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Abstract:

Pollen beetles (Nitidulidae, Meligethinae) are among the most abundant flower-visiting insects in
Europe. While some species damage millions of hectares of crops annually, the biology of many
species is little known. We assessed the utility of a 797 base pair fragment of the cytochrome
oxidase 1 gene to resolve Molecular Operational Taxonomic Units in 750 adult pollen beetles
sampled from flowers of 63 plant species sampled across the UK and continental Europe. We used
the same locus to analyse region-scale patterns in population structure and demography in an
economically important pest, Brassicogethes aeneus. We identified 44 Meligethinae at ca. 2%
divergence, 35 of which contained published sequences. A few specimens could not be identified
because the MOTUs containing them included published sequences for multiple Linnaean species,
suggesting either retention of ancestral haplotype polymorphism or identification errors in
published sequences. Over 90% of UK specimens were identifiable as Brassicogethes aeneus. Plant
associations of adult B. aeneus were found to be far wider taxonomically than for their larvae. UK
Brassicogethes aeneus populations showed contrasting affiliations between the north (most
similar to Scandinavia and the Baltic) and south (most similar to western continental Europe), with

strong signatures of population growth in the south.

Keywords:

DNA barcodes; Brassicogethes; Meligethinae; Pollen beetles; pollinators

Résumé: Les méligethes (Nitidulidae, Meligethinae), dont certaines espéces endommagent

annuellement plusieurs millions d’hectares, sont parmi les insectes floricoles les plus abondants
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d’Europe. Cependant leur biologie est pour la plupart largement méconnue. Nous avons évalué la
pertinence d'un fragment de 797 paires de bases (pb) du géne codant pour la cytochrome oxydase
1 (CO1), amplifié en utilisant les primers 'Pat' et 'Jerry' de Simons et al. (1994), pour résoudre les
MOTUs (Unités Taxonomiques Opérationnelles Moléculaires) chez les Meligethinae; dans un
échantillon de 756 spécimens adultes capturés sur 63 especes végétales de 15 familles différentes
échantillonnées en Grande Bretagne et dans 12 pays d'Europe continentale. Nous avons utilisé le
méme locus pour analyser a une échelle régionale la démographie et la structure de la population
d’un ravageur économiquement important : Brassicogethes aeneus. Nous avons identifié 44
MOTUs de Meligethinae présentant une divergence de ca. 2% dont 35 contiennent des séquences
publiées. Quelques spécimens, contenant des MOTUs incluant des séquences liées a plusieurs
especes linnéennes, n’ont pu étre identifiés, ce qui laisse supposer soit une rétention de
polymorphismes d’haplotypes ancestraux, soit des erreurs d’identifications dans les séquences
publiées. Plus de 90% des spécimens capturés au Royaume-Uni ont été attribués au MOTU
correspondant a Brassicogethes aeneus. Les associations entre plantes et B. aeneus adultes se
sont révélées nettement plus diversifiées qu’au stade larvaire. En Grande Bretagne, les
populations de Brassicogethes aeneus présentent une affiliation différente entre le nord (plus
proche des populations scandinaves et baltes) et le sud (plus semblable aux populations d'Europe

de I'ouest), avec de forts signes de développement des populations vers le sud.

Mots-clés : Code-barres génétique; Brassicogethes; Meligethinae; méligéthes; pollinisateurs
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Introduction

Pollen beetles (Meligethinae) are tiny but sometimes superabundant flower visitors across
the Holarctic, Afrotropics and Oriental regions (Audisio et al., 2009). Their relative abundance
across a range of habitats is shown by the fact that a recent survey found them to comprise over
25% of all flower visitors across UK urban, nature reserve and farmland habitats (Baldock et al.,
2015). The two most frequently recorded UK Meligethinae are pest species, Brassicogethes aeneus
(syn. Meligethes aeneus Fab.) and B. viridescens (syn. Meligethes viridescens Fab.) (Hokkanen
2000; Alford 2003; Olfert and Weiss 2006; Veromann et al. 2006). As adults, both are 2-3mm long,
with dark-metallic colouration and superficially similar morphologies. Hibernating adults become
active in early spring and attain sexual maturity by feeding on spring-flowering plants in a range of
families (Free and Williams, 1978). They then migrate to the flower buds of yellow Brassicaceae
such as winter oil-seed rape, where they feed and oviposit (Kirk-Spriggs, 1996). The larvae feed
within the flowers before falling to the ground to pupate (Cook et al., 2004). The new generation
of adults emerges in midsummer and feeds on the pollen of a wider range of plant species (Free
and Williams 1978), building up the fat reserves required to overwinter successfully. In contrast to
work on larval host-plants (e.g. Audisio et al. 2009; Kirk-Spriggs 1996), the food-plant associations
of adult pollen beetles are not widely reported. Adult associations may nevertheless influence
population dynamics through impacts on adult maturation, overwinter survival and recruitment to
successive generations (Free and Williams, 1978; Veromann et al., 2014). Activities of adults and
larvae reduce plant fitness both directly (by consumption) and indirectly (through impacts on
pollinator visitation rates) (Kirk-Spriggs, 1996; Krupnick et al., 1999; Krupnick and Weis, 1999).
There is evidence that pollen beetles can also act as pollinators; adults in flowers have pollen on

their bodies and can disperse pollen at both within-field and landscape scales (Williams pers.
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104 comm.; Ramsay et al. 2003), and for some plant species they are thought to be the dominant

pollinating insect (Alonso, 2004; Gémez, 2003).

106 The winged adults of some pollen beetles are able to disperse over large distances with the
assistance of prevailing wind currents (Tamir et al. 1967; Chapman et al. 2012). Genetic analyses
108  of European populations also suggest high dispersal, with low differentiation between populations
across Sweden (Kazachkova et al., 2007, 2008), and between Lithuania and Finland (Makdnas,
110  2012), and more significant (though still low) differentiation between samples from Denmark,
France, Finland, Germany, Sweden, and the UK (Kazachkova et al., 2008). The structure of pollen
112  beetle populations is of considerable applied interest because of increasing resistance of pest
species to some pesticides (Hansen, 2003; Kupfer and Schréder, 2015) and possible population
114  variation in the ambient temperatures at which adult dispersal, and hence crop infestation,
occurs. Spatial scales of dispersal are also important in predicting range expansion, and at least
116  one species - B. viridescens - is introduced and invasive in the Nearctic (Mason et al., 2003; Olfert
and Weiss, 2006). Understanding of the impacts of these insects, including adaptive responses to
118  pesticides (Zimmer et al., 2014) and environmental change (Hokkanen, 2000) requires enhanced

understanding of their taxonomy, plant associations, and population structure.

120 Adult pollen beetles can be identified by specialists using morphological criteria, though
identification of larval instars to species is much more difficult (Audisio et al., 2009; Audisio and

122 Jelinek, 2015). Kirk-Spriggs (1996) recognised 37 UK species of Meligethinae, and a recent genus-
level revision (Audisio et al., 2009) identified ten genera in the UK fauna (Acanthogethes,

124  Afrogethes, Boragogethes, Brassicogethes, Genistogethes, Lamiogethes, Sagittogethes,
Stachygethes, Thymogethes, and Xerogethes). A growing body of work has applied molecular

126  taxonomic approaches to this group (Audisio et al., 2002, 2000; Trizzino et al., 2009) which, due to
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the challenges it poses for morphological identification, is eminently suitable for molecular
taxonomy. Our study aimed to assess the utility of DNA sequence-based molecular operational
taxonomic units (MOTUs) to (i) estimate Meligethinae beetle species richness in a range of UK
habitats; (ii) identify adult food-plant associations of pollen beetle MOTUs and relate these to
known larval food-plant associations; and (iii) identify Europe-wide geographic and demographic

patterns in haplotype distributions for the pest species Brassicogethes aeneus.

Materials and methods

Specimen sampling strategy

Sampling for this study comprised 756 new sequences for beetles from 14 European
countries (see map, Fig.S1. Locations are also provided as .kmz file suitable for Google Earth in File
S1), sampled from 63 plant species in 15 angiosperm families (Table S1, Fig.52). Our analyses
incorporated a further 82 published Meligethinae sequences. Individual level metadata and

accession numbers for new and previously published sequences are provided in Table S1.

The sampling for this study was divided into three components.

(i) 365 specimens were drawn from sampling by the UK Urban Pollinators Project (UPP) (Baldock
et al., 2015) in 2011 from sites centred on 12 cities spanning the UK, in the southwest (Bristol,
Cardiff, Swindon, Southampton), southeast (London, Reading), northeast (Hull, Leeds, Sheffield)
and Scotland (Dundee, Edinburgh, Glasgow). Specimens were collected from 39 plant species in 10
families (Fig.52) during 1 km walked transects in one of three habitat types - nature reserve, farm,
and urban - around each city (see Baldock et al. (2015) for full details on site selection and habitat

categories). Our subsampling included 222 specimens from farmland, 132 from nature reserves
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and 11 from urban sites (Table 1). All host plants from which specimens were collected were
identified based on direct observations using Stace (2010). Farmland specimens were most
frequently sampled from Brassica napus sbsp. oleifera (Brassicaceae, 29% of specimens) and
Ranunculus repens (Ranunculaceae, 21%), while nature reserve specimens were most frequently
sampled from Cirsium arvense (Asteraceae, 18%) and Rubus fruticosus (Rosaceae, 14%) (Table S1).
Insect specimens were identified to genus morphologically by taxonomists at the National
Museum of Wales, Cardiff, and have been deposited in the specimen archive of the UK Insect
Pollinators Initiative (Vanbergen et al., 2014) at the Natural History Museum, London, with NHM

accession numbers in Table S1.

(ii) To provide wider phylogeographic perspective we sequenced a further 391 adult specimens
from additional sites in the UK and 13 continental European countries (Table 1), ranging from the
Outer Hebrides islands in the north west of the UK to Romania in south east Europe. This
represents the widest geographic sampling of Meligethinae published to date. To increase the
probability of extensive sampling of Brassicogethes aeneus for population-level analysis, 60% of

the additional specimens were collected from Brassica napus sbsp. oleifera.

(iii) Our analyses included 82 previously published sequences for specimens from 12 European
countries, all of which have Linnaean names but lack associated plant data (Table S1). Published
sequences included those for vouchers at the Natural History Museum, London, for the
commonest UK species (B. aeneus and B. viridescens) and sequences for 36 additional
Meligethinae species from the genera Afrogethes (8 species), Acanthogethes (1 species),
Boragogethes (1 species), Brassicogethes (11 species), Genistogethes (1 species), Lamiogethes (5

species), Meligethes (3 species), Sagittogethes (3 species), Stachygethes (1 species), Thymogethes
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(1 species) and Pria dulcamarae. The published sequences include 19 of the 36 species recorded

from the UK (Kirk-Spriggs, 1996).

DNA extraction

A single leg of each adult beetle specimen was crushed using forceps to break the
exoskeleton. DNA was extracted using a chelex protocol following Nicholls et al. (2010). The leg
was incubated overnight at 37°Cin a 1.5mL eppendorf tube containing 50uL 5% chelex resin
solution and 5pL of 10mg/mL Proteinase K. After incubation, each sample was mixed, centrifuged,
heated for 15 minutes at 95°C to denature any remaining Prot K, re-centrifuged and then stored at

-20°C prior to use in PCR.

PCR and sequencing

We amplified the 797 base pair (bp) fragment of the cytochrome oxidase 1 gene (CO1)
available in Genbank for the widest diversity of Meligethinae species at the start of the project.
This fragment was amplified using primers SlerryF and SPatR developed by Timmermans et al.
(2010) and modified from C1-J-2183 (Jerry) and TL2-N-3014 (Pat) in Simons et al. (1994). This
region has been widely applied in studies of beetle phylogenetics, phylogeography and DNA
taxonomy because it is more easily amplified in some taxa and can contain greater phylogenetic
signal than the standard Folmer barcode region of the same gene (Cardoso and Vogler, 2005;
GOmez-Zurita et al., 2010; Kubisz et al., 2012). In pollen beetles we found the LCO/HCO primers
failed to produce bands for some specimens at an annealing temperature of 51°C and produced

multiple bands when initial PCR cycles used a lower annealing temperature of 45°C (Hebert et al.,

9
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2004). The Pat/Jerry region does not overlap with the standard Folmer barcode fragment, for
which extensive resources for Meligethinae are now available on the Barcoding of Life
BOLDSYSTEMS database (accessed 9 January 2016). The fragment that we used proved
informative both in allocating specimens to MOTUs and in resolving the population structure and

demographic status of populations

PCRs used the following reaction mix and primers: 12.94uL MilliQ water, 2uL 10mg/ml BSA,
2uL 10 X reaction buffer, 1uL 50mM MgCl,, 0.16puL 25mM dNTPs, 0.1uL 5U/uL Taqg polymerase,
0.3uL 20uM primer SlerryF (5'CAACATYTATTYTGATTYTTTGG3’), 0.3l 20uM primer SPatR
(5'GCACTAWTCTGCCATATTAGA3’) and 1.2pL template DNA. The PCR program used was 94°C for 2
minutes, 35 cycles of (94°C for 30 seconds, 51°C for 30 seconds, 72°C for 1 minute), 72°C for 5
minutes, then hold at 10°C. PCR success was checked by running 3ul on a 2% agarose gel, and the
remainder of each reaction was prepared for sequencing by adding 2.5uL of a 0.4U/uL Shrimp
Alkaline Phosphatase and 0.6U/uL Exonuclease 1 (SAP/EXO 1) mix to each PCR reaction
(incubating for 37°C for 40 minutes and 94°C for 15 minutes) to remove unincorporated dNTPs
and primers. Samples were sequenced using ABI BigDye Terminator version 3.1 sequencing
chemistry (Applied Biosystems) and run on an ABI 3730 capillary machine by the Edinburgh

Genomics NERC facility.

Sequence alignment and phylogenetic analysis

Sequences were edited and checked for an appropriate open reading frame (to eliminate
possible nuclear pseudogenes - NUMTSs; Bensasson et al. 2001) using Sequencher version 5.01

(Gene Codes Corporation, Ann Arbor MI, USA) and aligned using the Clustal W algorithm in

10
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MegAlign v5.05 (DNAstar Inc., Madison WI, USA). After editing, all CO1 sequences were 797bp
long, and the completed alignment was checked by eye. Sequences and Genbank Accession
numbers (to be added on acceptance) for each accession are given in Table S1. For inference of
phylogenetic relationships we generated a trimmed alignment in which duplicate haplotypes from
the same sampling location were removed using Collapse v.1.2 (Posada, 2013), leaving 241
haplotypes including the outgroup Kateretes rufilabris from the family Kateretidae, sister taxon to
the Nitidulidae (Genbank accession number DQ221966; Cline et al. 2014). An appropriate model of
sequence evolution for our data was identified using MrModeltest v2.3 (Nylander, 2004) as
GTR+1+G. This model was used in Bayesian inference of phylogenetic relationships in the software
MrBayes 3 (Ronquist and Huelsenbeck, 2003). The MrBayes analysis ran for 2.5 million iterations,
with 1 cold chain and 3 heated chains using default heat parameters, after which the average
standard deviation of split frequencies was 0.02. We used a burn-in of 250,000 generations and
checked parameter posterior distributions for convergence in Geneious. No molecular clock was

enforced.

Molecular taxonomic analysis

Similarity of new data to published sequences was examined in the first instance using
nucleotide BLAST search (Altschul et al., 1990). Sequences from samples identified through BLAST
as Meligethinae or its outgroup Kateretes rufilabris (788 newly generated and published
sequences) were allocated to molecular operational taxonomic units (MOTUs) using two
approaches: jMOTU v1.0.8 (Jones et al., 2011) and ABGD (downloaded July 2014) (Puillandre et al.,
2012). jMOTU clusters sequences into MOTUs that differ by pre-defined numbers of bases; we

examined divergence distances amongst sequences ranging from 1-80 bp, with a low BLAST

11
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identity filter of 97%. In the presence of a barcoding gap, the plot of MOTU by divergence should
form a plateau, with no change in MOTU number across the divergence levels corresponding to

the gap.

ABGD defines MOTUs based upon prior values of within-species divergence, and assesses
how MOTU number changes as within-species divergence increases. We used prior within-species
divergence limits ranging from 0.4% to 10%, split into 30 steps; K2P distances were used, with a
Ti/Tv ratio of 1.45 (calculated by MrModeltest), and using the default value of 1.5 for slope
increase. Output from the recursive partitioning scheme was used, with the final number of

MOTUs chosen at the point where the plot of MOTU versus intraspecific divergence levelled off.

Analysis of population genetic structure and demography

We analysed population genetic differentiation and demography only for the single most
abundant MOTU, corresponding to Brassicogethes aeneus (n=635), using the package Arlequin
(Excoffier et al., 2005). Our aim was to understand the spatial scale of haplotype variation in the
UK, and to place UK variation in a broader European context. We used analyses of molecular
variance (AMOVA) to quantify population genetic structure at three nested spatial scales

(specified fully in Table S2a):

(a) Between locations within each region of the UK.

(b) Between 4 regions of the UK (Scotland, NE England, SW England and Wales, and SE
England), and

(c) Between five regions of Europe (Northern UK, Southern UK, France/Belgium/Germany,

Scandinavia and the Baltic, and Southern Europe - shown in Fig.2);

12
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Our division of the UK into regions in (b) was intended to explore the possibility of latitudinal
genetic structure associated with restricted gene flow along relatively narrow habitat corridors of
a key foodplant, Brassica napus sbsp. oleifera agriculture in northern Britain (Botanical Society of

Britain and Ireland distribution map, http://bsbidb.org.uk/maps/?taxonid=2cd4p9h.ydh, accessed

19 January 2016). Division of the UK into North and South at the largest spatial scale reflects the
results of analyses at the UK level. Our division of continental Europe into three regions a priori
reflects previous work showing insect dispersal to the UK from the southeast (region
France+Belgium+Germany) and from the northeast (region Scandinavia+the Baltic, which includes
samples from Sweden, Estonia and Poland) (Brattstrém et al., 2010; Chapman et al., 2012, 2002; L
Raymond et al., 2013; Stefanescu et al., 2013; BC Williams, 1951). Samples from the final region
(region Southern Europe, which includes samples from Italy, Austria, Hungary, Romania, Bulgaria
and Greece) were included to provide a preliminary assessment of haplotype variation for a region
known to support high diversity in many widespread European taxa (e.g.Hewitt, 2000; Stone et al.,
2012; Taberlet et al., 1998). We were unable to obtain any samples from the Iberian peninsular,
though this region often harbours distinct genetic variation in widely distributed taxa and should
be included for a comprehensive understanding of Europe-wide patterns (Hewitt, 2000; Taberlet
et al., 1998). Though patterns at any single locus must be analysed with care (Hurst and Jiggins,
2005), patterns in mitochondrial haplotypes remain informative of genetic relationships between

populations (e.g. Bradman et al., 2011; Stone et al., 2012; Winkelmann et al., 2013).

We also used AMOVA to test for food-plant family- associated population structure in the
same European Brassicogethes aeneus MOTU. Because B. aeneus larvae are thought to only
develop on a Brassicaceae subset of the food-plants visited by adults, and mating occurs in the

spring when adults recruit to Brassicaceae after hibernation, our expectation was for there to be

13
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no intraspecific population structure based on adult food-plants. This analysis included Europe-
wide sampling of B. aeneus from adult food-plants in the families Alliaceae, Apiaceae, Asteraceae,
Brassicaceae, Fabaceae, Ranunculaceae and Rosaceae. All AMOVAs used 10000 permutations,

with 1000 permutations for significance testing of pairwise Fsr.

Haplotype diversity in Brassicogethes aeneus was illustrated using a minimum spanning

network (Bandelt et al., 1999) constructed in the package PopART (http://popart.otago.ac.nz).

Pairwise differentiation between sites or groups was quantified using Fsr and tested using exact

tests in Arlequin (Michel Raymond and Rousset, 1995).

The demographic history of B. aeneus population units was assessed using haplotype
pairwise mismatch distributions and tests of selective neutrality in Arlequin. Mismatch distribution
patterns were compared for goodness-of-fit to a model of sudden population expansion using the
sum of squared deviations test (Schneider and Excoffier, 1999). Departures from selective
neutrality indicative of selection or population size change were tested using Tajima’s D (Tajima,

1989a, 1989b) and Fu’s FS (Fu, 1997).

Results

Sequence diversity and phylogenetic relationships between Meligethinae CO1 haplotypes

Across all accessions in our analysis the 797 bp CO1 fragment showed 587 variable sites,
with no evidence of nuclear pseudogenes (NUMTSs). The amplified CO1 fragment showed low
phylogenetic resolution at the generic level, and published sequences for the genera Afrogethes,
Lamiogethes, and Sagittogethes were non-monophyletic in our Bayesian phylogenetic

reconstruction (Fig.1, Fig. S3). Sequences for most of the newly-sampled specimens fell into
14
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strongly-supported clades (posterior probability = 1) containing published sequences for one of

Brassicogethes aeneus or B. viridescens (Fig.S3).

Resolution of Meligethinae into Molecular Operational Taxonomic Units.

721 of 756 specimens initially identified as pollen beetles (337/365 UK UPP specimens and
384/391 wider European samples) showed > 98% BLAST sequence similarity to published
sequences for Meligethinae. The UPP exceptions included sequences with > 98% match to
published data for other small and superficially similar beetles that are frequently found in
flowers, including Hydrothassa marginella (11 sequences, Chysomelidae), Anaspis frontalis (five
sequences, Scraptiidae), Eusphalerum sorbi (four sequences, Staphylinidae) and Epuraea melina
(two sequences, Nitidulidae, Carpophilinae). All non-Meligethinae sequences so identified were

excluded from further analyses.

jMOTU analysis of the resulting putative Meligethinae sequences and 81 published
Meligethinae sequences (n=788) revealed putative barcoding gaps (Fig.S4) at 1.0-1.4% divergence
(8-11 base pairs, n=50 MOTUs) and at 2.0-2.3% divergence (16-18 base pairs, n=44 MOTUs). ABGD
gave strong support for 44 MOTUs at 0.78 to 1.7% divergence. Membership of the 44 MOTUs
identified by jMOTU and ABGD was almost identical, with only a single individual of the 788 (a
Genbank sequence for M. aeneus from Greece, AM491335) changing MOTU membership
between the two analyses (shown for all sequences in Table S1). In subsequent analyses we have
used the n=44 ABGD MOTU allocations. Phylogenetic relationships between the 44 MOTUs, and

the published voucher sequences they contain, are shown in Fig.1 and Fig.S3.

15
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Thirty-five of the MOTUs contain previously published Genbank sequences, leaving nine
unidentified. MOTUs at this level show some disagreement with morphology-based allocations to
Linnaean species. In four cases, published sequences attributed to a single morphological species
were split between two MOTUs: Brassicogethes viridescens (MOTUs 13, 44), B. coracinus (MOTUs
15, 17), B. erysimicola (MOTUs 16, 17) and Afrogethes fruticola (MOTUs 26, 27). In contrast, three
MOTUs each incorporated published sequences attributed to more than one recognised genus
and/or species. This was most dramatic in the case of the eight Linnaean species included in
MOTU 17 (Brassicogethes coracinus, B. arankae, B. erysimicola, B. matronalis, B. nr coracinus, B.
M2 nr longulus, B. thalassophilus and B. longulus), but was true also for MOTU 8 (2 species:
Lamiogethes bidens, Sagittogethes ovatus) and MOTU 24 (2 species: Afrogethes canariensis,

Afrogethes isoplexidis).

DNA sequence-based identification of specimens

ABGD matched 97.6% (all but 17) of putative Meligethinae specimens to MOTUs containing
published Meligethinae sequences (Table S1, Fig.1). Ninety-seven percent of UK sampled
specimens (326/337 UPP and 51/52 additional non-UPP) were allocated to the single MOTU (30)
containing all published sequences for Brassicogethes aeneus. The remainder were matched with
Kateretes rufilabris (MOTU 2, one specimen from Dundee’s nature reserve site), Brassicogethes
viridescens (MOTU 44, n=7: one from Edinburgh’s nature reserve site, four from Dundee’s farm,
one from Glasgow’s nature reserve, and one from London’s nature reserve), and Fabogethes
nigrescens (MOTU 36, one from London’s farm). Only one UPP specimen, from the Bristol
farmland habitat, was allocated to a MOTU (9) lacking any identified reference sequence. In the

phylogenetic tree of haplotype sequences (Fig.1 and Fig.S3) this MOTU is placed between MOTU
16
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40 Stachygethes ruficornis and MOTU 34, which includes an unidentified pollen beetle from
Croatia (see below); without denser taxon sampling and/or use of an additional sequence marker

we cannot place this specimen by barcode identification even to genus.

The 339 Meligethinae specimens from non-UPP sites in the UK and continental Europe
were allocated to 15 MOTUs; 322 specimens were allocated to eight MOTUs containing previously
identified specimens, while 17 specimens (from Italy, France, Croatia and Poland) were allocated
to seven MOTUs lacking a published reference sequence (Table S1). Again, the vast majority (91%)
of specimens were sequence-matched to B. aeneus (MOTU 30, n=309). Smaller numbers of
specimens were sequence-matched to Sagittogethes obscurus (MOTU 11, n=2, from France),
Brassicogethes viridescens (MOTU 13, n=17, from Austria and the UK; and MOTU 44, n=28, from
the UK, Italy, Sweden, Estonia), Lamiogethes pedicularius (MOTU 31, n=8 from Austria) and
Thymogethes gagathinus (n=2, from Croatia). All of these identifications are consistent with
known geographic ranges (Audisio et al., 2009). Six specimens were allocated to MOTUs
containing reference sequences for more than one species, preventing unambiguous
identification. Three specimens (from Estonia, Bulgaria and Poland) were allocated to multispecies
MOTU 17 (the Brassicogethes coracinus group in Fig.1, which contains Brassicogethes coracinus/
B. arankae/ B. erysimicola/ B. matronalis/ B. nr longulus), and two specimens from Hungary were

allocated to MOTU 8 (which contains Lamiogethes bidens/Sagittogethes ovatus).

Adult food-plant associations

Adults sequence-matched with B. aeneus were sampled from 41 plant species in nine

families (Table 2, Fig.S2, Table S1). Only one specimen was sampled from a monocot flower -

17



372

374

376

378

380

382

384

386

388

390

392

Genome

Gagea lutea (Liliaceae) in the Blikk Mountains, Hungary. Specimens identified as B. aeneus made
up 95% of the 305 Meligethinae specimens sampled from Brassica napus sbsp. oleifera Europe-
wide, the other species being B. viridescens (4%), B. coracinus and Fabogethes nigrescens (<1%
each). The dominant flower assocations recorded for B. aeneus other than Brassica napus sbsp.
oleifera (44% of specimens) were Ranunculus repens (8.3%), Rubus fruticosus (6.7%) and Cirsium
arvense (5%) (Table 2). The flower associations we found for B. aeneus match very closely those
recorded by Free and Williams (Free and Williams, 1978) (Table 2), who also recorded this species
from Arctium vulgare and Matricaria matricarioides (Asteraceae), Stellaria holostea
(Caryophyllaceae), Papaver rhoeas (Papaveraceae ), Prunus avium (Rosaceae) and Galium verum
(Rubiaceae). AMOVA showed no evidence of plant family-associated structuring in mitochondrial
haplotypes in B. aeneus, with less than 1% of variation explained by differences between plant
families (Table S2d). However, the flower associations of B. aeneus are non-random. If we
compare the flower associations of this species at the plant family level with the full set of insect-
flower associations for the same sites, using only the Urban Pollinators project data (n = 10477
insect-flower association records), we find that adult B. aeneus show a significant preference for

Brassicaceae and are less common than expected on flowers of Asteraceae ()(2 =20.13,df=6,p =

<0.001).

Adults of the second most abundant species overall, Brassicogethes viridescens (n=43
Europe-wide), were sampled from 17 plant species in 10 families: Asteraceae (Angelica sylvestris,
Brachyglottis sp., Calendula arvensis, Centaurea sp., Cirsium arvense, Cirsium vulgare, Crepis sp.,
Hieracium sp., Leucanthemum vulgare, Taraxacum agg.), Boraginaceae (Symphytum spp.),
Brassicaceae (Brassica napus), Campanulaceae (Campanula sp.), Fabaceae (Melilotus albus),

Hypericaceae (Hypericum sp.), Oleaceae (Jasminum sp.), Onagraceae (Chamerion angustifolium),

18
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Ranunculaceae (Ranunculus arvensis) and Rosaceae (Filipendula ulmaria). In addition to Brassica
napus sbsp. oleifera, Brassicogethes coracinus was sampled from Sinapis alba (Brassicaceae) and
Fabogethes nigrescens was sampled from Crepis sp. (Asteraceae). Lamiogethes pedicularius was
sampled from four species of Asteraceae (Taraxacum agg., Arnica montana, Hieracium sp.,
Leucanthemum vulgare) and one of Ranunculaceae (Ranunculus arvensis). Sagittogethes obscurus
was sampled from Hypochaeris radicata (Asteraceae); Thymogethes gagathinus was sampled from

Potentilla reptans (Rosaceae).

Population structure and demography of Brassicogethes aeneus

Across the UK and continental Europe 634 specimens were sequence-matched to
Brassicogethes aeneus, distributed across countries and regions of Europe as shown in Fig.2. The
B. aeneus MOTU contained 120 CO1 haplotypes. The haplotype frequency distribution was very
skewed towards rare haplotypes, with 89 haplotypes represented by a single individual, 187
individuals sharing the commonest haplotype, and 402 individuals (>63%) having one of the top

three most abundant haplotypes. The haplotype network for B. aeneus is shown in Fig.2.

(a) Spatial patterns in population structure

As expected from the overall haplotype distribution the commonest alleles were shared by
most sites, such that only a small component of haplotype variation was explained by differences
between population units at any spatial scale. At the level of individual UK populations, the only
significant genetic differences (exact tests in Arlequin, p<0.05) were between Kildonan (on South
Uist in the Outer Hebrides Islands of Scotland) and all other UK sites, and between Edinburgh

(Scotland) and each of London and Hull (SE and NE England, respectively). When UK sites were
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grouped into four regions (Table S2, Scotland, NE England, SE England, and SW England/Wales),
differences between regions explained a low (2.5%) but significant (p<0.01) component of
haplotype variation (AMOVA, Table S2b), with pairwise Fsr values ranging from 0.003 between NE
and SE England to 0.053 between Scotland and SE England. Only the differences between Scotland
and each of NE and SE regions of England were significant (Arlequin, exact tests, p<0.05). Genetic
differentiation between European regions explained a slightly greater (4.4%) and more significant
(p<0.001) component of haplotype variation in B. aeneus (AMOVA, Table S2c). Pairwise Fsr values
ranged from 0.014 between Scandinavia+the Baltic and Scotland to 0.096 between the
Scandinavia+the Baltic and France+Belgium+Germany, with all pairwise differences significant

except that between Scotland and the Baltic region.

(b) Population demography and tests of selective neutrality

Pairwise mismatch distributions were unimodal and compatible with a rapid population
expansion model for all regions of Europe except the Baltic, for which rapid population expansion
was rejected (p<0.001) (Fig.3, Table S2c). In the absence of significant genetic differentiation
between Scotland and Scandinavia+the Baltic, a combined dataset also rejected a rapid population
expansion model (Fig.3). All five regional groupings showed significantly negative values of Fu’s FS,
with significantly negative values of Tajima’s D for three regions (England/Wales,

France+Belgium+Germany, and Southern Europe).

Discussion

Sequence-based identification of pollen beetles
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The region of cytochrome oxidase c used in our analysis contains sufficient variation to
separate specimens effectively into molecular operational taxonomic units. Identification of 99%
of individuals in our samples to 35 reference taxa, in almost all cases to MOTUs containing
published sequences for a single Linnaean species, compares favourably with documented DNA-
barcoding of other groups (e.g. Hajibabaei et al. 2006; Ward et al. 2005). However, matching to a
single species was not possible for the three MOTUs that each contained published sequences for
more than one Linnaean species - eight species in the case of MOTU 17. Sharing of mitochondrial
haplotypes among species is widely reported, particularly through sharing of ancestral
polymorphism or hybridisation in recent radiations of species (e.g. Funk and Omland 2003;
Nicholls et al. 2012), and incomplete sorting of ancestral polymorphism has been hypothesised to
explain low phylogenetic signal of cytochrome oxidase sequences in pollen beetles (De Biase et al.,
2012). Placement of published sequences for representatives of two genera in a single MOTU
(MOTU 8, Lamiogethes bidens and Sagittogethes ovatus) nevertheless suggests possible
misidentification of some reference specimens. Future sequence-based identification of
Meligethinae should be developed around the standard Folmer barcode fragment of cytochrome
oxidase c, for which a growing resource (570 specimen records, including 389 barcodes of 53

species) now exists on the Barcode of Life BOLDSYSTEMS database (accessed 9 January 2016).

The generally low phylogenetic resolution seen at the generic level in our analysis is
concordant with other analyses of mtDNA in pollen beetles (Audisio et al., 2009). The tightly-
clustered ‘B. coracinus group’ (MOTU 17 in Fig.1, with individual sequences shown in Fig.S3)
mirrors recent taxonomic work (Audisio et al., 2011; De Biase et al., 2012) suggesting a clade of

recently radiated taxa with challenging taxonomy: our sampling fails to resolve the complexes (e.g.
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‘subaeneus’, ‘coracinus’, ‘longulus’) described therein, though our taxon sampling is far from

complete.

Species richness and plant associations

Our sampling of 756 specimens was dominated by a single species: the economically
important pest Brassicogethes aeneus. This comprised 97% of UK specimens, with no evidence of
variation in Meligethinae faunas between UK farm and nature reserve habitats. A striking feature
of our sampling is that despite being specialist feeders on particular plant families as larvae, the
adults were sampled from a wide range of different plant taxa. For example, while Brassicogethes
species are specialist feeders on Brassicaceae as larvae, the adults of both Brassicogethes aeneus
and B. viridescens were recorded from flowers of nine and 10 families, respectively. Similarly,
Fabogethes nigrescens (which feeds on Fabaceae as a larva; (Audisio et al., 2009)) and
Lamiogethes pedicularius, Sagittogethes obscurus and Thymogethes gagathinus (specialists of
Lamiaceae, (Audisio et al., 2009)) were sampled from non-larval food-plants in Asteraceae,

Brassicaceae, Ranunculaceae and Rosaceae.

We did not determine whether the adult beetles we collected were feeding on the
sampled flowers. We suggest that this is likely, because the primary role of flower associations in
these beetles is to provide pollen food for early summer maturation of eggs in the parental
generation, and for laying down of overwintering fat reserves in their adult offspring (Free and
Williams, 1978; Veromann et al., 2014; Vinatier et al., 2012). Once mating is completed in late
spring, there is no other reason to be in flowers. Nevertheless, this aspect of adult biology merits

further study, for example through quantitative plant DNA barcoding of gut contents against a
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panel of plants from which adults have been collected. These methods have been used succeefully
to resolve trophic relationships in other beetle taxa (Garcia-Robledo et al., 2013; Jurado-Rivera et
al., 2009; Kajtoch et al., 2015; Kishimoto-Yamada et al., 2013; Kitson et al., 2013; Navarro et al.,

2010).

The wider adult host-feeding range of some Meligethinae raises the twin questions of the
function of adult feeding and the determinants of larval host specificity. If adult feeding is a
significant predictor of successful overwintering and maturation to breed in the following year,
then understanding the range and relative rates of exploitation of adult food-plants may be
important in the population dynamics of otherwise specialist pest species, such as B. aeneus (IH
Williams and Free, 1978). Contrasts in the host-plant range of adults and larvae are the results of
adult preference for feeding and oviposition respectively (Cook et al., 2002; Hervé et al., 2014;
Jonsson et al., 2007; Kaasik et al., 2014). There is evidence that adult oviposition choices influence
the developmental success of larval pollen beetles (Veromann et al., 2014), but little is known
about the consequences of plant choice for adult feeding. Our results are compatible with lower
constraint on adult food-plant choice. One testable hypothesis is that the larvae, though able to
move between flowers on a single plant (IH Williams and Free, 1978), are constrained to acquire
the resources they need to reach adulthood within a narrow window of opportunity (Beduschi et
al., 2015; Cook et al., 2004). This in turn could have driven the evolution of larval physiological
traits matched to the detoxification and assimilation challenges of specific food-plants, resulting in
high larval host-plant specificity. In contrast the more mobile adults are able to move between
food resources, escaping time constraints on food assimilation efficiency in favour of physiological
traits allowing exploitation (perhaps at lower efficiency) of a wider host-plant range over a longer

period.
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An alternative hypothesis to higher larval than adult food-plant specificity is that the
contrasting host ranges of larval and adult stages merely reflect seasonal changes in the
availability of highly rewarding pollen sources. When adults emerge from hibernation in
April/May, they first feed on early flowering species such as Salix spp. and Anemona nemorosa
(Thieme, personal observation). Later in the spring there are relatively few alternative forb species
to cultivated Brassica napus sbsp. oleifera that are both at high floral density and provide a high
pollen volume per flower (see per-species values in Hicks et al. (in press)). This hypothesis is
supported by the fact that the non-Brassicaceae host-plants selected by the other spring adult B.
aeneus in our dataset also provide high pollen volumes per capitulum (Ficaria verna, Taraxacum
agg.) and/or provide high floral density (Allium ursinum). Food-plant associations of newly
emerged adults in the summer are compatible with the same hypothesised preference for plants
that provide high, spatially-concentrated, pollen resources (e.g. Cirsium spp., Rubus spp.,
Ranunculus spp., Taraxacum agg., Filipendula ulmaria, Leucanthemum vulgare) — as are additional
food plant associations for pre-winter adults outwith this study (e.g. Sambucus nigra and Tilia spp.,
ornamentals such as lilies and roses, and flowers of vegetables such as cauliflower and broccoli;
Thieme, personal observation). Further sampling of pollen beetle-plant associations is required to
better understand the basis of adult food plant preferences given availability. Given that pollen

beetles are often very abundant, their flower associations may be important and information-rich.

These hypotheses could be tested by examining the relative impacts of alternative host-
plant selection on larval and adult life stages, with the prediction of greater impacts of host
variation on larval rather adult components of fitness. At an applied level, there may be important
correlations between damage associated with B. aeneus infestation of oil-seed rape crops in early

summer and the local or regional abundance of alternative adult food-plants. One possibility is

24



Page 25 of 55

528

530

532

534

536

538

540

542

544

546

Genome

that such alternative food sources facilitate the build-up of B.aeneus, leading to a positive
correlation with economic damage (see Free and Williams 1978 on the importance of Taraxacum
agg. in this regard). An alternative is that high abundance of alternative food sources could reduce
beetle abundance on oil-seed rape plants at the crucial green and yellow bud stages, leading to a
negative correlation with economic damage. Though there has been extensive study of the impact
of landscape characteristics on pollen beetle abundance (e.g. Beduschi et al. 2015; Rusch et al.
2012; Valantin-Morison et al. 2007; Zaller et al. 2008), we know of no studies specifically

incorporating the available richness and abundance of adult food-plants.

Population structure and demography of Brassicogethes aeneus

The patterns of mitochondrial haplotype differentiation in B. aeneus match previous work
showing low local differentiation and slightly greater divergence at larger spatial scales
(Kazachkova et al., 2007, 2008; Makiinas, 2012). Our results are novel in showing north-south
differentiation at UK and European scales, and low genetic differentiation between Scotland and
the Baltic. A selectively neutral interpretation of these patterns is that dispersal in B. aeneus is, or
has been, primarily longitudinal rather than latitudinal. The patterns in B. aeneus contrast with the
lack of north-south genetic differentiation seen in species known to undertake latitudinal
migrations in Europe, such as the hoverfly Episyrphus balteatus (Raymond et al. 2013). Genetic
differentiation in B. aeneus is nevertheless low (Fsr < 0.1 in all regional comparisons), and similar in
magnitude to Episyrphus balteatus (<0.05, Raymond et al. 2013) and the grain aphid Sitobion

avenae (<<0.05 Llewellyn et al. 2003).
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Without more in-depth analysis using a larger number of markers it is not clear whether
the patterns observed in B. aeneus represent ongoing gene flow between regional populations, or
slow sorting of high levels of ancestral polymorphism in large populations without gene flow.
Comparison with patterns in nuclear markers is also required to test the possibility that selection
may be influencing mitochondrial haplotype frequencies - either directly, via mito-nuclear
interactions, or via co-inherited symbionts such as Wolbachia (Grant et al., 2006; Hurst and Jiggins,
2005). It is possible that UK north-south differentiation is associated with relatively narrow habitat
corridors of B. napus sbsp. oleifera agriculture in northern Britain (Botanical Society of Britain and

Ireland distribution map, http://bsbidb.org.uk/maps/?taxonid=2cd4p9h.ydh, accessed 19 January

2016), restricting adult dispersal and associated gene flow. Similarly, lack of east-west
differentiation in the north could be due to occasional large-scale longitudinal migrations, as have
been observed for Diamondback moths, Plutella xylostella (Chapman et al., 2012, 2002, 2004).
These reach the UK on warm winds from the east at a similar time of year as pollen beetles, with

particularly notable migrations from Scandinavia in the 1960s.

The unimodal mismatch distributions shown by all regional European population of B.
aeneus except the Baltic are compatible with either rapid population expansion (Rogers and
Harpending, 1992; Slatkin and Hudson, 1991) or range expansion accompanied by high dispersal
between populations (Excoffier, 2004; Ray et al., 2003). These interpretations are also compatible
with the observed negative values of Fu’s FS (and in some cases Tajima’s D), though these can also
indicate purifying selection. The hypothesis of range expansion with high dispersal is further
supported by the low absolute levels of genetic divergence observed between regional
populations. This interpretation, if correct, suggests that other genetic processes in B. aeneus,

such as selection for pesticide resistance (Zimmer et al., 2014) may operate on an Europe-wide
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spatial scale. Further work using multiple nuclear markers is required to separate the effects of
selection from neutral processes, and to discriminate population divergence from subsequent

gene flow in B. aeneus.
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Table 1. Summary of sampling for the study. Sampling sources are identified as the UK Urban

Genome

Pollinators Project (UPP) or additional sampling in the country indicated. Site numbers refer

to locations mapped in Figure S1. Habitat categories for farm (F), urban (U) and nature

reserve (NR) follow those for the UPP (see Baldock et al. 2015). Full specimen metadata are

provided in Table S1.

Site | Source Site name Habitat | n Latitude Longitude

1 UK (UPP) Bristol F 5 51°24'16.27”"N | 002°41'08.51"W
1 UK (UPP) Bristol NR 1 51°26'42.69”N | 002°38'56.02"W
2 UK (UPP) Cardiff F 1 51°29'53.92”N | 003°17'31.78"W
2 UK (UPP) Cardiff NR 1 51°32'58.37”N | 003°22'22.57"W
3 UK (UPP) Dundee F 46 56°22'15.84"N | 003°05'39.74"W
3 UK (UPP) Dundee NR 11 56°23'14.68"N | 002°50'31.82"W
3 UK (UPP) Dundee u 8 56°27'42.17"N | 002°59'58.59"W
4 UK (UPP) Edinburgh F 33 | 55°49'00.95”"N | 003°03'57.59"W
4 UK (UPP) Edinburgh NR 31 55°49'58.24"N | 002°59'23.27"W
5 UK (UPP) Glasgow F 12 55°54'06.55”N | 003°58'36.64"W
5 UK (UPP) Glasgow NR 10 55°57'33.88”"N | 004°19'56.06"W
6 UK (UPP) Hull F 6 53°47'54.93"N | 000°35'49.58"W
6 UK (UPP) Hull NR 43 53°41'46.21”"N | 000°27'18.38"W
7 UK (UPP) Leeds NR 28 53°37°'49.69”N | 001°29'47.08"W
8 UK (UPP) London F 43 51°40'43.23"N | 000°08'34.28"W
8 UK (UPP) London u 1 51°29'41.45"N | 000°25'26.58"W
9 UK (UPP) Reading F 62 51°22'25.60”N | 000°55'51.85"W
10 UK (UPP) Sheffield F 12 53°29'57.70”N | 001°31'35.79"W
11 UK (UPP) Southampton F 2 51°01'03.93”N | 001°28'00.35"W
12 UK (UPP) Swindon NR 7 51°26'03.28”"N | 001°48'31.05"W
12 UK (UPP) Swindon U 2 51°33'30.12”N | 001°50'07.84"W
4 UK Edinburgh F 5 55°48'52.79"N | 3°04'05.81"W

4 UK Edinburgh NR 5 55°51'16.00"N | 3°13'46.61"W

5 UK Kildonan, South Uist F 24 57°13'N 7°24'W

13 UK Birmingham U 6 52°27'01.46"N | 1°43'51.45"W

1 UK Bristol u 9 51°23'12.83"N | 2°42'39.05"W
14 UK Inverness u 3 57°28'39.62" 4°13'07.63"W
15 Austria Mariahof F 26 47°05'N 14°23'E

16 Belgium Louvain-la-Neuve U 14 50°39'59.28"N | 4°37'22.67"E

17 Bulgaria Sofia F 13 42°46'N 23°21'E

18 Croatia Plitvice F 10 44°53'N 15°36'E

18 Croatia Otocac F 5 44°52'N 15°14'E

19 Estonia Tartu F 47 58°21'04.4"N 26°36'83.6"E

20 France Neuville sur Vanne F 20 48°15'10"N 3°47'12"E

21 France Vay F 15 47°31'00.83"N | 1°44'21.78"W
21 France La Grigonnais F 5 47°31'05.73"N | 1°42'08.15"W
21 France Carquefou F 5 47°18'50.54"N | 1°30'11.22"W
21 France Blain F 5 47°29'26.96"N | 1°45'08.28"W
22 Germany Uslar F 5 51°39'20"N 9°38'26"E

22 Germany Gottingen-North F 5 51°32'46"N 9°55'34"E

22 Germany Waake F 5 51°33'24"N 10°3'19"E

22 Germany Gottingen-South F 5 51°30'13"N 9°54'55E

22 Germany Einbeck F 5 51°49'14"N 9°52'11"E

23 Germany Puch Firstenfeldbruck | F 14 48°11'16.63"N | 11°12'48.97"E
24 Germany Pommritz Bautzen F 12 51°09'29.72"N | 14°33'58.58"E
22 Germany Wesendorf Gifhorn F 12 53°35'32.14"N | 10°32'38.29"E
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22 Germany Sohlingan Uslar F 10 51°39'58.20"N | 9°36'58.20"E
25 Hungary Bukk Montts F 7 48°06'30"N 20°49'60"E
26 Hungary Matrafiired F 9 47°49'33"N 19°56'67"E
26 Hungary Szentkut F 9 47°59'33"N 19°46'33"E
27 Italy Biancavilla u 5 37°40'54.45"N | 14°54'13.33"E
28 Poland Warsaw F 14 52°9'39.93"N 21°3'15.72"E
29 Romania Dalga F 7 44°26'N 27°04'E
30 Spain A Coruiia Arins F 10 42°51'58.60"N | 8°29'55.30"W
31 Sweden Amalienlund Skane F 5 56°08'36.37"N | 13°04'58.57"E
32 Sweden Hassl6sa gird Vinninga | F 4 58°25'01.46"N | 13°09'25.81"E
32 Sweden Kilagarden Skara F 5 58°21'00.00"N | 13°15'00.00"E
33 Sweden Rinkabyholm Kalmar F 3 56°38'57.20"N | 16°14'27.02"E
33 Sweden Vingeslatt Kalmar F 4 56°47'60.00"N | 16°18'00.00"E
34 Sweden Biovklinge Uppsala F 5 60°02'09.73"N | 17°34'41.18"E
34 Sweden Solna Uppland F 4 59°30'14.38"N | 16°22'46.38"E
34 Sweden Falhagen F 10 59°51'28.27"N | 17°38'59.83"E
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Table 2. Food-plants of specimens molecular-identified as Brassicogethes aeneus. Only

records with confirmed plant identification (n=626) are included. Countries are represented
by their three letter ISO codes. The right-hand column indicates food-plants also identified by

IH Williams and Free (1978).

Plant family Plant species Country (sample size) IH Williams
and Free 1978
ALLIACEAE Allium ursinum GBR (2)
APIACEAE Heracleum sphondylium GBR (8) X
ASTERACEAE Achillea millefolium GBR (9) X
ASTERACEAE Bellis perennis GBR (1)
ASTERACEAE Brachyglottis spp. GBR (4)
ASTERACEAE Carduus nutans GBR (3)
ASTERACEAE Cirsium arvense GBR (31) X
ASTERACEAE Cirsium palustre GBR (8)
ASTERACEAE Cirsium vulgare GBR (2) X
ASTERACEAE Crepis vesicaria GBR (2)
ASTERACEAE Helminthotheca echioides GBR (10)
ASTERACEAE Hieracium sp. AUT (1) X
ASTERACEAE Hypochaeris radicata GBR (8)
ASTERACEAE Lapsana communis BEL (1), GBR (6)
ASTERACEAE Leontodon saxatilis BEL (5)
ASTERACEAE Matricaria chamomilla GBR (28)
ASTERACEAE Senecio jacobaea GBR (3) X
ASTERACEAE Solidago gigantea SWE (1)
ASTERACEAE Sonchus arvensis GBR (10)
ASTERACEAE Sonchus asper GBR (3) X
ASTERACEAE Sonchus palustris BEL (4)
ASTERACEAE Tanacetum parthenium GBR (12)
AUT (1), HUN (3), GBR | X
ASTERACEAE Taraxacum agg. (26)
ASTERACEAE Tripolium pannonicum SWE (1)
BRASSICACEAE Aubrieta sp. GBR (1)
BGR (12), EST (38), FRA
(40), GER (67), POL (5),
ROM (7), SWE (29), GBR
BRASSICACEAE Brassica napus sbsp. oleifera (76)
BRASSICACEAE Sinapis alba FRA (5), POL (7)
BRASSICACEAE Sinapis arvensis GBR (1) X
FABACEAE Genista tinctoria ITA (1)
FABACEAE Lupinus luteus GER (6)
LILIACEAE Gagea lutea HUN (1)
RANUNCULACEAE Ficaria verna HUN (13)
RANUNCULACEAE | Ranunculus acris BEL (4), GBR (18)
RANUNCULACEAE Ranunculus arvensis AUT (1)
RANUNCULACEAE Ranunculus flammula GBR (1)
RANUNCULACEAE Ranunculus repens GBR (52) X
ROSACEAE Filipendula ulmaria GBR (3)
ROSACEAE Rosa sp. GBR (2) X
ROSACEAE Rubus fruticosus agg. GBR (42) X
RUBIACEAE Galium uliginosum GBR (1)
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Figure legends.

Figure 1. Phylogenetic relationships between Meligethinae MOTUs (Molecular Operational
Taxonomic Units) (n=44) supported by ABGD. The tree shown is a Bayesian majority rule
consensus tree inferred using MrBayes (Ronquist and Huelsenbeck, 2003) using a GTR+I+G model
of sequence evolution selected using MrModeltest (Nylander, 2004), and rooted with a published
sequence for Kateretes rufilabris (Genbank accession DQ221966). Numbers at nodes indicate
posterior probability support. The most species-rich genera in the tree are colour coded as shown
in the key. Triangles at branch tips indicate multiple member sequences in a MOTU. Relationships

between the full set of 241 unique CO1 haplotypes are shown in Figure S3.

Figure 2. Minimum spanning haplotype network for specimens identified as Brassicogethes aeneus
(MOTU 30). The 120 sampled haplotypes are shown as filled circles joined by links in the network,
while unsampled haplotypes are shown by short transverse lines. Colours in circles show the
proportions of samples for a given haplotype sampled from each of the European regional
groupings used in AMOVA analyses. Numbers in the inset map show sample sizes by country and

(in boxes) by region.

Figure 3. Observed pairwise mismatch distributions for CO1 haplotype sequences from four
regional groupings of populations across Europe (in blue) shown alongside the distributions
predicted under a model of rapid population growth (in red). Populations in Scotland and the
region (Scandinavia + the Baltic) have been pooled to reflect the lack of significant genetic
differentiation between them. Analytical summaries for these distributions are provided in Table

S2.
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Supplementary Material

Supplementary Tables

Table S1. Full metadata and accession numbers for all specimens used in analyses, including

previously published sequences.

Table S2. Levels and sample sizes for the hierarchical AMOVA analyses of samples identified as

Brassicogethes aeneus.

Supplementary Files

File S1. Keyhole Markup Language (.kmz) format file of sampling locations and associated

metadata suitable for viewing in Google earth.

Supplementary Figures

Figure S1. Sampling locations for pollen beetles in this study. Sites 1-34 refer to site names and
metadata in Table 1, while sites 35-40 identify site locations for published sequences. The colour
for each location symbol identifies the European regional grouping used in AMOVA analysis of
Brassicogethes aeneus (red=Scotland, green=England and Wales,

yellow=France/Belgium/Germany, purple=Scandianvia and the Baltic, pink= Southern Europe).

Figure S2. Food-plant associations of sampled beetles. Full metadata for each specimen are
provided in Table S1. (a) Numbers of species in each plant family from which adult beetles were
collected in this study, and (b) the numbers of adult beetles collected from each plant family

across the whole study. In (a) and (b), coloured bars for each plant family show (from left)
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sampling for all beetles field-identified as pollen beetles, beetles BLAST-identified as Meligethinae,
and beetles sequence-matched with Brassicogethes aeneus. (c) Numbers of adult beetle (field-
identified as Meligethinae) collected from each plant family in farmland and nature reserve

habitats in the UK Urban Pollinators Project.

Figure S3. Phylogenetic relationships between the full set of 241 unique CO1 haplotype sequences
for published Meligethinae and newly sampled specimens identified by BLAST search as 298%
similar to Meligethinae. The tree shown is a Bayesian majority rule consensus tree inferred using
MrBayes (Ronquist and Huelsenbeck, 2003) using a GTR+I+G model of sequence evolution
selected using MrModeltest (Nylander, 2004), and rooted with a published sequence for Kateretes
rufilabris (Genbank accession DQ221966). Numbers at nodes indicate posterior probability
support. To simplify presentation, where multiple copies of a haplotype were sampled we
illustrate only one per habitat type (farm, urban or nature reserve) for UK Urban Pollinators
Program sites (taxon names all in red), and one copy per country for sites outside the UK.
Coloured circles by taxon names show the European regions used in AMOVA analyses for

Brassicogethes aeneus.

Figure S4. Variation in the number of Meligethinae MOTUs (Molecular Operational Taxonomic
Units) resolved in our dataset as a function of percentage sequence divergence, analysed using

either j]MOTU (panel a) or ABGD (panel b).
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Figure 1. Phylogenetic relationships between Meligethinae MOTUs (Molecular Operational Taxonomic Units)
(n=44) supported by ABGD. The tree shown is a Bayesian majority rule consensus tree inferred using
MrBayes (Ronquist and Huelsenbeck, 2003) using a GTR+I+G model of sequence evolution selected using
MrModeltest (Nylander, 2004), and rooted with a published sequence for Kateretes rufilabris (Genbank
accession DQ221966). Numbers at nodes indicate posterior probability support. The most species-rich
genera in the tree are colour coded as shown in the key. Triangles at branch tips indicate multiple member
sequences in a MOTU. Relationships between the full set of 241 unique CO1 haplotypes are shown in Figure
S3.
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Figure 2. Minimum spanning haplotype network for specimens identified as Brassicogethes aeneus (MOTU
30). The 120 sampled haplotypes are shown as filled circles joined by links in the network, while unsampled
haplotypes are shown by short transverse lines. Colours in circles show the proportions of samples for a
given haplotype sampled from each of the European regional groupings used in AMOVA analyses. Numbers
in the inset map show sample sizes by country and (in boxes) by region.
226x168mm (300 x 300 DPI)

Page 48 of 55



Page 49 of 55 Genome

180004 Scotland, Scandinavia and the Baltic

England and Wales

Frequency

France, Belgium and Germany ps Southern Europe

Frequency

20
0 _.O’O'O‘CL‘

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of pairwise differences Number of pairwise differences

Figure 3. Observed pairwise mismatch distributions for CO1 haplotype sequences from four regional
groupings of populations across Europe (in blue) shown alongside the distributions predicted under a model
of rapid population growth (in red). Populations in Scotland and the region (Scandinavia + the Baltic) have
been pooled to reflect the lack of significant genetic differentiation between them. Analytical summaries for

these distributions are provided in Table S2.
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Figure S1. Sampling locations for pollen beetles in this study. Sites 1-34 refer to site names and metadata in
Table 1, while sites 35-40 identify site locations for published sequences. The colour for each location
symbol identifies the European regional grouping used in AMOVA analysis of Brassicogethes aeneus
(red=Scotland, green=England and Wales, yellow=France/Belgium/Germany, purple=Scandianvia and the
Baltic, pink= Southern Europe).
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Figure S2. Food-plant associations of sampled beetles. Full metadata for each specimen are provided in
Table S1. (a) Numbers of species in each plant family from which adult beetles were collected in this study,
and (b) the numbers of adult beetles collected from each plant family across the whole study. In (a) and
(b), coloured bars for each plant family show (from left) sampling for all beetles field-identified as pollen
beetles, beetles BLAST-identified as Meligethinae, and beetles sequence-matched with Brassicogethes
aeneus. (c) Numbers of adult beetle (field-identified as Meligethinae) collected from each plant family in
farmland and nature reserve habitats in the UK Urban Pollinators Project.
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Figure S4
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Figure S4. Variation in the number of Meligethinae MOTUs (Molecular Operational Taxonomic Units) resolved
in our dataset as a function of percentage sequence divergence, analysed using either jMOTU (panel a) or

ABGD (panel b).
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Table S2. Sampling design and analysis summaries for AMOVA and demographic analyses of
Brassicogethes aeneus. Part (a) shows the sample sizes associated with three hierarchical levels of
spatial grouping of sites: 1. Sites within the UK; 2: Sites grouped within 4 regions across the UK,
and 3: Sites grouped within 5 regions of Europe. The UK location ‘SW England and Wales’ included
samples from Bristol, Birmingham, Cardiff, Swindon and Southampton. Parts (b)-(c) show
summaries of AMOVAs and analysis of Tajima’s D and Fu’s FS at each of these hierarchical levels.
Outputs are from Arlequin. Status of the sudden expansion model refers to compatibility of
observed mismatch distributions with predictions of a model of sudden population expansion,
assessed using the sum of squared deviations test of Schneider and Excoffier (1999). Part (d)
shows an AMOVA summary for haplotype differentiation in B. aeneus across food plant families.

(a)

1. UK Location Sample size UK Region
Kildonan 24 | Scotland
Edinburgh 71 | Scotland

Dundee and Inverness 56 | Scotland

Leeds and Sheffield 39 | NE England

Hull 49 | NE England
London 43 | SE England
Reading 62 | SE England

SW England and Wales 29 | SW England and Wales
2. UK Region Sample size Europe Region
Scotland 151 | Scotland

NE England 88 | England and Wales
SE England 105 | England and Wales
SW England and Wales 29 | England and Wales
3. Europe Region

Scotland 152

England and Wales 225

Scandinavia and the Baltic 82

France, Belgium, Germany 132

Southern Europe 43

(b) Analyses at the level of Sites within regions within the UK

Region Scotland | NE England | SE England | SW
England
and Wales

Sample size 152 88 105 29

Number of alleles 34 27 29 11

Theta_pi 4.63 3.79 2.67 3.90

Expected no. of 16.81 12.60 10.38 8.80

alleles

Tajima's D (p value) -0.95 -1.31 -1.76 -0.95

NS NS (0.012) NS

Fu’s FS -12.01 -11.64 -18.84 -1.31
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(p value) (0.005) (0.001) (0.001) NS
Status of sudden accepted | accepted rejected accepted
expansion model (p p<0.044
value if rejected)
AMOVA
Source of variation | d.f. Sum of squares Variance Percentage of
components variation
Among UK regions | 3 18.58 -0.42 2.5%*
Within regions 369 104.31 1.92 97.5
Total 372 725.88 2.14223
(c) Analyses at the level of regions within Europe
Region Scotland | Scandinavia | Scotland | Rest of France Southern
and the and Baltic | UK Belgium | Europe
Baltic combined Germany
Sample size 152 82 234 225 132 43
Number of alleles 34 27 55 50 29 18
Theta_pi 4.63 5.62 5.00 3.25 2.81 4.60
Expected no. of alleles | 16.81 15.92 19.87 14.34 11.40 11.22
Tajima's D (p value) -0.95 -0.63 -1.16 -1.65 -1.76 -1.71
NS NS NS (0.015) (0.013) (0.023)
Fu’s FS -12.01 -7.01 -25.09 -25.97 -15.88 -4.67
(p value) (0.005) (0.03) (0.0001) | (0.0001) | (0.0001) | (0.046)
Status of sudden accepted | rejected rejected accepted | accepted | accepted
expansion model (p p<0.001 p<0.001
value if rejected)
AMOVA.
Source of variation d.f. Sum of squares Variance Percentage of
components variation
Among populations 4 52.831 0.09364 4,37 ***
Within populations 629 1288.564 2.04859 95.63
Total 633 1341.395 2.14223

(d) AMOVA for B. aeneus haplotype distribution across plant families.

Source of variation d.f. Sum of squares Variance Percentage of
components variation

Among plant families | 6 15.81 0.0115 0.62 NS

Within plant families | 603 1111.55 1.843 99.38

Total 609 1127.37 1.855




