Note that b(κ) ≥ κ∗ because any set of functions in κκ of size <
κ∗ appears in some initial part of the iteration (by Lemma 8) and so is
dominated by the Mathias generic functions added at later stages. On the
other hand, any cofinal sequence of length κ∗ of the Mathias generics forms
a dominating family. Thus d(κ) ≤ κ∗ and since clearly b(κ) ≤ d(κ), we
obtain V P∗

� b(κ) = d(κ) = κ∗.
To see that s(κ) ≥ κ∗, observe that the Mathias generic subsets of κ are

unsplit and that every family of κ-reals of size < κ is contained in V Pβ for
some β < α. On the other hand any cofinal sequence of length κ∗ of κ-Cohen
reals forms a splitting family and so V P∗

� s(κ) ≤ κ∗. Thus V P∗

� s(κ) = κ∗.
That r(κ) = κ∗ follows from Proposition 13.

To verify the values of the characteristics associated to Mκ, proceed as
follows. Since b(κ) ≤ non(Mκ), V

P∗

� κ∗ ≤ non(Mκ). On the other hand
any cofinal sequence of κ-Cohen reals of length κ∗ is a witness to non(Mκ) ≤
κ∗, since this set of κ-Cohen reals is non-meager. By a similar argument
and the fact that d(κ) = κ∗ in V P∗

, we obtain that V P∗

� cov(Mκ) = κ∗.
Now, Lemma 34 implies that add(Mκ) = κ∗ = cof(Mκ).

Now, we are ready to prove our main theorem.

Theorem 36. Suppose κ is a supercompact cardinal, κ∗ is a regular cardinal
with κ < κ∗ ≤ Γ and Γ satisfies Γκ = Γ. Then there is forcing extension in
which cardinals have not been changed satisfying:

κ∗ = u(κ) = b(κ) = d(κ) = a(κ) = s(κ) = r(κ) = cov(Mκ)

= add(Mκ) = non(Mκ) = cof(Mκ) and 2κ = Γ.

If in addition γ < κ∗ → γ<κ < κ∗, then we can also provide that i(κ) = κ∗.
If in addition (Γ)<κ∗

≤ Γ then we can also provide that p(κ) = t(κ) = h(κ) =
κ∗.
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Proof. We will modify to iteration P∗ to an iteration P̄∗ by specifying the
iterands Q̇j for every odd ordinal j < α. It is easy to verify that those
cardinal characteristics which were evaluated in the model of Theorem 35
will have the same value κ∗ in V P̄. Let γ̄ = 〈γi〉i<κ∗ be a strictly increasing
cofinal in α sequence of odd ordinals. The stages in γ̄ will be used to
add a κ-maximal almost disjoint family of size κ∗, as well as a κ-maximal
independent family of size κ∗.

If Γ<κ∗

≤ Γ, then using an appropriate bookkeeping function F with
domain the odd ordinals in α which are not in the cofinal sequence γ̄ we
can use the generalized Mathias poset to add pseudointersections to all filter
bases of size < κ∗ with the SIP. In case Γ<κ∗

6≤ Γ, just take for odd stages
which are not in γ̄ arbitrary κ-centered, κ-directed closed forcing notions of
size at most Γ.

To complete the definition of P̄∗ it remains to specify the stages in γ̄.
For each i < κ∗, in V P̄∗

γi
the poset Q̇γi will be defined to be of the form

Qγi = Q0
γi

∗ Q̇1
γi
. Fix a ground model κ-ad family A0 of size κ and a

ground model κ-independent family I0 of size κ. Let Q0
γ0

= Q̄(A0, κ) (see

Definition 23) and in V P̄∗
γ0

∗Q̇0
γ0 let Q1

γ0
= Q̂(I0, κ) (see Lemma 29). Now, fix

any i < κ∗ and suppose that ∀j < i, Q0
γj

= Q̄(Aj , κ) adds a generic subset

x̄γj of κ where Aj = A0 ∪ {x̄γk}k<j and that the poset Q1
γj

= Q̂(Ij , κ) adds

a subset x̂γj of κ where Ij = I0 ∪ {x̂γk}k<j . In V P̄∗
γi let Q0

γi
= Q̄(Ai, κ)

where Ai = A0 ∪ {x̄γj}j<i and in V P̄∗
γi
∗Q̇0

γi let Q1
γi

= Q̂(Ii, κ) where Ii =
I0 ∪ {x̂γj}j<i.

With this the recursive definition of the iteration P̄∗ is defined. In V P̄∗

let
A∗ = A0∪{x̄γj}j<κ∗ and let I∗ = I0∪{x̂γj}j<κ∗ . We will show that A∗ and
I∗ are a κ-mad and a κ-maximal independent families respectively. Clearly
A∗ is κ-ad and I∗ is κ-independent. To show maximality of A∗, consider an
arbitrary P̄∗-name Ẋ for a subset of κ and suppose 
P̄∗ ({Ẋ} ∪A∗ is κ-ad).
By Lemma 8 Ẋ can be viewed as a P̄∗

β-name for some β < α. Then for γj >

β, by Lemma 24 we obtain V P̄∗
β |= |x̄γj ∩ Ẋ|= κ, which is a contradiction.

Thus A∗ is indeed maximal and so a(κ) ≤ κ∗. However in V P̄∗

, b(κ) = κ∗

and since b(κ) ≤ a(κ) we obtain V P̄∗

� a(κ) = κ∗.
To see that I∗ is maximal, argue in a similar way. Consider arbitrary

P̄∗-name Ẋ for a subset of κ such that 
P̄∗ {Ẋ} ∪ I∗ is independent. Then
there is β < α such that we can see Ẋ as a P̄∗

β-name. Let γj > β. Then by

Lemma 29, in V
P̄∗
γj+1 the family {x̂γj}∪Iγj ∪{X} is not independent, which

is a contradiction. Thus I∗ is maximal and so i(κ) ≤ κ∗. On the other hand
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if whenever γ < κ∗ we have γ<κ < κ∗, then d(κ) ≤ i(κ) (by Lemma 27) and
since in V P̄∗

, d(κ) = κ∗, we obtain V P̄∗

� i(κ) = κ∗.
Suppose Γ<κ∗

≤ Γ. In this case, every filter of size < κ∗ with the SIP
has a pseudointersection in V P̄∗

. Thus in the final extension p(κ) ≥ κ∗.
However p(κ) ≤ t(κ) ≤ s(κ) and since V P̄∗

� s(κ) = κ∗, we obtain that
p(κ) = t(κ) = κ∗. By Proposition 33, h(κ) ≤ s(κ) = κ∗ and κ∗ = t(κ) ≤
h(κ). Thus h(κ) = κ∗.

The above iteration can be additionally modified so that in the final
extension the minimal size of a κ-maximal cofinitary group, ag(κ), is κ∗.
Indeed, one can use the stages in γ̄ and [7, Definition 2.2.] to add a κ-
maximal cofinitary group of size κ∗. The fact that κ∗ ≤ ag(κ) follows from
b(κ) ≤ ag(κ) (see [2]).
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