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Abstract: The strong correlation between advancing the performance of Si microelectronics and 

their demand of low power consumption requires new ways of data communication. Photonic 

circuits on Si are already highly developed except for an eligible on-chip laser source integrated 

monolithically. The recent demonstration of an optically pumped waveguide laser made from the 

Si-congruent GeSn alloy, monolithical laser integration has taken a big step forward on the way to 

an all-inclusive nano-photonic platform in CMOS. We present group IV microdisk lasers with 

significant improvements in lasing temperature and lasing threshold compared to the previously 

reported non-undercut Fabry-Perot type lasers. Lasing is observed up to 130 K and with optical 

excitation density threshold of 220 kW/cm2 at 50 K. Additionally the influence of strain relaxation 

on the band structure of undercut resonators is discussed and allows the prove of laser emission for 

a just direct Ge0.915Sn0.085 alloy where  and L valley have the same energies. Moreover, the 

observed cavity modes are identified and modeled. 

Keywords: GeSn, Group IV, Silicon Photonics, Microdisk, IR-Laser, strain engineering 

 

Despite rapid progress made in the field of Silicon Photonics (SiP), the monolithic 

integration of an efficient group IV laser source has remained an outstanding and elusive goal for 

several decades1. Heterogeneous integration based on bonding of III-V materials2–4 as well as 

epitaxial growth on Si wafers5 has been intensively explored as a path forward to generate light on 

a Silicon (Si) chip. However, a photonic integrated circuits (PIC) solution based on group IV 

hetero-epitaxial growth of a suitable complementary metal-oxide-semiconductor (CMOS) 

compatible material carries the potential for drastic cost reduction and higher yield, as has already 
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been exemplified with Germanium (Ge) based photodetectors.6 In recent years, the wavelength 

range supported by group IV integrated photonics devices has been extended to longer wavelengths 

with waveguides, detectors and modulators working in between 2-3 µm7,8. With Si-based lasers at 

hand, high volume applications like chip-to-chip optical interconnects within supercomputers, 

switches or high-performance servers9 as well as consumable chips with sensors for point-of-care 

diagnostics10,11 would greatly benefit from a fully functional CMOS compatible PIC technology.12 

Moreover, it will allow for the integration of lasers on the same Si chip and thus for the embedding 

of photonic architectures into Si microtechnology.13,14  

Besides its technological and socio-economic impact, and in spite of promising steps made 

in the last few years,15 the realization of a group IV integrated light source poses fascinating 

scientific challenges in order to overcome the physical limitation of the fundamental indirect 

bandgap group IV elements Si and Ge to efficiently generate light. Great efforts have been made 

to modify these materials, e.g. by applying tensile strain and/or by forming alloys,16–19 in order to 

obtain a direct band gap. Here, Ge plays an essential role, since the energy difference between the 

conduction band -valley at the center of the Brillouin zone and the L-valleys, the energetically 

lowest conduction bands, is only 140 meV. Currently the most successful route has been to alloy 

Ge with semi-metallic -Tin (Sn). It has been concluded that the indirect-to-direct bandgap 

transition can be obtained in strain-free GeSn alloys (cubic lattice) by incorporating approx. 

9 at.% Sn substitutionally into Ge,19 or at constant Sn content by tuning the compressive strain in 

the crystal.20 This achievement enabled the demonstration of optical gain and lasing in optically 
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pumped, partially strain relaxed Ge0.875Sn0.125 Fabry-Perot cavities at a wavelength of 2.3 µm and 

temperatures up to 90 K.19 

While the Fabry-Perot waveguide cavities19 enabled access to study the modal gain, the 

microdisk cavity arrangements are advantageous to engineer the strain. For instance, Ge microdisks 

with in-plane biaxial tensile strain have been realized using Si3N4 stressor layers. 

Photoluminescence (PL) and electroluminescence have been characterized on these Ge microdisks, 

however, without evidence of stimulated emission.21,22 Recently, GeSn microdisk resonators were 

presented23 showing whispering-gallery-mode (WGM) resonances. The investigated layer stack 

consisted of Ge/Ge0.92Sn0.08/Ge quantum wells pseudomorphically grown on a sacrificial Ge layer. 

Although the energy difference between the - and L-valleys could be reduced by introducing 8 

at.% Sn and, hence, the quantum efficiency increased, the material remained a fundamental indirect 

semiconductor and, consequently, showed no gain.  

In this article, microdisk cavities fabricated from our established GeSn gain material19,20 

are studied regarding their potential for group IV lasers. Following the description of the design 

and processing we discuss the spatial distribution of the residual strain over the microdisks and 

give the resulting energy levels of the electronic bands. The optical characterization yields the laser 

threshold intensities, its temperature dependence and the mode pattern. From a comparison 

between samples with a different Sn concentration and microdisks prepared with different amount 

of strain relaxations, the effect of the energy difference between L- and -valleys on the lasing 

threshold is discussed. 
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RESULTS AND DISCUSSION 

Laser design and processing using selective dry etching. The GeSn epilayers are grown on Ge-

buffered (thickness 2.5 µm) Si(001) substrates (Ge-VS)24 using a reactive gas source epitaxy 

process adapted to an industrial reduced pressure chemical vapor deposition (RP-CVD) reactor 

with showerhead technology, process temperatures in the 350°C to 375°C range, and Ge2H6 and 

SnCl4 as precursor gases.25,26 In contrast to the approach of Chen et al.23 where pseudomorphic 

and, thus, highly compressively strained and indirect GeSn/Ge quantum well structures were used, 

the active layers of the laser cavities presented here are grown with thicknesses far beyond the 

critical thickness for strain relaxation. This – as we showed previously19,20 – allows to cross the 

indirect-to-direct bandgap transition while maintaining a high crystalline quality. GeSn alloys with 

Sn concentrations of 8.5 at.% (sample A) and 12.5 at.% (sample B) with thicknesses of 800 nm 

and 560 nm, respectively, are used for microdisk fabrication (Fig. 1a). X-ray diffraction reciprocal 

space maps (XRD-RSM) reveal residual compressive biaxial strain values of -0.15 % (sample A) 

and -0.40 % (sample B), respectively.  
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Figure 1. Fabrication of GeSn microdisks (a) Schematic representation of the fabrication flow and 

(b) scanning electron micrograph (SEM) of 8 µm diameter Ge0.875Sn0.125 microdisks with the 

underlying Ge-VS undercut by 3.6 µm.  

 

The GeSn mesa with diameters ranging from 8 µm to 140 µm are defined by standard Si processing 

as shown in Fig. 1a: e-beam lithography is followed by reactive ion etching using a Cl2/Ar plasma. 

In a subsequent step, the Ge-VS underneath the GeSn layer is selectively removed by isotropic CF4 

dry etch27 resulting in an free standing rim of the microdisk adjoined to the Ge pedestal. Finally, to 

reduce surface recombination, 10 nm Al2O3 is conformally deposited in order to passivate the 

surface28,29 using an optimized CMOS high-k passivation process by means of atomic layer 

deposition (ALD) at 300°C. A scanning electron micrograph (SEM) showing an array of processed 

GeSn microdisks is presented in Fig. 1b.  
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We expect that undercutting the GeSn disks will improve the optical properties of the cavity 

in two ways: (i) enhancement of the optical confinement by increasing the refractive index contrast 

between the active GeSn and the surrounding medium (air); (ii) a favorable distribution of the 

electrons between L- and the optically active -valley from their enlarged energy separation via 

strain relaxation. To investigate the effect of strain relaxation we compare microdisks with 8 m 

and 20 m diameter. For the smaller ones, the remaining Ge pedestal is narrow (800 nm diameter 

-Fig. 1b) such that the GeSn disks elastically relax and are thus almost strain free, as is verified by 

mechanical simulations (cf. SI Fig. S1a). Instead, mechanical constraints due to anchoring of the 

larger microdisks to larger Ge pedestals (13 m diameter) lead to residual compressive uniaxial 

strain in the undercut region along the azimuthal direction, as demonstrated in the following.  

Strain measurement. The compressive strain of the epitaxial Ge0.875Sn0.125 layer was measured 

using X-ray diffraction spectroscopy (XRD) to be -0.4 %. The local strain distribution is 

investigated by µ-Raman spectroscopy on a 20 m diameter microdisk undercut by 3.5 m. Here 

fore, a WiTec system including a 532 nm laser with a spot size of approx. 500 nm is used. As 

expected, the measured Raman peak shifts towards lower wavenumbers towards the edge of the 

disk, evidencing a strain gradient with a maximum compressive strain in the middle of the structure 

due to anchoring to the Ge pedestal (see SI, Fig. S2).  

We modeled the strain relaxation of the partially undercut microdisks using COMSOL 

multi-physics. The results for the 20 m diameter microdisks with an undercut of 3.5 µm are shown 

in Fig. 2a-c. While both in-plane strain components xx and yy depend on the azimuthal angle and 
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the strain deviates from biaxial strain (i.e., xx≠yy), xx+yy only depends on the radius as expected 

from the cylindrical geometry of the problem. The strain, as intended, decays towards the periphery 

of the disk. The resulting morphing of the band structure at room temperature (RT) is calculated 

using the 8 band k∙p method and is shown in Fig. 2d. The direct bandgap decreases by 20 meV 

while moving from the center of the microdisk to the point with the smallest bandgap close to the 

rim of the microdisk. The energy difference between the L- and - valleys is found to increase 

from 52 meV up to 78 meV. This increased directness (the difference between L- and -valley) 

together with the bandgap narrowing are expected to enhance the PL at the circumference. The 

increased L- to -valley separation enhances the percentage of the electron population residing in 

the -valley. The bandgap narrowing results in an effective field gradient enhancing free carrier 

concentrations towards the periphery of the microdisk where the WGM have the highest intensity. 

Unfortunately, the strain enlarges the valence band splitting in the center of the disk forming an 

energy minimum for holes. Still, the net effect of the bandgap narrowing results in a modest 

enhancement of both electron and hole concentrations towards the periphery of the microdisk, as 

shown in the SI (Fig. S3). The carrier concentrations are calculated by solving the self-consistent 

drift-diffusion equations assuming electron and hole mobilities of 100 cm2/Vs30 and a carrier 

generation rate of 2x1028 cm-3s-1 representing the experimental injection conditions at threshold. 

The magnitude of the carrier concentration enhancement is quite sensitive to the assumed carrier 

lifetime and varies between 37% for long lived carriers (> 100 ns), 10 % for a 1 ns carrier lifetime 

and 2 % for a 100 ps carrier lifetime. Assuming the 2 ns typical carrier lifetime of Ge grown on Si 

as a likely order of magnitude,31 a  max. 10 % carrier enhancement then appears to be realistic. 
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Figure 2. Strain in microdisks with undercut (a), (b) and (c) show color maps of the modeled strain 

components xx, xx+yy and xy across the center plane of the microdisk (20 m diameter, 3.5 m 

undercut), respectively. (d) Calculated energies at RT for the two upper strain split valence bands, 

as well as conduction band -valley and L-valley electrons. The direct bandgap energy is depicted 

as an orange dotted line. The labels “Heavy Hole” and “Light Hole” apply for the compressively 

biaxially strained center region of the microdisk, but not for the microdisk periphery where the 

symmetry of the biaxial strain is broken. (e) RT µ-PL spectra measured at the edge and at the center 

of a 140 µm Ge0.875Sn0.125 microdisk (sample B) with 3.7 m undercut.  

 

A further aspect related to strain relaxation predicted by mechanical simulations is that the 

biaxial compressive strain at the center of the microdisk (xx = -0.37 %, yy = -0.37 %, zz = 

+0.26 %) is converted into a compressive uniaxial strain along the azimuthal direction at the 
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periphery of the disk,  = -0.14 %. The strain component along the radial direction, as well as the 

one along z are very small, i.e., r = zz = +0.038 %. At cryogenic temperatures, at which the 

resulting 11 meV splitting between the two topmost valence bands is sufficient to play a role, this 

strain actually enhances the gain for modes with the E-fields oriented along the compressively 

strained azimuthal direction32 but is unfavorable for the amplification of WGMs with their E-field 

oriented either along the radial direction for transverse electric (TE) modes, or along the z-direction 

for transverse magnetic (TM) modes. 

For the smaller, 8 m diameter undercut microdisks (see SI Fig. S1b) the strain behavior is 

very different because the pedestal is much smaller (800 nm diameter) and, therefore, does not 

constitute a significant mechanical constrain. In fact, the pedestal deforms to accommodate the 

strain relaxation of the GeSn disk, so that the latter is almost fully relaxed ( = 1.9x10-5).  

The experimental verification of the reduced bandgap due to strain relaxation is carried out 

by spatially resolved (ca. 10 µm resolution) RT -PL. The experiment is performed on a larger 

(140 µm diameter) Ge0.875Sn0.125 microdisk with a nearly identical 3.7 µm undercut using a 

continuous wave solid-state laser emitting at 532 nm with a power below 1.5 mW focused onto a 

spot size of approx. 10 µm. An expected red shift is obvious when comparing spectra acquired at 

the center and at the edge of the disk (Fig. 2e). The two dominant µ-PL peaks recorded at the center 

of the disk, at 0.46 eV and 0.49 eV, match well the predictions from band diagram calculations 

(0.4521 eV and 0.4876 eV, corresponding to the transitions between the ī-valley and the heavy 

and light holes, respectively, in the central biaxially strained region of the microdisk). The red shift 

of the peaks at the circumference of the microdisk to 0.44 eV for the dominant, lower energy peak 
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is in agreement with the calculated bandgap narrowing observed at the edge of the disk in Fig. 2d, 

even though the magnitude of the experimentally observed shift slightly exceeds that of the 

calculations, 23 meV versus 19.6 meV, respectively. 

 

Figure 3. Optical characteristics of microdisk lasers with an 8 µm diameter (a) PL spectra of a 

microdisk resonator from sample B for different optical excitation densities at 50 K. (b) Light-in 

light-out curve (LL curve) as well as (c) linewidth narrowing obtained above the lasing threshold.  

Characterization of GeSn microdisk lasers. Microdisk resonators with an 8 µm diameter are 

optically excited using a pulsed (5 ns) Nd:YAG laser with a center wavelength of 1064 nm and a 

repetition rate of 17 kHz. The Full Width at Half Maximum (FWHM) of the excitation spot has 

been determined to be 10 µm, ensuring excitation of the whole disk. The PL spectra of a microdisk 

from sample B are shown in Fig. 3a at 50 K as a function of optical excitation levels. The device 

emits light with photon energies around 0.5 eV (~2.5 µm). For excitation densities above 
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200 kW/cm2 the intensity of the luminescence increases abruptly, indicating a lasing threshold. In 

Fig. 3b the integrated PL intensity as a function of excitation, known as the light-in light-out (LL) 

curve, features a clear S-shape with a lasing threshold at approx. 220 kW/cm2. At high pumping 

levels the laser intensity saturates, which we attribute to heating. Electron-hole pairs are excited in 

the free standing resonators at high energy 1.17 eV exceeding the ~0.5 eV bandgap by 0.67 eV. 

The absence of an efficient heat sink in the suspended structure thus will lead to heating. Above 

the lasing threshold33 the resonance linewidth collapses as expected (Fig. 3c).  
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Figure 4. Microdisk modes: (a) High resolution µ-PL spectrum of an 8 µm diameter microdisk of 

sample B taken at 20 K under an excitation (816 kW/cm2) well above threshold featuring multi-

mode lasing. The peaks are labeled according to their classification in spatial modes. (b) Ez-field 

of the TM0 mode, (c) Ex-field of the TE1 mode and (d) Ex-field of the TE2 mode. 

 

Whispering gallery modes. Fig. 4a shows a spectrum of an 8 m diameter microdisk from sample 

B taken with a spectral resolution of approx. 0.25 meV, excited at 816 kW/cm2 at 20 K. The multi-

mode emission of the laser consists of several peaks with central emission energies at a = 

0.4944 eV, b = 0.5003 eV, c = 0.5042 eV, d = 0.5067 eV, e = 0.5111 eV, and f = 0.5178 eV. 

Optical simulations were performed with Synopsys RSoft in order to determine the group index ng, 

free spectral range (FSR) and overlap m of the lowest TE-polarized and TM-polarized WGMs 

with the active GeSn layer. Results are summarized in Table S1. The corresponding modes are 

depicted in Fig. 4b, c and d. It should be noted that due to the small radii of the microdisks, a 

corrective factor was introduced in the usual formula of the overlap in order to account for the 

cylindrical geometry, c.f. SI.  

It is immediately apparent that the lines in the spectrum of Fig. 4a cannot correspond to the 

comb of a single spatial WGM mode since they are too closely and irregularly spaced for this to be 

the case. However, every third line can be attributed to a given family of WGMs corresponding to 

the same spatial mode, e.g., d - a = 12.3 meV is consistent with the FSR of TE1 modes at the 

center wavelength of 2.477 µm, e - b = 10.8 meV is consistent with the FSR of TM0 modes at 



 

 

 

 

14 

 

the center wavelength of 2.452 µm, and f - c = 13.6 meV is consistent with the FSR of TE2 

modes at the center wavelength of 2.427 µm.  

Quality factors extracted from recorded linewidths, of the order of Q = 200 - 400, are much 

too low to be explained by bending losses and can be related to excess noise, in particular the shot 

to shot fluctuation of the excitation laser intensities. In fact, the calculated bending losses for the 

TM0, TE1 and TE2 WGMs are very low, with the highest bending losses for the TE2 mode on the 

order of 0.3 dB/cm. Thus, round trip losses are dominated by scattering losses and/or absorption 

losses caused by e.g. material defects, free carrier absorption due to the high free carrier densities 

associated to the high lasing thresholds, or intervalence band absorption. The assumption of lasing 

corresponding to WGMs at the strain relaxed periphery of the disk is consistent with PL spectra 

taken on larger microdisks (sample B, 20 m diameter, c.f. SI Fig. S4), for which the undercut (4.3 

m) only accounts for a much smaller percentage of the total microdisk area: In these spectra, a 

spontaneous emission background attributed to emission from the higher compressively strained 

central region of the disk remains significant even after onset of lasing. The laser emission is red 

shifted by ~21 meV relative to the spontaneous emission background, in good agreement with the 

~23 meV shift observed in the RT -PL measurements as well as with  the calculated 20 meV 

strain relaxation induced bandgap narrowing reported above. The small discrepancies can be 

partially accounted for by the discrete nature of the WGM resonances, by the increased temperature 

of the microdisk periphery at high pumping levels, as well as by measurement and calculation 

accuracy limitations.  



 

 

 

 

15 

 

 

Temperature dependent lasing. In Fig. 5a the temperature-dependent PL spectra at an excitation 

density of 820 kW/cm2 for microdisks fabricated from samples A and B are shown together with 

the LL-curves taken at different temperatures (Fig. 5b and c). In accordance with the band structure, 

the wavelength of the lasing emission is blue-shifted to ~ 610 meV (2.0 µm) for sample A because 

of the lower Sn concentration relative to sample B. The maximum temperature at which lasing is 

observed decreases from ~130 K for sample B down to ~90 K for sample A, which is ascribed to 

the smaller energy separation, EL- between the L- and the -valleys, leading to a less favorable 

distribution of the electrons between these valleys at finite temperatures and the high excitation 

densities. Indeed, as can be seen in Fig. 5b and c, sample A shows a more pronounced roll-over of 

the intensity versus laser excitation than sample B, due to a more significant population of the L-

valleys. Notably, even though microdisks from sample A require lower temperatures for lasing, 

they feature significantly lower optical pumping density thresholds (125 kW/cm2 at 50 K) 

compared to sample B (220 kW/cm2 at 50 K) although the film thickness is thicker and the 

generated carriers consequently spread over a larger volume. A possible explanation might be 

reduced losses due to surface roughness because of the reduced mode overlap with the surfaces in 

the thicker film, however, this effect is still under investigation. It might also be related with an 

increased material quality for layers with lower Sn content as well as the dependence of Auger 

recombination on bandgap. 

Compared to our previous work presented in ref. 19, in which non-undercut Fabry-Perot 

lasers made out of GeSn layers of identical thickness and composition as sample B were 
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characterized, here the onset of lasing is at a reduced threshold (130 kW/cm2 compared to 325 

kW/cm2 in ref. 19, both measured at 20 K).  Moreover, the maximum lasing temperature has been 

improved from ~90 K to ~130 K. We ascribe these improvements to a combination of the increased 

modal overlap with the GeSn film (1.1 vs. 0.48 for a non-undercut microdisk of identical diameter 

and GeSn film thickness), to the expected better surface passivation resulting from the Al2O3 ALD 

layer and, most importantly, to the increased L- to -valley energy separation resulting from strain 

relaxation. As visual inspection of a TEM cross-section suggests (see SI Fig. S5), improvement of 

the threshold does not seem to be due to a reduced defect density in the GeSn after undercutting, 

as the defective GeSn region appears to withstand the under-etching process. 
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Figure 5. Power and temperature dependence for different Sn contents (a) Temperature-dependent 

spectra of 8 µm diameter microdisks from sample A and B at 820 kW/cm2. Light-in light-out curves 

at different temperatures for (b) sample B and (c) sample A. 

 

The lasing peak from sample B is ~32 meV below the peak observed in ref. 19, presumably 

due to the strain relaxation occurring here as a result of the undercut. While this is a larger shift 

than the 23 meV PL shift seen here between the center and the edge of the microdisk due to strain 

relaxation, the trend is in the right direction. The discrepancy could be due to slight variations in 

material composition in different samples, carrier density clamping at different levels due to the 

increased overlap and L- to - valley energy separation, as well as to the increased temperature at 

the microdisk circumference resulting from reduced heat sinking.  

CONCLUSIONS 

GeSn microdisk cavities are fabricated and investigated to study the effect of strain and Sn 

concentration on the lasing properties of group IV GeSn gain material. Owing to a nearly complete 

strain relaxation in Ge0.875Sn0.125 and Ge0.915Sn0.085 microdisks with a diameter of 8 µm - achieved 

by selective dry etching of the underlying Ge virtual substrate, an improved performance of the 

laser is obtained. For the devices containing 12.5 at.% Sn the lasing thresholds at 50 K is 

220 kW/cm2 and the maximum lasing temperatures is 130 K. Tuning the Sn concentration results 

in lasers with emission wavelengths between 2 µm and 2.5 µm, however, the maximum lasing 

temperature is lowered when decreasing the Sn concentration. This indicates a correlation between 
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the highest operation temperature and the energy difference between the L- and -valleys. A further 

increase of the latter by incorporation of higher Sn contents is, thus, expected to result in higher 

lasing temperatures, constituting a path to improvement besides the routes of defect engineering 

and applying a proper heat sink.  

Important challenges remain on the path to achieve room temperature electrically pumped 

lasing in an integrated waveguide based planar photonics technology. Reaching the same free 

carrier injection rate as with the optically pumped threshold power of 220 kW/cm2 shown here for 

Ge0.875Sn0.125 microdisks at 50 K would require a current density of 190 kA/cm2 which is almost 

two orders of magnitude higher than state-of-the-art RT III-V lasers. Improvements may arise from 

an optimized carrier confinement away from the surface and the misfit dislocation networks by 

using SiGeSn/GeSn double heterostructures (DHS)34,35 along with an optimized GeSn strain 

relaxed buffer technology. Confining the dislocation network at a first thin-film interface remote 

from the DHS ought to be a primary objective on the path towards more efficient and room 

temperature lasing. The realization of such an all group IV semiconductor laser diode would finally 

allow Si photonics to reach its full disruptive potential in application fields such as short range 

optical interconnects and sensing.  
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