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Low-order Modelling for the Feedback Control of Bluff Body Fluid Flows

0. J. Dellar, B. LI. Jones
Department of Automatic Control and Systems Engineering, Faculty of Engineering, University of Sheffield.

Abstract

Control of fluid flows can be beneficial in a large number of situations and in particular for the purpose of drag reduction on road
vehicles, boats, and aircraft. Modern control design methods typically rely on linear, low-order plant models. However, fluid flows
are governed by a set of coupled, non-linear partial differential algebraic equations with infinite state dimension. This results in
models of very high state dimension, which yield very computationally expensive control synthesis problems. This paper proposes
a computationally efficient approach to the modelling of such systems using frequency domain information, and its efficacy is

demonstrated in an example problem.
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1. INTRODUCTION

The ability to control the flow of a fluid can be of great
benefit in a number of different situations; from situations
where turbulent flow is desirable — such as in combustion
chambers, in order to increase mixing of fuel and air — to
those where steady, laminar flow is desired — such as that
around the rear end of heavy goods transport vehicles. Modi
et al. [1] claimed thatin 1995 two thirds of all goods in North
America were transported by truck, and that 50-70% of the
trucks’ power is consumed in overcoming drag caused by
aerodynamic forces. Successful drag reduction could result
in fuel savings worth billions of dollars annually [2] as well as
having profound effects on CO2 production.

The shedding of vortices from the trailing edges of a bluff
body results in a low pressure region behind the body, and
is responsible for an overall pressure differential across the
body, yielding a drag force. This is depicted in Fig. 1.
Successful suppression of vortex shedding by active
feedback control could lead to a substantial decrease in
pressure drag [3].
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Figure 1. 2D backward facing step flow simulation (flow moves towards the
right); (a) Instantaneous vorticity field depicting vortex shedding; (b) Time
averaged pressure field showing pressure reduction immediately aft of step
rear face; note that all values have been non-dimensionalised.

The main difficulty in controlling flows around complex
geometries (such as bluff body flows), is that whilst modern
control design methods typically rely on linear, low-
dimensional plant models, fluid flows are governed by the

Navier-Stokes equations — a set of coupled, non-linear
partial differential algebraic equations (PDAEs), from which
finite-dimensional approximations typically have very high
(~10°) state dimension. Because of this, existing modelling
approaches such as system identification or data driven
Galerkin projection methods are very computationally
expensive and time consuming. Constructing state-space
models by directly spatially discretising the equations results
in very large system matrices which are expensive to
store/invert and are typically ill-conditioned.

This work presents a computationally feasible modelling
approach for systems governed by PDAEs.

2. METHODOLOGY

The proposed modelling approach exploits the advantages
of working with frequency domain information, namely,
avoiding the necessity to construct and store large matrices,
the small cost of performing certain operations on frequency
response data and the ease with which one can compute the
frequency response of descriptor state-space systems
(which arise in fluid flow systems due to an algebraic
constraint present in the equations). The method is as such:
firstly, linearise (if necessary) the governing PD(A)E around
the desired operating point such as (1) (an example in one
spatial dimension);

dp(x,t) _ dp(xt) 0% (xt)
A CITICHE s M

where @(x,t) € R" is the solution, 77 is the number of states
ateach node, and x € O c Rand t € R" are the spatial and
temporal coordinates, respectively. Next, discretise the
PD(A)E in space;

S@:i(0) = P(8%, £, 9,(8), 0141 (0), @11 (1)) @

where Ax is the grid step size. For each node in the spatial
domain, ), cast (2) into descriptor state-space form with
inputs and outputs corresponding to the flow of state
information to and from neighbouring nodes;

d _ @;i_1(t)
EiSo:(t) = A (t) + B; [‘PHi(t) + B, u(t) (3a)
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where I € R are identity matrices, 4;,E; € R and
B; € R"™2" are matrices which depend on the spatial
discretisation technique employed, and B, € R7*« and
Cy € R"*T are matrices describing how any external
control inputs, u(t) € R", and/or measurement outputs,
y(t) € R", enter and exit the system, respectively.
Evaluate each node’s frequency response using (4) [4] at a
range of discrete frequencies wy € {w3, ..., w,} (note this is
a very cheap operation due to the small state-dimension of
a single node model);

I
Gi(iwy) = [ I ] (iwyE; — A)™*
Cy
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where i:=+/—1. The overall frequency response from
control inputs to measurement outputs is constructed using
the Redheffer Star Product [5] between adjacent nodes, with
which a low-order transfer function model can be fitted and
subsequently used for control design.

3. 2D WAVE-DIFFUSION SYSTEM EXAMPLE

To demonstrate the efficacy of this proposal, the method is
applied to a 2D wave-diffusion system, with dynamics
governed by (5);

2p(x,t) a

oz c?v? (1+KE) ¢(x,t) )

where ¢(,): QX RT > R is the displacement of the

surface, Q:=[-1,1]> € R? is the spatial domain with

boundary 0Q, x == (x,y) is the spatial coordinates, ¢,k €
a 0.

R are constants, and V:= (5'5) is the Del operator. It was

assumed the boundary conditions were homogeneous
Dirichlet, ¢(x,t) =0 Vx € 0Q, control input was direct
forcing at the centre of the domain, and measured output
was the displacement in the same location, y(t) =
¢(xcentr t)

Firstly, a high order model was derived by direct spatial
discretisation of (5), and the frequency response computed
for a finite set of frequencies. Secondly, the modelling
approach proposed in this paper was used to obtain the
frequency response for the same frequencies. As can be
seen from Fig. 2, identical frequency response data were
obtained using the proposed method, at much cheaper
computational expense, proving the efficacy of the method.
Figure 3 demonstrates the reduction in complexity achieved
by employing the modelling approach discussed in this
paper, as opposed to constructing the full, high order model
and subsequently evaluating the frequency response. The
former method costs O(p*) floating point operations
(FLOPS), whilst the latter costs 0(g®), where g is the
computational mesh density in one spatial dimension
measured in nodes per unit length.
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Figure 2. Comparison of singular value for 2D wave-diffusion system
obtained through direct (expensive) approach (red circles), and through
proposed methodology (black crosses).
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Figure 3. Comparison of computation time, T (seconds), required to obtain

frequency response for a single frequency using different computational

mesh densities, g, through direct (expensive) approach (black dashed line),

and through proposed methodology (blue dashed line), on a log-log scale.

4. CONCLUSIONS

A computationally tractable approach to modelling the
input-output behaviour of systems governed by PD(A)Es in
the frequency domain has been presented and its efficacy
demonstrated by application to the 2D wave-diffusion
equation.

The assumption of linearity for the case of a controlled
backward facing step show has been shown to be reasonable
in [3], and so the method discussed in this paper is currently
being applied to the linearised Navier-Stokes equations for a
2D backward facing step flow.
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