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Abstract 
Nitrogen CCSs (CCSs) of hybrid and complex glycans released from the glycoproteins IgG, gp120 
(from human immunodeficiency virus), ovalbumin, Į1-acid glycoprotein and thyroglobulin were 
measured with a travelling-wave ion mobility mass spectrometer using dextran as the calibrant. The 
utility of this instrument for isomer separation was also investigated. Some isomers, such as 
Man3GlcNAc3 from chicken ovalbumin and Man3GlcNAc3Fuc1 from thyroglobulin could be partially 
resolved and identified by their negative ion fragmentation spectra obtained by collision-induced 
decomposition (CID). Several other larger glycans, however, although existing as isomers, produced 
only asymmetric rather than separated arrival time distributions (ATDs). Nevertheless, in these cases, 
isomers could often be detected by plotting extracted fragment ATDs of diagnostic fragment ions from 
the negative ion CID spectra obtained in the transfer cell of the Waters Synapt mass spectrometer. 
Coincidence in the drift times of all fragment ions with an asymmetric ATD profile in this work and in 
the related earlier paper on high-mannose glycans, usually suggested that separations were due to 
conformers or anomers, whereas symmetrical ATDs of fragments showing differences in drift times 
indicated isomer separation. Although some significant differences in CCSs were found for the 
smaller isomeric glycans, the differences found for the larger compounds were usually too small to be 
analytically useful. Possible correlations between CCSs and structural types were also investigated 
and it was found that complex glycans tended to have slightly smaller CCSs than high-mannose 
glycans of comparable molecular weight. In addition, biantennary glycans containing a core fucose 
and/or a bisecting GlcNAc residue fell on different mobility-m/z trend lines to those glycans not so 
substituted with both of these substituents contributing to larger CCSs. 
 
 
Keywords 
T-wave ion mobility; N-linked carbohydrates; isomers; hybrid N-glycans; complex N-glycans, negative 
ion, CID. 
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Introduction 
N-glycans are those glycans attached to asparagine residues in glycoproteins when these residues 
are in an Asn-Xxx-Ser(Thr) motif where Xxx is any amino acid except proline. Structural analysis of 
these glycans typically involves their release from glycoproteins by chemical or enzymatic methods 
and can result in very complex mixtures as shown in Figure 1. Over one hundred individual species 
have been recorded in some cases1. Subsequent analysis is usually by mass spectrometry or HPLC2-

6. In the first of this two-part series on high-mannose N-glycans7, it was shown that the use of ion 
mobility adds another dimension to such mass spectrometric analyses particularly when combined 
with negative ion collision-induced dissociation (CID) and in this paper, we extend the methods to the 
structural analysis of hybrid and complex N-glycans with particular reference to the use of these 
techniques to separate isomers. The ability of any analytical technique to be able to identify isomeric 
compounds in complex mixtures is of particular importance in analyses of this type because many of 
the N-glycans released from glycoproteins are isomeric. 
 
Biosynthesis of N-glycans involves attachment of a glycan of composition Glc3Man9GlcNAc2 to the 
asparagine residues, followed by removal of the glucose residues and four of the mannose moieties 
to give the high-mannose N-glycan Man5GlcNAc2 (1, Scheme 1 (see Scheme 1 of the first paper in 
this series7 for the structures of these compounds)). This glycan is a substrate for GlcNAc-transferase 
I which adds a GlcNAc residue to the 2-position of the mannose residue attached to the 3-position of 
the branching mannose to give 2 which then becomes the substrate for other enzymes. One pathway 
involves addition of galactose to the 4-position of the added GlcNAc to give 3 followed by addition of 
sialic acid to the 3- or 6- positions of this galactose residue. This sugar chain is known as the 3-
antenna and these compounds are known as hybrid glycans. Alternatively or additionally, the two 
mannose residues can be removed from the mannose attached to the 6-position of the branching 
mannose of 2 to give 4 and 5 followed by addition of GlcNAc (7), galactose (8-10) and sialic acid to 
this antenna (the 6-antenn) as described above. Further enzymes add fucose to the core GlcNAc (11, 
-16) and additional GlcNAc-Gal-Neu5Ac antennae to either or both of the outer mannoses to give 
isomeric triantennary glycans such as 17 and 18 (and non-fucosylated analogues, e.g. 19 and 20), 
and the tetra-antennary glycans 21 and 22. Fucose residues can also be added to antenna, such as 
in structure 23, found in Į1-acid glycoprotein. GlcNAc residues (termed ‘bisecting GlcNAcs’) can also 
be added to the 4-position of the branching mannoses as in compounds 24-44 found in the ovalbumin 
(24-36) and the IgG (37-44) samples. All of these latter compounds are known as complex glycans. 
All of these high-mannose, hybrid and complex glycans possess the common trimannosyl-chitobiose 
core structure 45, a feature that greatly assists structural identification. 
 
From Scheme 1, which contains the structures of the glycans discussed in this paper, it can be seen 
that several of the glycans, particularly 5 and 6; 8 and 9; 10, 25, 26 and 52; 11 and 12; 14 and 15; 17, 
18 and 23; 29, 30 and 40, 27 and 28; 31 and 32; 38 and 39; 42 and 43; 48 and 49 are isomeric. 
Although mass spectrometry is capable of assigning compositions and providing branching and 
linkage information to the glycans, it is not a very powerful technique for discriminating between 
isomers unless preceded by a chromatographic inlet system. For N-linked glycans, at least, negative 
ion CID has been shown to be better than positive ion methods at detecting the presence of isomeric 
glycans in mixtures because of the predominance of cross-ring fragment ions that produce diagnostic 
mass-different ions for the isomers rather than the predominantly abundance-different glycosidic 
cleavage ions common to positive ion spectra8-11. In the previous paper on high-mannose glycans7, 
ion mobility, which separates on the basis of shape as well as mass and charge, combined with 
negative ion CID, was shown to be capable of partial resolution of several isomers of these 
compounds. Several other investigators have also used ion mobility to separate isomeric 
carbohydrates12-15 (and see previous paper for earlier references and the review by Gray et al.16), but 
only a few have examined N-glycans17-20. With reference to N-linked glycans, Plasencia et al.20 and 
Jiao et al.21 have proposed three structures for the glycan of composition Hex5HexNAc4 from 
ovalbumin and Isailovic et al.22 have reported differences in the arrival time distributions (ATDs) of 
sialylated biantennary N-glycans from human serum but, in this case, specific structures were not 
identified.  
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Several of the isomers encountered in the work on high-mannose glycans showed only marginal 
separation, detected only by asymmetric ATDs. Nitrogen collisional cross sections (CCS)s could not, 
therefore, be measured directly. However, CCSs of these compounds were obtained by plotting ATDs 
of mass-different isomer-specific fragment ions from their negative ion CID spectra 23,24. One of the 
problems encountered in the previous work7 was the appearance of asymmetric ATDs suggesting the 
presence of isomers but which were later shown to be due mainly to separation of reducing-terminal 
anomers25. Such anomers, or possibly additional conformers, could be differentiated from the isomers 
by similarity in the asymmetric ATD profiles between the molecular and fragment ions. In this paper, 
we report the estimated nitrogen CCSs of several complex and hybrid glycans and use of extracted 
fragment ATDs to estimate the corresponding CCSs of isomers that do not produce resolved ATDs. 
Reduction was used to eliminate effects produced by anomers. 
 
In addition to isomer separation, we26,27 and other investigators17,28-31 have found that ion mobility is 
an excellent technique for effectively separating glycan or glycopeptide signals from those of other 
materials, particularly when ions are formed in different charge states. Neutral glycans yield 
predominantly singly-charged glycan peaks unlike many contaminating compounds that produce 
multiply charged ions. Within singly charged ion band there is frequently separation between 
compounds of different structural type, such as glycans and polyethylene glycol (PEG)32 and even 
between N-glycans and linear glycan polymers. Consequently, in this paper, we also examine the 
effect of glycan structure on the ability of ion mobility to differentiate glycans with particular structural 
characteristics such as the presence of core fucose or bisecting GlcNAc residues.  
 
Materials and Methods 
Materials 

N-linked glycans were released with hydrazine33,34 from the well-characterised glycoproteins porcine 
thyroglobulin35,36, chicken ovalbumin37-39 bovine fetuin40 and Į1-acid glycoprotein (AGP)41,42 obtained 
from Sigma Chemical Co. Ltd., Poole, Dorset, UK. N-glycans from gp120 expressed in CHO cells and 
from immunoglobulin G (IgG) were released with protein N-glycosidase F (PNGase F) from within 
NuPAGE gels essentially as described by Küster et al.26,43 and as described in the previous paper7. 
Sialylated glycans from AGP were desialylated by heating with 1% acetic acid at 80oC for 30 mins. 
Methanol was obtained from BDH Ltd. (Poole, UK) and ammonium phosphate was from Aldrich 
Chemical Co. Ltd. (Poole, UK). Dextran from Leuconostoc mesenteroides was obtained from Fluka 
(Poole, UK).  
 
Reduction of glycans 

Glycans from ovalbumin, fetuin, thyroglobulin and AGP (about 0.1 mg of each mixture) in 
dimethylsulfoxide (DMSO, 100 ȝL) were acidified to pH 3.3 with acetic acid (2 ȝL) and reduced with 
an excess of sodium cyanoborohydride (~0.1 mg, Aldrich Chemical Co. Ltd. Poole, UK) overnight. 
The DMSO was evaporated and the samples were cleaned as described below. 
 
Sample preparation for mass spectrometry 

Following release from the glycoproteins, all glycan samples were cleaned with a Nafion® 117 
membrane as described earlier by Börnsen et al.44 before examination by mass spectrometry. They 
were then dissolved in a solution of methanol:water (1:1, v:v) containing ammonium phosphate (0.05 
M, to maximize formation of [M+H2PO4]

- ions, the most common type of ion normally seen from 
biological samples). Samples were then centrifuged at 10,000 rpm (9503 x g) for 1 min to sediment 
any particulate matter. 
 
Ion mobility mass spectrometers 

Travelling wave ion mobility experiments were carried out in nitrogen with the original (termed G1) 
Waters Synapt travelling wave ion mobility mass spectrometer (TWIMS), (Waters, Manchester, UK)45 
fitted with an electrospray (ESI) ion source and with the newer Synapt G2 and G2Si instruments 
(Waters). Waters thin-wall nanospray capillaries and, later, gold-coated borosilicate glass capillaries46 
prepared in-house, were used for introducing the samples. Ion source conditions were: ESI capillary 
voltage, 1.0-1.2 kV cone voltage, 100-180 V, ion source temperature 80°C. The T-wave velocity and 
peak height voltages were 450 m/sec and 40 V respectively unless otherwise specified. 
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Fragmentation was performed after mobility separation in the transfer cell with argon as the collision 
gas. The Synapt G1 instrument was externally mass calibrated with sialylated N-glycans released 
from bovine fetuin, the other two instruments were mass-calibrated with dextran oligomers from 
Leuconostoc mesenteroides (negative ion measurements) or with caesium iodide (both positive and 
negative ion. Data acquisition and processing were carried out using the Waters DriftScope (version 
2.8) software and MassLynxTM (version 4.1). The scheme devised by Domon and Costello47 was used 
to name the fragment ions. Additionally, ions containing the 6-antenna and core mannose residue by 
formal loss of the chitobiose core and 3-antenna are referred to as D ions48. 
 
Nitrogen CCSs were determined using dextran oligomers (Glc2-Glc13) to calibrate the travelling wave 
cell of the Synapt G2 and G2Si instruments. They were obtained directly on a modified Synapt 
quadrupole/IMS/oa-TOF MS instrument containing a linear (not travelling wave) drift tube (Waters 
MS-Technologies, Manchester, UK)49-53. CCS calibration of the G2 and G2Si instruments was 
performed with the method described by Thalassinos et al.54 as described in the previous paper7. The 
corrected drift times of the glucose oligomers and CCSs were fitted by a power law equation of the 
type Y = Axn which May et al.

55 have confirmed adequately fits data of this type. Projected helium 
CCSs were made with a helium:nitrogen cross correlation plot of CCSs of dextran recorded with the 
linear instrument (R2 = 0.9989). Cross section measurements will be placed in the Glyco-Mob ion 
mobility database56. 
 
Results and Discussion 
Results for high-mannose glycans reported earlier7 showed that many isomers of these N-glycans 
could be detected by ion mobility using extracted fragment ATDs. In addition, those having the full 
complement of mannose residues on the 6-branch of the 6-antenna, were shown to produce relatively 
larger nitrogen CCSs than corresponding glycans where this mannose was missing. However, when 
these glycans were reduced, the ATDs from the larger glycans became more symmetrical and the 
difference less noticeable25. Asymmetry of the ATDs from higher mass high-mannose glycans was 
found to be due to partial resolution of anomers rather than isomers. Consequently, in the present 
study, glycans were also reduced to remove effects of anomer separation. CCSs of the reduced 
glycans were similar to but sometimes varied by several Å2 in either direction from the CCS values of 
the unreduced glycans (Table S1).  
 
We looked for features in both the reduced and unreduced hybrid and complex N-glycans that might 
be correlated to structure in addition to the ability of ion mobility to separate isomeric N-glycans. 
Glycans from chicken ovalbumin, thyroglobulin, IgG, AGP (desialylated) and gp120 were taken as 
representative examples. Negative ion mass spectra of the glycans released from these glycoproteins 
are shown in Figure 1. 
 
General effects of structure on nitrogen collisional cross sections 

Figure 2a shows a plot of the measured nitrogen CCSs of all major glycans from the glycan mixtures 
(high-mannose, hybrid and complex) against m/z in negative ion mode. In general, these fell roughly 
on the same trend line without any particular trend identifying a particular glycan type. Possible 
exceptions were the glycans Hex4GlcNAc3 (4) and Hex4GlcNAc4 (8, 9) which gave slightly smaller 
CCSs than those falling on the general trend line. The same result was seen after reduction (Figure 
2b). In positive mode (Figure 2c), the same differences were seen although they appeared to be a 
little more pronounced whereas, after reduction (Figure 2d), the smaller high mannose glycans 
(particularly Man5GlcNAc2 (1) and Man6GlcNAc2 (46) showed significantly larger CCSs. 
 

Effect of substituents on nitrogen collisional cross sections of biantennary glycans 

At a more detailed level, some trends were observed between fucosylated and bisected glycans 
obtained from IgG. The glycans in this glycoprotein (profile shown in Figure 1c) are biantennary 
complex carbohydrates with (13-16) and without (7-10) a fucose residue on the core GlcNAc and 
also, with a bisecting GlcNAc residue (37-40 and 41-44). Figure 3 shows the negative ion m/z:cross 
section plots of these compounds (phosphate adducts) measured with the Synapt G2 instrument. A 
parallel experiment with [M+Cl]- adducts on the G1 instrument gave identical results  (not shown). The 
plots from the major fucosylated glycans with zero, one and two galactose residues (compounds 13-
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16, commonly known as G0F, G1F and G2F respectively) produced a linear relationship. A similar 
result was obtained for the corresponding compounds without fucose (7-10) but the plot was 
displaced towards shorter drift times (Figure 3). Thus, fucosylated glycans showed longer drift times 
and nitrogen CCSs than their unfucosylated counterparts of similar molecular weight. Similar results 
were obtained in positive ion mode ([M+Na]+ ions) and from the G2 instrument (data not shown). 
When sialic acid was attached to the antennae, a similar effect was obtained; i.e. the presence of the 
core fucose residue produced a relative increase in the drift time of the trend line. 
 
Corresponding plots were made with the biantennary glycans containing a “bisecting” GlcNAc residue 
with (compounds 41-44) and without (37-40) a fucose residue. In each case, the plots were linear and 
the presence of the bisecting GlcNAc caused a shift to longer drift times although the effect was not 
as great as that for fucose. The effect of both a core-fucose residue and a bisecting GlcNAc was 
roughly additive (Figure 3). Again, similar results were obtained from the G1 instrument with [M+Cl]- 
ions. Unfortunately, the ions from the unfucosylated compounds with bisecting GlcNAc residues in the 
positive ion spectra of the IgG samples were not abundant enough to give reliable readings for the 
CCSs.  
 
Resolution of isomers 

In general, the resolution of the ion mobility cell of the Synapt instruments was not sufficient to 
separate many of the isomers present in these samples. However extracted fragment ATDs of 
diagnostic ions23,24,57,58 allowed the components at several m/z values to be deconvoluted as shown in 
the examples below. Comparisons of CCSs measured in this way with those measured directly with 
the drift tube instrument validated this approach. Nitrogen and projected helium CCSs of the glycans 
reported in this paper are listed in Table 1. Below are examples where this technique allowed isomers 
to be detected. 
  
Glycans of composition Man3GlcNAc3 and Man3GlcNAc3Fuc1: The ability of ion mobility to 
separate isomers of small N-linked glycans was demonstrated earlier with the Waters Synapt G1 
instrument using the two Man3GlcNAc3 isomers (5, 6, Scheme 1) from chicken ovalbumin19 (glycan 
profile in Figure 1a). Although three peaks were detected in negative ion mode, only compounds 5 
and 6 were identified. Later work with the G259 and G2Si instruments, reported here, reproduced the 
positive ion separation but only resolved two isomers in negative ion mode even though the resolution 
was higher and suggesting that, in fact, only two compounds were present. Resolution of the two 
isomers was almost to baseline in positive ion mode ([M+Na]+ ions, m/z 1136) (Figure 4a) although 
somewhat less so in negative mode with the [M+H2PO4]

- ions (m/z 1210, Figure 4b). Reduction of the 
glycans made no difference to the separation. Structural assignments of the isomers were made by 
negative ion fragmentation (Figure 4e,f). These spectra showed that the isomer with the largest cross 
section had a GlcNAc residue attached to the 6-antenna (6) as indicated by the D, D-18, 0,3A3 and 
0,4A3 ions at m/z 526, 508, 454 and 424 respectively (Figure 4f). These ions contain the branching 
mannose residue and substituents from the 6-antenna11. The linkage position of the GlcNAc residue 
to the 6-antenna was not determined. The isomer with the smaller cross section was the 3-substituted 
isomer 5 as shown by the appearance of the D, D-18, 0,3A3 and 0,4A3 ions 162 mass units lower at m/z 
323, 305, 292 and 262 (Figure 4e). The positive ion spectra (Figures 4c and 4d) were virtually 
identical to each other and differed mainly in the relative abundance of the ion at m/z 388 ([Gal-
GlcNAc+Na]+). This difference did not allow the individual isomers to be identified, clearly 
emphasising the advantage of using negative ion fragmentation for deducing the structures of N-
glycans. Jiao et al.21 in an MSn study also reported the presence of isomers of the Man3GlcNAc3 
glycan containing a GlcNAc residue on either antenna but their experiment did not involve ion mobility 
and did not allow the compounds to be separated. A third, bisected isomer reported in their paper was 
not detected by us using ion mobility and negative ion CID with the G2Si instrument. Although it is 
possible that this isomer might have been responsible for the third peak reported earlier with the G1 
instrument, the reported spectrum19 was not consistent with a bisected structure of this type. CCSs 
are listed in Table 1. 
 
The fucosylated analogues of these isomeric glycans (11, 12), present in the mixture of glycans 
released from thyroglobulin (Figure 1b) and gp120 (Figure 1d) also showed separation but the 
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difference in nitrogen CCSs were less, such that only a single broad ATD peak was observed. 
Possibly different linkage isomers were present to those being separated than for the un-fucosylated 
isomers discussed above, but this was not determined. However, the CID spectra did confirm 
substitution of the third GlcNAc residue on either antenna. As discussed below, other pairs of isomers 
were found that gave different estimated nitrogen CCSs and where the unfucosylated pair gave better 
separations than those isomers bearing a core-fucose. These isomers  (11, 12) were also separated 
as nitrate adducts from thyroglobulin (equivalent to m/z 1356.4 in the glycan profile of phosphate 
adducts shown in Figure 1b) but, in this case, the molecular ion at m/z 1321.5 was coincident with 
that from an abundant doubly charged sialylated glycopeptide giving a complicated CID spectrum 
(Figure 5a). This situation provided an excellent example of where ion mobility could be used to 
separate these compounds. The fragments from the doubly charged ion, which fell in a different 
mobility band (Figure 5b), were removed by selecting only the singly charged ions from the DriftScope 
display (Figure 5b). Then, the CID spectra were extracted from each side of the ATD peak from the N-
glycan (Figures 5d and 5e). These spectra were characteristically different and showed that the 
second isomer (Figure 5e) was the one with the GlcNAc residue on the 6-antenna (12). The 
diagnostic ions for this isomer were the D, [D-18]- and 1,3A3 ions at m/z 526, 508 and 454 
respectively10,11. In the spectrum recorded from the left-hand edge of the ATD peak (smaller cross 
section), these ions were missing but the D and [D-18]- ions were replaced by the corresponding ions 
203 mass units lower at m/z 323 and 305 respectively showing that the GlcNAc residue was located 
on the 3-antenna (11). Although the shape of the ATD peak (Figure 5b) did not reflect the presence of 
these isomers, they were detected by differences in the extracted fragment ATDs (from Figure 5d and 
5e) which maximized at different positions within the width of the ATD peak (Figure 5c), confirming 
the presence of isomers (indicated by the two dotted lines in Figure 5c). As with the related 
unfucosylated glycan from ovalbumin (5, 6), the positive ion spectra for the two isomers showed little 
difference except for the relative abundance of the ion at m/z 388 and did not allow structures to be 
assigned to the ions. 
 
Hybrid glycans from gp120: Other isomeric compounds that could be separated by ion mobility 
were the hybrid glycan pairs H5N3 (2, 47)27 and H5N3F1 (48, 49, positive ion)59 reported in earlier 
publications. Negative ion spectra of compounds 48 and 49 are shown in Figure 6 together with that 
of Hex6GlcNAc3Fuc1 (50, Figure 6a) released from gp120 to illustrate the general fragmentation of 
these hybrid glycans. 2,4A6 and 2,4A5 cross-ring  fragment ions at m/z 1437 and 1234 respectively 
together with the B5 fragment at m/z 1377 define the ȕ1ĺ4-linked chitobiose core and the presence 
of the fucose residue at the 6-position of the reducing-terminal GlcNAc. The cross-ring fragment at 
m/z 424 (Gal-GlcNAc-O-CH=CH2-O-) is diagnostic for the galactose-terminated antenna and the 
composition of the 6-antenna is specified by the D, D-18, 0,3A4, 

0,4A4 and B2Į ions at m/z 647, 629, 
575, 545 and 503 respectively. All fragment ions show the same profile as the ATD of the molecular 
ion as would be expected for a single compound. 
  
The ion at m/z 1680.5 in the negative ion CID spectrum of the gp120 glycans contains the two 
compounds (48 and 49). It shows an asymmetrical ATD peak attributable to these two compounds 
and extracted fragment ATDs clearly resolve two constituents (inset to Figure 6c). Plotting spectra 
from each side of the ATD peaks from these compounds (with and without fucose) allowed 
reasonably clean spectra of each of the constituents to be extracted (Figure 6b and 6c, with fucose 
and see Figure 4 from reference27 for the compounds without fucose). Thus, the 2,4A6(5), 

2,4A5(4) and 
B5(4) ions at m/z 1275, 1072 and 1215 respectively (Figure 6), which have the same asymmetric 
profile as the molecular ions, define the same core and fucose location in both compounds 48 and 49. 
The first constituent (48, Figure 6b) produced the 1,3A3 cross-ring fragment at m/z 424 confirming the 
Gal-GlcNAc antenna and a shift of the D, D-18, 0,3A3, 

0,4A3 and B2Į ions to m/z 485, 467, 413, 383 and 
341 respectively reflecting the absence of one mannose residue from the 6-antenna. The linkage 
position of the mannose on the 6-antenna was not determined. The spectrum of the second 
constituent (49, Figure 6c) exhibited D, D-18, 0,3A3, 

0,4A3 and B2Į ions at the same mass as in the 
spectrum of compound 1 reflecting the extra mannose in the 6-antenna. Positive ion spectra of these 
two glycans, extracted from an asymmetrical ATD peak have been published59. 
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Nitrogen CCSs were calculated from these fragment ions using extract fragment ATDs (G2Si 
instrument) by the method described by Thalassinos et al.54 (Table 1). As was found in the earlier 
study on high-mannose glycans, drift times extracted from ions in the full mass spectrum were slightly 
higher than those measured from the same ion when selected for fragmentation and, consequently, 
an offset, calculated from the difference in drift times of the ions at m/z 1655 measured in the total 
mass spectrum and when the ion was selected for fragmentation. This method gave nitrogen CCSs of 
385.4 and 405.0 A2 for compounds 48 and 49 respectively. Compound 37 was considerably more 
abundant than compound 49 and its cross section was measured directly from the full spectrum. The 
value of 385.7 A2 agreed very well with that measured by the fragment ion method for the first peak, 
thus validating the method. 
 
The ion at m/z 1534.5 (Hex5GlcNAc3) in the negative ion spectrum of the gp120 glycans was 
produced by the corresponding compounds (2, 47) without fucose. These compounds were similarly 
separated by ion mobility (not shown) and nitrogen CCSs of 373.9 A2 and 357.6 A2 respectively were 
measured for the two compounds by extracted fragment ATDs. Glycans with and without core fucose 
and with only four hexose residues (Hex4GlcNAc3 and Hex4GlcNAc3Fuc1, m/z 1372.4 and 1518.5 
respectively) in the spectrum of gp120 glycans appeared to lack the Gal-GlcNAc-containing species 
and to be represented by only the hybrid glycans (4 and its core-fucosylated analogue 51). The 
spectrum of Man4GlcNAc3 (4) is shown in Figure 6d. 
 
Glycans of composition Hex5GlcNAc4 (m/z 1737.6) from ovalbumin: The glycan of composition 
Hex5GlcNAc4 from ovalbumin has predominantly the bisected hybrid structure 25 and is used as a 
reference standard because it has always been assumed to be a single compound. Its CID spectrum 
(Figure 7c) contained a prominent ion at m/z 629 formed as a fragment of the D ion (formal loss of the 
chitobiose core and the 3-antenna) by elimination of the bisecting GlcNAc residue. This prominent ion 
(m/z 629), in the absence of the related D ion, has been shown to be diagnostic for bisecting glycans 
with three mannose residues in the 6-antenna10,11 confirming the structure of glycan 25. However, a 
recent publication20 reported three peaks in the mobility spectrum of the [M+2Na]2+ ion from this 
glycan (per-methylated derivative) obtained from ovalbumin from the same commercial source. These 
compounds were assigned the structures 25, 26 and 52 on the basis of molecular modelling. Three 
compounds of this composition were also detected from ovalbumin by Saba et al.60 using SymGlycan 
software but, in this case, isomers 10, 25 and 52 were proposed. Relative quantities were not 
reported. The symmetrical ATD peak (Figure 7a) and mobility-separated fragmentation spectrum of 
this compound as its [M+Na]+ and [M+2Na]2+ ions recorded by us from our sample with the Synapt G2 
and G2Si  instruments showed little evidence of more than one compound (25). Also, ion profiles of 
most fragment ions in the negative ion spectrum ([M+H2PO4]

- ion) from both the PNGase F- and 
endoH-released glycan were virtually identical. Figure 7b shows the ion profiles from the PNGase F-
released glycans. It has yet to be determined if permethylation increases the ability to separate these 
isomers or if our sample has a different composition from the one used by Plasencia et al.20. 
 
The minor ion at m/z 424 ([Gal-GlcNAc-O-CH=CH-O]-) in the spectrum shown in Figure 7c, is a 1,3A 
cross-ring cleavage ion and is an abundant (frequently the base peak) diagnostic ion for glycans 
containing Gal-GlcNAc chains11 as in the example above and suggests the presence of compounds 
10 or 26 in trace amounts. The ion at m/z 466 (Gal-GlcNAc + 101) is also characteristic of this 
structural feature. The ATD profile of the ion at m/z 424 was slightly displaced to the left (smaller 
cross section) compared with those of the other fragment ions (Figure 7b) suggesting that it was not 
from compound 26 (assuming that the same relationship exists between CCSs in positive and 
negative ion modes). The positive ion cross section of compound 26 reported by Plasencia et al. was 
considerably higher than that of the main compound (25). Figure 7d shows the spectrum extracted 
from the left-hand region of the ATD peak (8.9 - 9.8 msec, Figure 7a). It contained prominent ions at 
m/z 688 and 670, corresponding to the D and D-18 ions from the biantennary glycan 10. In addition, 
the cross section of this glycan calculated from the fragment ions matched that of the biantennary 
glycan 10 (obtained from IgG and de-sialylated fetuin, Table 1); Figure 7a shows the ATDs of this 
compound (from bovine fetuin) and compound 25 (from ovalbumin) showing a similar difference in 
drift times. The smaller cross section of the complex biantennary glycan (10) compared with the 
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bisected hybrid glycan (25) is consistent with the results on general trends discussed above. Slightly 
better separation of these compounds has been obtained previously in positive ion mode59. 
 
The fragmentation spectrum of glycan 52, reported by Plasencia et al, would contain a prominent E-
type fragment ion at m/z 507. An extracted fragment ATD of this ion gave two peaks; one was 
coincident with the bisected compound (25), the other displayed a longer drift time. However, this 
extracted fragment ATD, although suggestive, was not enough to confirm the presence of compound 
52. Plasencia et al. report a cross section smaller than that of glycan 25. In our sample, therefore, the 
peak at m/z 1737 (Hex5GlcNAc4) appears to consist mainly of the bisected glycan 25, together with a 
very small amount of the biantennary glycan 10. Definitive evidence for the presence of compounds 
26 and 52 in our sample was not obtained. Reduction gave only a single ATD peak with no sign of 
isomer separation. Unfortunately, the recent study by Jiao et al.21 on isomers from ovalbumin did not 
include this compound. 
 
Glycans of composition Hex4GlcNAc4 (m/z 1575.5) from ovalbumin: Many of the other ions from 
ovalbumin are produced by isomers37 but few could be separated by ion mobility with the G2 
instrument. One instance where isomers were partially separated was the peak at m/z 1575.5 
corresponding to Hex4GlcNAc4 (phosphate adduct, Figure 8). In this example, three compounds were 
detected. The composition corresponded mainly to the structures 8 and 9 and the presence of these 
compounds was confirmed by extracted fragment ATDs of the 1,3A3, D and D-18 ions (Inset to Figure 
8). The negative ion CID spectrum of this ion (Figure 8) was more complicated than that observed 
from reference spectra of compounds 8 and 9 (obtained from IgG), consistent with work by Jiao et 

al.21 who reported the presence of five isomers at this mass following investigations by MSn on 
permethylated samples. Da Silva et al.37, on the other hand, only reported the presence of the 
bisected compound 24. This latter compound should produce a D-221 ion at m/z 467 and this ion was 
present, although at a relatively low abundance. Its cross section was similar to that of the 6-Gal 
isomer of the biantennary glycan (9). Reduction gave a similarly shaped ATD peak as that shown in 
Figure 8a (slightly extended at the right-hand edge) consistent with the presence of isomers. 
 

Biantennary glycans: The biantennary glycans from IgG (glycan profile in Figure 1c) with one 
galactose residue (8, 9, 14, 15) exist as isomers with the galactose residue on either antennae. The 
presence of these isomers can be clearly seen in the negative ion fragmentation spectrum (Figure 9c, 
mixed isomers) by the two sets of D and D-18 ions at m/z 526/508 (3-galactose isomer 14) and at m/z 
688/670 (6-galactose isomer 15), consistent with the data in Figure 9 and with HPLC data, the isomer 
with the galactose on the 3-antenna was the more abundant. It would be expected that these isomers 
would show a difference in drift time and this was found to be the case for the pair 8 and 9 without 
fucose (as in Figure 8a). A difference of about 5 Å2 was measured. Extracted fragment ATDs of the 
diagnostic fragments are shown in Figure 9a where it can be seen that the isomer with the galactose 
in the 6-antenna has the longer drift time and, hence cross-section. Its longer drift time is consistent 
with the result from the Man3GlcNAc3 isomers (above). However, no isomeric separation could be 
achieved in either the G1 or G2 instruments with the corresponding pair of isomers (14 and 15) with a 
fucose residue on the core. Figure 9b shows the relevant single fragment ion profiles. However, some 
limited separation was found earlier for chlorine adducts of the glycans released with the enzyme 
endo H and, thus, missing the terminal GlcNAc residue with its attached fucose61. 
 
Triantennary glycans: Two triantennary structures are commonly found in N-glycan mixtures. These 
have structures 17, 18, 19 and 20, and are readily identified by their production of diagnostic ions62. 
The isomers with two branches on the 3-antenna (17, 19) gives rise to a prominent fragment at m/z 
831 and D and D-18 ions at m/z 688 and 670 whereas, in the spectrum of the other isomers (18, 20), 
the ion at m/z 831 is missing and the D and D-18 ions shift to m/z 1053 and 1035 accompanied by 
another fragment (D-36) at m/z 1017. Figure 10 shows a spectrum from gp120 where both isomers 
occur together. Extracted fragment ATDs of these diagnostic ions (m/z 831 and 1035, inset to Figure 
10) showed that the isomer with the 6-branched antenna has a slightly larger cross section (about 6 
Å2) than the other isomer but the spectra were rather too weak to obtain a reliable cross section 
measurement. The measurement in Table 1 for glycan 19 was from AGP (Figure 1e). The isomer of 
glycan 19 from AGP where the fucose resides on a GlcNAc of the 3-antenna (23) showed a very 
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slightly larger cross section (about 3 A2) than that of the core-fucosylated glycan 17. Extracted 
fragment ATDs of the two sets of 2,4A6, B5 and 2,4A5 (m/z 1843, 1783, 1640 and 1989, 1929, 1786 for 
compounds 17 and 23 respectively) revealed the presence of the two compounds and the structures 
were confirmed by the presence of ions at m/z 831 (from 17), the corresponding fucosylated ion at 
m/z 977 (from 23) together with the ion at m/z 670 (Gal-(Fuc)GlcNAc-CH=CH2-O- from 23). 
 
Conclusions 
The above examples clearly show that ion mobility mass spectrometry adds a further dimension to the 
analysis of N-linked carbohydrates by mass spectrometry. Some isomeric separation was possible in 
both positive and negative ion modes but appeared to be marginally better in positive ion mode with, 
for example, [M+Na]+ ions from Man3GlcNAc3. Fragmentation, however, was considerably more 
informative in negative ion mode and yielded mass different ions from which the structures of the 
glycans and the presence of isomers could be deduced. Thus, good separation of the isomers of 
Man3GlcNAc3 (5, 6) from chicken ovalbumin was obtained and negative ion fragmentation allowed 
their structures to be determined. Several of the other glycans from ovalbumin were isomeric but, 
although some ATD peak broadening was observed with some of them, there was no obvious 
isomeric separation. However, if the compounds were fragmented in the transfer cell, extracted 
fragment ATDs showed that, in several cases, there was some separation within the peaks allowing 
isomers to be detected. The differences in cross section of many of these isomers were only a few Å2 
and often less than the experimental error in measurements made at different times. Thus, although 
isomers could sometimes be detected using extracted fragment ATDs, use of their estimated nitrogen 
CCSs for identification purposes was sometimes marginal unless internal calibration was used. In 
general only isomers of the smaller complex or hybrid glycans showed significant differences in cross 
section and it was noted that the presence of core fucose generally decreased the ability of ion 
mobility to separate isomers. 
 
Some correlations between nitrogen CCSs and structure were observed. Predominantly, substitution 
in the 6-antenna, as found earlier with the high-mannose glycans, usually produced larger CCSs than 
substitution on the 3-antenna. This effect was observed for the addition of GlcNAc to Man3GlcNAc2, 
for galactosylation of the unfucosylated biantennary glycans and for the isomers of triantennary 
glycans. Glycans carrying a bisecting GlcNAc residue tended to have larger CCSs than isomeric 
glycans lacking this feature.  
 
There is always the possibility with this work that the separation observed in the mobility cell is due to 
conformers of a single compound rather than to isomers. Recent work from this laboratory on reduced 
N-glycans25 has shown that the predominant factor leading to asymmetrical ATD peaks in the larger 
high-mannose glycans is the anomeric configuration of the reducing terminal GlcNAc residue. This 
phenomenon is not new; separation of anomeric mono- and oligo-saccharides by ion mobility, 
particularly as [M+Na]+ ions from methyl glycosides, has been reported on several occasions63-67 and 
it has been proposed that separations reflect the way in which the adducted cation is bound to the 
individual sugar68. Whether this effect applies to the location of the phosphate adduct in the 
compounds reported in this paper has yet to be determined. As noted earlier25, asymmetric ATDs 
were observed from the higher high-mannose glycans leading to uncertainty in the estimated nitrogen 
CCSs (note the larger variation in measurements for Man8GlcNAc2 (53) and Man9GlcNAc2 (54) in 
Table 1, compared to those of the smaller high-mannose glycans 1, 46, 55). These asymmetric ATDs, 
which were found to be due to reducing-terminal anomers, were rendered symmetrical by reduction. 
In contrast to the high-mannose glycans, little or no significant effects attributable to anomeric 
separations were observed with the hybrid and complex glycans. However, for compounds producing 
asymmetric ATDs, it would be wise to fragment the compound and check if the drift time peaks of 
fragments attributable to potential isomers maximise at the same point in time. Following reduction, 
the smaller high-mannose glycans showed larger nitrogen CCSs than complex glycans of equivalent 
molecular weight but with other glycans, although the reduced form generally showed larger CCSs 
than the unreduced glycans, no consistent correlation with structure was noted.  
 
The ability of ion mobility to separate isomers, albeit with rather low resolution at present, will be a 
great asset because one of the disadvantages of mass spectrometry (without fragmentation) is its 
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difficulty in distinguishlng between such compounds. The ion mobility resolution obtained with the 
Synapt instruments does not yet match that of an HPLC column but is expected to rise with further 
instrumental developments. Ultimately, it might be possible to achieve adequate separations in the 
gas phase in milliseconds rather than the tens or hundreds of minutes required at present with LC-MS 
systems. 
 
The work presented here, and by other investigators, shows that ion mobility has much to offer in 
glycobiology and is able to solve problems such as isomer resolution that, up to now, have required 
chromatographic separation. Combined with its ability to extract glycan ions from complex mixtures 
and, thus, eliminate some clean-up stages26, and by the production of negative ion CID spectra, the 
technique provides a much more rapid and information-rich method for the structural determination of 
N-glycans than has been available up to now. 
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Table 1, Estimated collisional cross sections of hybrid and complex glycans 
(Major isomers of high-mannose glycans included for comparison) 

 

Compound Structurea m/z
b Source Instrumentc Cal.d 

Cross section 
Nitrogen Hee 

Å2 SD n Å2 
H3N2 45 1007.3 Ovalbumin G2Si I 284.6 0.16 12 206.6 
H3N3 5 1210.4 Ovalbumin G2Si I 310.0 0.20 9 229.4 
H3N3 6 1210.4 Ovalbumin G2Si I 322.1 0.19 9 240.4 
H5N2 1 1331.4 Ovalbumin G2Si I 339.0 0.18 12 256.1 
H4N3 4 1372.5 Ovalbumin G2Si I 336.0f 0.36 12 253.4 
H3N4 7 1413.5 Ovalbumin G2Si I 347.7 0.19 12 262.6 
H6N2 46 1493.5 Ovalbumin G2Si I 364.1 0.22 12 277.8 
H5N3 2 1534.5 gp120 G2Si E 373.9 - - 287.5 
H5N3 47 1534.5 gp120 G2Si E 357.6 - - 272.2 

H3N4F1 13 1559.5 IgG G2Si I 377.9 1.00 6 290.5 
H4N4 8,9 1575.5 Ovalbumin G2Si I 365.3 0.49 12 278.8 

H3N5 37 1616.5 
IgG G2Si E 378.8 1.36 5 291.2 

Ovalbumin G2Si I 382.4 0.30 12 294.2 
H7N2 53 1655.5 Thyroglobulin G2Si I 387.9 0.53 12 299.2 

H5N3F1 48 1680.5 gp120 
G2 

G2Si 
E 
E 

389.4 
385.4 

- 
- 

1 
1 

300.9 
296.9 

H5N3F1 49 1680.5 gp120 G2Si E 405.0 - 1 314.5 
H6N3 3 1696.6 Ovalbumin G2Si I 381.0 0.61 12 293.1 

H4N4F1 14,15 1721.6 
IgG G2 E 399.0 1.2 4 309.5 

Thyroglobulin G2Si I 398.8 0.78 3 308.6 
H4N4F1 14,15 1721.6 Thyroglobulin G2Si I 397.5 0.65 19 308.2 

H5N4 10 1737.6 
IgG, 

Fetuin 
AGP 

G2 
G2 

G2Si 

E 
E 
E 

392.0 
388.4 
392.4 

0.29 
1.30 
0.57 

9 
5 
2 

303.2 
299.5 
303.5 

H5N4 25 1737.6 Ovalbumin G2Si I 393.5 0.28 12 304.8 

H3N5F1 41 1762.6 
IgG 
IgG 

G2 
G2Si 

E 
E 

407.3 
403.8 

0.17 
1.49 

4 
5 

316.8 
313.2 

H4N5 29,30,40 1778.6 Ovalbumin G2Si I 401.5 0.33 12 311.9 
H8N2 53 1817.6 Thyroglobulin G2Si I 418.5f 2.28 12 327.0 
H3N6 27,28 H3N6 Ovalbumin G2Si I 411.4g 0.30 12 321.2 

H5N4F1 16 1883.6 
Thyroglobulin G2Si I 418.8 0.96 19 327.3 

AGP G2Si E 418.0 0.28  326.6 
H4N5F1 42,43 1924.6 IgG G2Si E 420.4 0.21 5 328.5 

H5N5 
40 

1940.6 
IgG G2Si E 421.6 - - 329.3 

29,30 Ovalbumin G2Si I 420.6h 0.58 12 330.3 
H9N2 54 1979.6 Thyroglobulin G2Si I 434.1f 1.34 12 342.0 
H4N6 31,32i 1981.7 Ovalbumin G2Si I 427.6 0.56 12 335.5 
H3N7 33 2022.7 Ovalbumin G2Si I 434.5 0.66 12 341.3 

H5N5F1 44 2086.7 IgG 
G2 

G2Si 
E 
E 

443.9 
439.4 

0.30 
0.95 

4 
4 

349.2 
345.7 

H6N5 19 2102.7 AGP G2Si E 441.8 0.78 2 348.8 
H4N7 35 2184.7 Ovalbumin G2Si I 453.1 0.90 12 359.0 
H3N8 34 2225.8 Ovalbumin G2Si I 462.0 0.55 12 366.4 

H6N5F1 17 2248.7 AGP G2Si E 464.5 0.35 2 368.8 
H7N6 22 2467.8 AGP G2Si E 484.9 0.00 2 - 

H7N6F1 21 2613.9 AGP G2Si E 510.4 0.42 2 - 
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a) Structures are in Scheme 1. 
b) [M+H2PO4]

- ion. 
c) Measurements with the G2 instrument were averages of those made at various times over three 

years.  
d) I = Internal calibration. E = External calibration; these were made on the same day and are the 

mean values obtained by varying the gas flow, wave velocity and wave height. 
e) Estimated from helium/nitrogen correlation plot. 
f) Asymmetric peak 
g) Major isomer (minor isomer too low in abundance to give an accurate cross section measurement). 
h) Isomers detected by fragment ion plots. 
i) Isomers not resolved. 
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Legends for figures and schemes 
Scheme 1. Structures of the N-glycans discussed in the text. Symbols for the glycan constituents and 

linkages between them are:  = GlcNAc,  = mannose,  = galactose,  = fucose. Solid 
connecting line = ȕ-linkage, broken line = Į-linkage. The angle of the lines shows the linkage position:  

 
For more information see69. Compositions are given by H = hexose, N = GlcNAc, F = fucose. 
Monoisotopic masses listed below the compositions are of the [M+H2PO4]

- ions. 
 
Figure 1. Negative ion ESI spectra of N-glycans released from (a) chicken ovalbumin, (b) porcine 
thyroglobulin, (c) human IgG, (d), gp120 and (e) Į1-acid glycoprotein (AGP). Symbols for the 
structures shown in this and the other figures are as defined in the legend to Scheme 1 with the 

addition of  = Neu5Ac (sialic acid). Numbers in bold accompanying the structures are listed in 
Scheme 1. 
 
Figure 2. (a) Plot of CCS against m/z for the phosphate adducts of the N-glycans. Numbers refer to 
the structures listed in Scheme 1. (b) A similar plot of the phosphate adducts of the reduced glycans. 
(c) Plot of cross section against m/z for the sodium adducts of the N-glycans (positive ion mode. (d) 
Corresponding plot of the sodium adducts of the reduced glycans. Black circles, biantennary glycans; 
red circles, high-mannose glycans; inverted green triangles, Man3GlcNAc2-8 series; yellow triangles, 
remainder of ovalbumin glycans; blue squares, tetra-antennary glycans; pink squares, triantennary 
glycans. 
 
Figure 3. Plot of estimated nitrogen CCSs against m/z for the phosphate adducts of biantennary 
glycans from IgG with zero, one and two galactose residues. The four lines connect these glycans 
having additional core fucose (13-16, red circles), bisecting GlcNAc (37-40, green inverted triangles), 
both fucose and bisecting GlcNAc (41-44, yellow triangles) and no additional substituents (7-10, black 
circles). Error are standard deviations (n = 5). 
 
Figure 4. (a) ATD plot of m/z 1136 (Man3GlcNAc3, 5, 6, M+Na]+ ion) from chicken ovalbumin recorded 
with the Synapt G2 instrument (wave velocity 600 m/sec, wave height 40 V) showing separation of 
isomers. (b) Corresponding negative ion plot ([M+H2PO4]

- ions, wave velocity 450, wave height 40 V), 
(c and d) Positive ion CID spectra of the compounds producing the two peaks in the ATD profile 
shown in panel a. (e and f) Negative ion CID spectra of the compounds producing the two peaks in 
the ATD profile shown in panel b. Fragment ions are labelled according to the scheme proposed by 
Domon and Costello47. 
 
Figure 5. (a) Negative ion CID spectrum of the ion at m/z 1321 from the nitrate adducts of N-glycans 
released from porcine thyroglobulin (G1 instrument, wave velocity 450 m/sec, wave height 14 V) (b) 
ion mobility profile of m/z 1321 showing separation of singly and doubly charged ions (c) extracted 
fragment ATDs from the singly charged ion at m/z 1321 obtained in the transfer cell (d) CID spectrum 
from the leading edge of the mobility peak (compound 11) (e) CID spectrum from the trailing edge of 
the mobility peak (compound 12). 
 
Figure 6. (a) Negative ion CID spectrum of the hybrid N-glycan Gal1Man5GlcNAc3Fuc1 (50, m/z 
1842.6). (b) Negative ion CID spectrum of the hybrid N-glycan Gal1Man4GlcNAc3Fuc1 (48, m/z 
1680.5). (c) Negative ion CID spectrum of the hybrid N-glycan Man5GlcNAc3Fuc1 (49, m/z 1680.5). 
The inset shows extracted fragment ATDs of diagnostic fragment ions from the spectra shown in 
panels b and c. (a) Negative ion CID spectrum of the hybrid N-glycan Man4GlcNAc3 (4, m/z 1372.4). 
 
Figure 7. (a) ATD profiles of the [M+H2PO4]

- ions from the isomeric biantennary (10) and hybrid (25) 
glycans of composition Hex5GlcNAc4 (m/z 1737). Both peaks have been normalized to 100%. (b) 
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Extracted fragment ATDs of diagnostic fragment ions for the peak at m/z 1737.6 from chicken 
ovalbumin. The spectrum is shown in panel c. Most ions arise from the bisected hybrid glycan (25). 
(d) Negative ion CID spectrum of the biantennary complex glycan Man5GlcNAc4 (10, m/z 1737.6). 
The ion at m/z 424 characterizes the biantennary structure. 
 
Figure 8. (a) ATDs of the D, D-18 and D-221 fragment ions from the [M+H2PO4]

- ions of the 
monogalactosylated biantennary glycans (8, 9) and bisected hybrid glycans (Hex4GlcNAc4, m/z 
1575.5 from ovalbumin showing slight separation of the isomers. (b) Negative ion CID spectrum of the 
peak at m/z 1575.5 from chicken ovalbumin containing a mixture of the glycans 8, 9 and 24. 
 
Figure 9. (a) ATDs of the D and D-18 fragment ions from the [M+H2PO4]

- ions from the 
monogalactosylated biantennary glycans (8, 9, m/z 1575.5) from IgG showing slight separation of the 
two isomers (8, 9). (b) Corresponding plots from the core-fucosylated glycans (14, 15) showing no 
separation. (c) Negative ion CID spectrum of the [M+H2PO4]

- ions from the two fucosylated 
monogalactosylated biantennary glycans (14, 15) from IgG with D and D-18 ions confirming the 
presence of the two isomers. 
 
Figure 10. Negative ion CID spectrum of the mixture of the two triantennary glycans 17 and 18 
(Gal3Man3GlcNAc5Fuc1, m/z 2248.8 from gp120 (JFRC). The isomer with the branched 3-antenna 
(17) is characterized by the ions at m/z 831 (E), 688 (D) and 670 (D-18) and the isomer with the 
branched 6-antenna (18) produces the ions at m/z 1053 (D), 1035 (D-18) and 1017 (D-36)62. The 
inset is of the ATD profiles of the ions at m/z 831 and 1035 showing slight separation. 
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Abbreviations 
ATD, arrival time distribution; CCS, collisional cross section, CID, collision-induced decomposition; 
ESI, electrospray ionization; Fuc, fucose; G1, Waters Synapt ion mobility mass spectrometer, first 
generation; G2, Waters Synapt ion mobility mass spectrometer, second generation; G0, G1, G2, 
biantennary glycans with zero, one and two galactose residues respectively; G0F, G1F, G2F, Core 
fucosylated biantennary glycans with zero, one and two galactose residues respectively; Gal, 
galactose, Glc, glucose; GlcNAc, N-acetylglucosamine; HEK, human embryonic kidney; HPLC, high-
performance liquid chromatography; Hex, hexose; IgG, immunoglobulin G; LC, liquid 
chromatography; Man, mannose; MS, mass spectrometry; Neu5Ac, N-acetylneuraminic acid (sialic 
acid); PAGE, polyacrylamide gel electrophoresis; PEG, polyethylene glycol; PNGase F, protein N-
glycosidase F; TOF, time-of-flight; TWIMS, T-wave ion mobility spectrometry. 
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