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ABSTRACT

We perform SPH simulations to study precession and changes in alignment between the cir-

cumprimary disc and the binary orbit in misaligned binary systems. We find that the precession

process can be described by the rigid-disc approximation, where the disc is considered as a

rigid body interacting with the binary companion only gravitationally. Precession also causes

change in alignment between the rotational axis of the disc and the spin axis of the primary star.

This type of alignment is of great important for explaining the origin of spin-orbit misaligned

planetary systems. However, we find that the rigid-disc approximation fails to describe changes

in alignment between the disc and the binary orbit. This is because the alignment process is a

consequence of interactions that involve the fluidity of the disc, such as the tidal interaction

and the encounter interaction. Furthermore, simulation results show that there are not only

alignment processes, which bring the components towards alignment, but also anti-alignment

processes, which tend to misalign the components. The alignment process dominates in sys-

tems with misalignment angle near 90◦, while the anti-alignment process dominates in systems

with the misalignment angle near 0◦ or 180◦. This means that highly misaligned systems will

become more aligned but slightly misaligned systems will become more misaligned.

Key words: accretion, accretion discs – binaries: general – protoplanetary discs – planetary

systems.

1 IN T RO D U C T I O N

Young stars are often observed to have discs of gas and dust which

are the remnants of the star formation process and the sites of planet

formation.

Many planetary systems are observed to be ‘misaligned’, that is

that the rotational axis of the star and the orbital axis of the planetary

system are different (Winn et al. 2009a,b, 2010; Batygin 2012). This

may be due to disc forming misaligned (e.g. Tremaine 1991; Bate,

Lodato & Pringle 2010; Walch et al. 2010; Fielding et al. 2015), or

due to close encounters (e.g. Thies et al. 2011; Rosotti et al. 2014),

or due to migration (e.g. Fabrycky & Tremaine 2007; Nagasawa, Ida

& Bessho 2008), or may be due to magnetic torques (Lai, Foucart

& Lin 2011).

Many (perhaps the vast majority) of young stars are in multi-

ple systems (e.g. Mathieu 1994; Patience et al. 2002; King et al.

2012; Duchêne & Kraus 2013). A number of these young bina-

ries have been found with misaligned discs (e.g. Monin, Ménard

& Peretto 2006, and references therein). In the Taurus-Auriga and

⋆ E-mail: krisada.r@psu.ac.th (KR); s.goodwin@sheffield.ac.uk (SPG)

Scorpius-Ophiuchus star-forming regions, mildly misaligned discs

with misalignment angles �20◦ are found in wide T Tauri bina-

ries with separations between 200 and 1000 au (Jensen et al. 2004).

As an example from some resolved systems, the protobinary sys-

tem HH 24 MMS with separation ∼360 au has misaligned discs

around the components with a relatively large difference in posi-

tion angles (∼45◦; Kang et al. 2008). The discs surrounding the

components in Haro 6-10, a T Tauri binary system with separation

∼160 au, are seen to be strongly misaligned with each other by ∼70◦

(Roccatagliata et al. 2011). Indeed, the discs surrounding the

archetypal T Tauri triple (separation between T Tau N and T Tau

Sab �100 au) are also found to be relatively misaligned to each

other (Skemer et al. 2008; Ratzka et al. 2009). From these observa-

tions, the components in misaligned systems seem to have mutual

separations �100 au.

Misaligned disc-binary systems may form primordially in tur-

bulent environments (in the same way as misaligned discs above,

e.g. Bate, Bonnell & Bromm 2003; Goodwin, Whitworth & Ward-

Thompson 2004a,b; Walch et al. 2010; Bate, Lodato & Pringle 2010;

Lomax et al. 2014; Fielding et al. 2015). Or systems may become

misaligned in dense environments where encounters between mul-
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tiple systems can destroy multiple systems (e.g. Kroupa 1995) or

alter the separations, eccentricities and inclinations of companions

(e.g. Kroupa 1995; Parker & Goodwin 2009). In particular, Parker

& Goodwin (2009) find that 10–20 per cent of binaries in an Orion

nebula-like cluster can be perturbed to inclination angles of >40◦

(the Kozai angle) by coplanar encounters.1

In this paper we examine how discs in misaligned binary systems

evolve. In particular we investigate how the relative orientations

of the disc, primary star and secondary star change as periodic

star–disc interactions result in an exchange between the rotational

angular momentum of the disc and the orbital angular momentum

of the binary (e.g. Papaloizou & Terquem 1995; Bate et al. 2000).

In Section 2 we introduce the geometry and fundamentals of

the problem. In Section 3 we describe the initial conditions of the

simulations. The results are then presented in Section 4. We analyse

and discuss some of the results in Section 5. Finally, the conclusion

is given in Section 6.

2 PR E C E S S I O N A N D A L I G N M E N T

IN M ISA LIGNED SYSTEMS

In this section we present an analytic description of the precession

and changes in alignment of the disc and companion in a misaligned

binary system. In summary we have a system with a primary at the

centre and orbital planes associated with the disc and the companion.

The relative positions of these planes can be described by the angles

between their respective angular momentum vectors. When the disc

and companion are misaligned, a torque is exerted on the disc by

the companion (and vice versa) and the disc changes its alignment

and also precesses.

2.1 Coordinate systems

At any one moment in time there are three coordinate systems that

we are interested in.

Primary spin. The first system is defined by the rotation of

the primary star with an angular momentum vector Jp which we

assume is constant.2 This establishes an unchanging primary coor-

dinate system (x, y, z) in which the primary is at (0,0,0) and Jp is

in the positive z-direction.

Companion orbit. The second system (x′, y′, z′) is defined by

the orbit of the companion star, also centred on the primary. The

companion has an instantaneous orbital angular momentum vector

Jb in the positive z′-direction. The x′- and y′-axes are chosen to be

aligned with the semiminor and semimajor axes of the companion’s

orbit, respectively. At any time the position of the companion can

be described in polar coordinates (r, θ ) on the (x′, y′) plane.

1 Note that there should be little or no effect from the Lidov–Kozai mech-

anism on the disc in a misaligned binary system. The Lidov–Kozai time-

scale is given by T ∼ [M
1/2
p /Ms][a

3/R3/2](1 − e2)3/2. For system with a

primary mass Mp = 0.5 M⊙, secondary mass Ms = 0.1 M⊙, semimajor

axis a = 300 au, disc radius R = 50 au, and eccentricity e = 0, the time-scale

is T ∼ 0.5 Myr. This time-scale is much longer than that our disc uses in

adjusting itself into a quasi-steady state, which is less than 1 kyr. There-

fore any feature resulting from the mechanism in the disc would be erased.

However, planets formed in the misaligned would be subject to changes and

perturbations from the Lidov–Kozai mechanism (see Davies et al. 2014,

section 7).
2 The primary does accrete material from the disc, but this material is low

angular momentum (otherwise it could not accrete), and has a negligible

mass compared to the mass of the primary so this is a reasonable assumption.

Figure 1. Illustration of a misaligned binary system. The system consists of

(1) a primary star at the origin, (2) a circumprimary disc and (3) a secondary

star orbiting at distance r from the primary. The dashed red circle and the

solid blue circle represent the rotational plane of the disc and the orbital

plane of the binary respectively. The intersection between the two planes

creates a line of nodes which is used as the x′′-axis of the coordinate system

(x′′, y′′, z′′). See text for the definitions of coordinates and variables.

More formally, the basis vectors for the companion coordinates

(x′, y′, z′) are defined by ẑ′ = Jb/ |Jb|, x̂′ = ẑ × ẑ′/| ẑ × ẑ′| and

ŷ′ = ẑ′ × x̂′. Note that we fix the (x′, y′, z′) coordinate system so

that it does not move. Actually, the exchange of angular momentum

between the disc and companion will alter the companion’s orbit.

However, for the parameters we use the total angular momentum

is dominated by the orbital angular momentum of the companion

(|Jp| ≪ |Jd| ≪ |Jb|) and so the companion’s orbit does not change

very much.

Disc rotation. The third system (x′′, y′′, z′′) is defined by the

rotation of the disc (which is determined by an averaging process

we describe later), and is again centred on the primary. The disc

angular momentum vector Jd defines the positive z′′ direction, and

the line of nodes (i.e. where the orbital plane of the binary crosses

the rotational plane of the disc) defines x′′. Again, more formally, the

basis vectors for (x′′, y′′, z′′) are ẑ′′ = Jd/ |Jd|, x̂′′ = ẑ′′ × ẑ′/| ẑ′′ ×
ẑ′| and ŷ′′ = ẑ′′ × x̂′′. Note that the orbits of the disc and binary can

be prograde ( Jd · Jb > 0) or retrograde ( Jd · Jb < 0).

The coordinate systems and angles are illustrated in Fig. 1. The

primary is at the centre of the figure and the centre of the coordinate

systems. The companion’s orbital plane is shown by the blue circle

with the companion at a position (r, θ ) (towards the top right). The

disc plane is shown by the dashed red circle. In the disc plane is a

mass element dM at a distance R from the primary, the importance

of which we will describe later.

We then have three angles to consider:

(1) The star–disc misalignment angle, ψ , between Jp and Jd.

(2) The companion-disc misalignment angle, δ, between Jd and

Jb.

(3) The companion-disc precession angle, φ, which describes the

precession of Jd about Jb.

The initial values of ψ , δ and φ are denoted by ψ◦, δ◦ and φ◦
respectively. The angles ψ , δ and φ are defined as follows.

MNRAS 460, 3505–3518 (2016)
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Figure 2. The star–disc misalignment angle ψ as a function of the preces-

sion angle φ given in equation (4). Orange, red and blue lines are of systems

with initial misalignment angle δ◦ = 22.◦5, 45◦ and 67.◦5 respectively. The

disc in the 67.◦5-misaligned system can be considered as temporarily retro-

grade when ψ > 90◦.

(i) The star–disc misalignment angle ψ , which is the angle be-

tween Jd and Jp, is

ψ = cos−1
(

ẑ′′ · ẑ
)

. (1)

(ii) The disc-binary misalignment angle δ, which is the angle

between Jd and Jb, is

δ = cos−1
(

ẑ′′ · ẑ′) . (2)

The value of δ can also be used to determine whether the misaligned

system is prograde (0◦ ≤ δ < 90◦) or retrograde (90◦ < δ ≤ 180◦).

There are two possible aligned systems – when δ = 0◦, and when

δ = 180◦.

(iii) The precession angle φ, that describes the precession of Jd

about Jb or vice versa, is given by

φ = − tan−1

[

x̂′′ · ŷ′

x̂′′ · x̂′

]

. (3)

The precession angle is positive in a prograde system and negative

in a retrograde system.

It is worth noting that the angle ψ may also be written in terms of

φ and δ. In a simple case where the change in the angle δ is small,

Jd will precess almost circularly about Jb. The chord that subtends

the angle ψ (with a unit length of 2 sin (ψ/2)) is approximately

equal to that which subtends the angle φ (with a unit length of

2 sin δ|sin (φ/2)|). We then have

ψ ≃ 2 sin−1

[

sin δ◦

∣

∣

∣

∣

sin

(

φ

2

)
∣

∣

∣

∣

]

, (4)

where δ◦ is the initial misalignment angle between the disc and the

binary.

As the disc precesses (φ changes from zero through 360◦), the

star–disc misalignment angle (ψ) changes. Fig. 2 shows the change

in the star–disc misalignment angle ψ with the precession angle

φ for (initial) disc-binary misalignment angles δ◦ = 22.◦5, 45◦ and

67.◦5. The value of ψ oscillates between 0◦ and 2δ◦. For example,

when δ◦ = 22.◦5, ψ varies between 0◦ and 45◦; and when δ◦ = 67.◦5,

ψ varies between 0◦ and 135◦. In a system with δ◦ > 45◦, the

rotation of the disc could thus be temporarily retrograde (ψ > 90◦)

with respect to the spin axis of the primary star.

2.2 Rigid-disc approximation

In this subsection we outline the rigid-disc approximation (e.g.

Korycansky & Papaloizou 1995). In misaligned systems, the disc

tilts as a consequence of the net torque T ′′ = (Tx′′ , Ty′′ , Tz′′ ) exerted

on the disc. The rates of change of the angles φ and δ are related to

the torque and the angular momentum of the disc. For precession,

the precession rate φ̇ is associated with the component torque Tx′′

exerted on the disc along the x′′-axis. An infinitesimal change in Jd

along the x′′-axis due to Tx′′ can be written as dJd,x′′ = Jd sin δdφ

(see Fig. 1). Since dJd,x′′/dt = Tx′′ , the precession rate can then be

written as

φ̇ =
Tx′′

Jd

csc δ. (5)

In similar manner, the (disc-binary) alignment rate δ̇, which is as-

sociated with Ty′′ exerted along the y′′-axis, can be written as

δ̇ =
Ty′′

Jd

. (6)

Here we show how the torque T ′′ on the disc from the companion

is determined. We simplify the problem by considering the disc

as a rigid body. The bulk motion of the disc will depend only

on the gravitational torque exerted on the disc as a single object.

We call this kind of torque the rigid-body torque to distinguish it

from the tidal torque, which involves the fluidity of the disc. This

approximation clearly ignores the tidal torque and other kinds of

torque such as the encounter torque (e.g. Korycansky & Papaloizou

1995, for coplanar systems).

The rigid-body torque on the rigid disc is

T =
∫

disc

R × f dM, (7)

where f is the force per unit mass (acceleration), due to the sec-

ondary star, exerted on a mass element dM at radius R on the disc

(see Fig. 1). For a flat disc with surface density � = �(R), the mass

element is given by dM = �R dϕ dR, where ϕ is the azimuthal angle

of the disc.

From Fig. 1, the force per unit mass exerted on the mass element

dM can be written as

f = GMs

r − R

|r − R|3
, (8)

where G is the gravitational constant and r is the position vector of

the secondary star of mass Ms. The magnitude of r is

r =
a(1 − e2)

1 − e sin θ
, (9)

where a and e are the orbital semimajor axis and the orbital ec-

centricity of the companion. The term 1/ |r − R|3 in equation (8)

can be written as 1/r3(1 + ε)3/2, where ε =
[

R2 − 2(R · r)
]

/r2.

For a disc with radius R ≪ r, the alternative form of the term can

be expanded by Taylor series. To the first-order approximation, one

can find that (after substituting and rearranging)

1

|r − R|3
≃

1

r3
−

3

2

R2

r5
+ 3

R · r

r5
. (10)

The integrand of equation (7) thus becomes

R × f ≃
GMs

r3

[

1 −
3

2

R2

r2
+ 3

R · r

r2

]

(R × r) . (11)

In order to integrate equation (7) to obtain the component torques

for equation (5) and (6), it is convenient to use the disc coordinates

to describe the position vectors R and r .

MNRAS 460, 3505–3518 (2016)
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In terms of the coordinates (x′′, y′′, z′′), the position vector R of

the mass element dM is

R = R(cos ϕ, sin ϕ, 0) (12)

and the position vector r of the secondary star is

r = r(cos(θ + φ), sin(θ + φ) cos δ, sin(θ + φ) sin δ). (13)

One can find that the products of the vectors R and r are

R · r = Rr [cos(θ + φ) cos ϕ + sin(θ + φ) cos δ sin ϕ] (14)

and

R × r = Rr
(

sin(θ + φ) sin δ sin ϕ,

− sin(θ + φ) sin δ cos ϕ,

sin(θ + φ) cos δ cos ϕ − cos(θ + φ) sin ϕ
)

. (15)

By substituting equation (14) and (15) into equation (11), we have

R × f required to solve equation (7). Integrating equation (7) over

the entire disc, i.e. ϕ from 0 to 2π and R from 0 to Rd, gives us a net

instantaneous torque exerted on the rigid disc. Using the fact that

only terms with ‘sin 2ϕ’ or ‘cos 2ϕ’ can survive from the integration

over the given range of ϕ, we finally have

T ′′ ≃
3π

2

GMs

r3

(
∫ Rd

0

�R3dR

)

(

2 sin2(θ + φ) sin δ cos δ, − sin[2(θ + φ)] sin δ, 0
)

, (16)

where T ′′ = (Tx′′ , Ty′′ , Tz′′ ). In the disc coordinates, the component

Tz′′ is zero because gravitational forces acting along the disc mid-

plane cancel out by the symmetry of the rigid disc.

The integral term in equation (16) can be calculated by adopting

a power-law surface density of index p, i.e. � = �◦(R/R◦)−p. One

finds that
∫ Rd

0

�R3dR =
�◦R

p
◦ R

4−p

d

4 − p
. (17)

2.3 Precession and alignment rates

The angular momentum Jd required for equation (5) and (6) for a

flat disc can be obtained from considering an annulus of radius R,

width dR and tangential velocity v = (GMp/R)1/2, where Mp is the

mass of the primary star. The angular momentum of an annulus is

dJd ≃ RvdM = 2π�(GMp)1/2R3/2dR. Integrating from R = 0 to Rd

gives

Jd ≃
4π�◦R

p
◦

(

GMp

)1/2

5 − 2p
R

5/2−p

d . (18)

By substituting this Jd and the associated components of torque

from equation (16) into equation (5) and (6), we find that the in-

stantaneous precession rate is

φ̇ ≃ 2η
R

3/2
d

r3
sin2(θ + φ) cos δ (19)

and the instantaneous alignment rate is

δ̇ ≃ −η
R

3/2
d

r3
sin[2(θ + φ)] sin δ, (20)

where

η =
3

8

(

5 − 2p

4 − p

) (

GM2
s

Mp

)1/2

. (21)

In practice, it is more convenient to use the time-averaged forms

of equations (19) and (20) than the instantaneous forms. The time-

averaged precession rate can be found from averaging equation (19)

over one orbital period P, i.e.

˙〈φ〉 =
1

P

∫ P

0

φ̇ dt =
1

P

∫ 2π

0

φ̇
dθ

θ̇
. (22)

By substituting θ̇ = 2πa2
√

1 − e2/r2P and assuming that the

changes in other variables are negligible compared to θ , we have

˙〈φ〉 ≃ η

[

Rd

a2(1 − e2)

]3/2

cos δ. (23)

This precession rate is essentially the same as that obtained in, for

example, Bate et al. (2000).

Similarly, one can find that the time-averaged alignment rate can

be written as

˙〈δ〉 ≃ −
˙〈φ〉 tan δ

2π

∫ 2π

0

sin [2 (θ + φ)] (1 − e sin θ ) dθ. (24)

However, if we neglect the change in φ as we do in finding ˙〈φ〉, the

integral is zero (i.e. no net change in the alignment of the rigid disc).

However, the angle φ does change over an orbital period, and thus

the net change is non-zero. We will discuss this later in Section 5.2.

3 SI MULATI ON SET-UP

In this work, we perform smooth particle hydrodynamic (SPH;

Gingold & Monaghan 1977; Lucy 1977; Monaghan 1992) simu-

lations to investigate the bulk evolution of circumprimary discs in

misaligned systems. Simulations are performed by using the high-

performance SPH code SEREN (Hubber et al. 2011). The code use

the method introduced by Stamatellos et al. (2007) to treat radiative

heating and cooling in the disc.

The procedures begins with creating a star–disc system whose

main star is represented by a sink particle (see e.g. Bate, Bonnell

& Price 1995) of primary mass Mp = 0.5 M⊙ and accretion ra-

dius 0.5 au. The disc has initial mass Md = 0.07 M⊙, inner radius

Rin = 0.5 au, and outer radius Rout = 40 au. This system is evolved

for 1 kyr to ensure that the disc is in a quasi-steady state.

We then create a misaligned binary system by adding a sink

particle to represent the secondary star of mass Ms = 0.1 M⊙ and

accretion radius 0.5 au with various semimajor axes, eccentricities

and initial inclinations.

We assume that this represents a physical situation in which a

binary system with a wide companion has formed a circumprimary

disc in isolation from the (distant) companion. An encounter then

perturbs the orbit of the companion causing it to begin interacting

with the disc.

3.1 Isolated star–disc systems

Here we present the initial conditions of the primary-disc system that

is relaxed before adding the companion. The method of constructing

an SPH disc can be found in Appendix A.

3.1.1 Density and temperature profiles

The initial disc has a power-law function for the initial surface

density

�(R) = �1

(

R

1 au

)−p

, (25)
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where p = 0.5 is the power-law index and �1 is the surface density

at radius R = 1 au.

The value of �1 can be calculated by supposing that the disc

is flat, so that the mass of an annular strip of radius R can be

written as dM = 2π�R dR. Comparing the integrated mass of

the disc in radius 0.5 ≤ R ≤ 40 au with Md = 0.07 M⊙ gives

us �1 = 6.615 × 10−5 M⊙ au−2 (∼588 g cm−2) for our disc. We

note that the initial values of p and �1 are not crucial, since particles

in the disc will quickly be redistributed according to the (artificial

and real) viscosity and temperature structure of the disc (see the

results below).

For the temperature structure of the disc, we use a modified

power-law function

T (R) = T1

(

R

1 au

)−q

+ T∞, (26)

where q is the power-law index, T1 the temperature at R = 1 au, and

T∞ = 10 K the background radiation temperature.

Unlike density, the underlying minimum temperature is imposed

on particles in the disc depending on their current distance from the

primary. That is, particles at radius R will have temperature at least

T(R) (it may be higher due to shocking but is not allowed to fall

below this value).

In this work, we test the stability of discs with temperature in-

dices q = 0.5 (flared disc), 0.75 (flat disc) and 1; and temperatures

T1 = 300 K, 600 K and 1200 K.

For the main set of simulations, systems have a disc with index

q = 0.75, temperature T1 = 300 K (see Section 4.1), and resolution

after relaxing (see below) slightly less than 300 k particles.

3.1.2 Viscosity and resolution

The artificial viscosity parameters αSPH and βSPH have a major

role in controlling the artificial viscosity in SPH simulations (e.g.

Monaghan 1997; Price 2008). Our simulations use the standard vis-

cosity prescription with αSPH = 0.1 and βSPH = 0.2. We do not use

any additions to viscosity (e.g. the Balsara viscosity switch (Balsara

1995)).

Most simulations are performed with an initial resolution of

3 × 105 particles. A number of simulations with lower resolu-

tion (1.5 × 105 particles) and higher resolution (6 × 105 particles)

are also performed to investigate convergence.

Simulations are terminated when the disc is represented by less

than 104 particles as at this point we cannot resolve any moderately

realistic disc structure and cannot believe the evolution of the disc

at all.

3.2 Constructing misaligned binary systems

After allowing our disc to relax for 1 kyr we add a (misaligned) com-

panion star of mass Ms = 0.1 M⊙. The companion star is launched

at the apastron radius rmax = 300 au from the primary. The orbital

configurations of the binary are selected from the combinations of

(1) initial misalignment angles δ◦ = 22.◦5 − 157.◦5, in steps of 22.◦5,

and (2) initial eccentricities e◦ = 0–0.6, in steps of 0.2. Note that

systems with δ◦ > 90◦ are retrograde.

3.3 Determining the rotational axis of the disc

In misaligned systems, we expect to see precession and a change in

the alignment between the disc and the primary and the disc and the

companion (as measured by their angular momentum vectors Jd,

Jb and Jp). These are described in terms of the angles φ, δ and ψ .

In order to calculate these angles, we must first define the basis

vectors of the coordinates from Jd and Jb. However, the vector Jd

cannot be uniquely determined in the simulation, because the extent

of the disc is not well-defined after being perturbed by the secondary

star and distortions may appear in the disc. Fortunately, we only

require the direction of Jd (not its magnitude) and we calculate

this from the average angular momentum vector of SPH particles

within 40 au from the primary. We find that this range contains both

a sufficient number of particles to avoid noise when the resolution

is low, and is close enough to not include particles belonging to

any secondary disc that may form in highly eccentric systems (the

closest separation between the stars is 75 au for companions with

e = 0.6).

4 R ESULTS

4.1 Stability of isolated star–disc systems

Before proceeding to examine the evolution of circumprimary discs

in misaligned binary systems, we will first investigate the evolution

of a circumprimary disc in isolation. In this subsection, we justify

our choice of discs with the parameters q = 0.75 and T1 = 300 K

as being long-lived and stable in isolation and being reasonable

representations of real discs.

In the first few hundred years, the disc rapidly adjusts itself into

a quasi-steady state, where quantities such as the density at a given

position change gradually with time. With radiative heating and

cooling treated by the Stamatellos et al. (2007) method, the vertical

structure of the disc is characterized by its temperature structure, as

shown in Fig. 3. This figure shows cross-sectional density plots for

discs with different temperatures (300 K, 600 K and 1200 K from

the top row to the bottom row), and temperature indices (q = 0.5,

0.75 and 1 from the left column to the right column). Discs with

both lower-q and higher-T1 (towards the bottom left) are ‘fluffier’

as they have higher temperatures at a given radius. We also find that

the hotter the disc, the higher the accretion rate on to the central

star as pressures throughout the disc pushing particles into the inner

regions and the (empty) sink.

We typically relax discs for 1 kyr before adding a companion star.

However, to test the long-term stability we have evolved the discs

further until the resolution is less than 50 k particles. We wish to find

Figure 3. Cross-sectional density plots of star–disc systems after evolved

for 1 kyr. Each system has different temperature structures, parametrized by

the index q and the temperature T1. Panels in the same column have the

same index q: from left to right, q = 0.5, 0.75, and 1. Panels in the same

row have the same temperature T1: from top to bottom, T1 = 300 K, 600 K,

and 1200 K.
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Figure 4. Changes in Toomre parameter Q (top panels) and cooling time

parameter βcool (bottom panels) of discs with various temperature structures

shown in Fig. 3. Lines in each panel are of snapshots at times from t = 1 kyr

(lightest grey) in steps of 50 kyr (darker grey).

disc parameters that produce long-lived and gravitationally stable

discs to use as our initial discs. The reason for this is that we do

not want secular processes to drive disc evolution, rather we wish

to ensure that the changes to the disc are driven by the companion.

The gravitational stability of the disc at radius R from the cen-

tral star can be expressed in terms of the Toomre parameter Q(R)

(Toomre 1964) and the cooling time parameter βcool(R) (Gammie

2001). The disc is considered to be gravitationally unstable if Q(R)

� 1 and βcool(R) � 3. If only one of the criteria is met, however,

the disc is still gravitationally stable.

The values of Q(R) and βcool(R) of the discs in Fig. 3 from time

t = 1 kyr (lightest grey) in steps of 50 kyr (darker grey) until the

resolution is less than 50 k particles are shown in Fig. 4. We see

Figure 5. Changes in density profiles (surface density, �, against distance,

R) of discs in the same set as Fig. 4, with the same line colouring.

that all discs at t > 1 kyr have Q(R) and/or βcool(R) well above the

instability criteria. Therefore all discs are gravitationally stable and

unlikely to fragment spontaneously.

We also require that our discs be long-lived as well as gravita-

tionally stable. Fig. 5 shows the density profiles of the discs from

Fig. 3 in steps of 50 kyr, as in Fig. 4. The more lines present in

Fig. 5 the longer the disc lives (more 50 kyr snapshots present) and

the closer together the lines are, the less the disc has changed its

density profile with time. We see that colder discs (higher-q and

lower-T1 towards the top right) live longer and change less than

hotter discs. This is unsurprising in our simulations as the higher

pressure in the hotter discs drives accretion on to the primary and

then the disc must readjust.

In terms of both stability and lifetime, the coldest disc with q = 1

and T1 = 300 K (top right panel in all plots so far) would be the best

choice for the simulation. However, observation and theory suggest

the value of the power-law index q ∼ 0.43–0.75 and the temperature

T1 ∼ 100–400 K (e.g. Pringle 1981; Chiang & Goldreich 1997;

Andrews & Williams 2007). Therefore we use discs with q = 0.75

and T1 = 300 K (top middle panel in all plots so far) as a compromise

between numerical/physical stability and longevity and as a match

to real discs.

4.2 The evolution of discs in binary systems

In this subsection, we present the results of our investigation of discs

in misaligned binary systems. We label simulations with a name of

the form e.g. ‘pe6d450’ which contains the information on the

companion orbit.

(1) The first character is the orbital direction, p for prograde and

r for retrograde.

(2) The initial eccentricity e◦, e.g. e2 for e◦ = 0.2.

(3) The initial misalignment angle δ◦, e.g. d675 for δ◦ = 67.◦5.

So in our example above of ‘pe6d450’ this is a prograde com-

panion orbit with an eccentricity of 0.6 and an initial misalign-

ment angle of 45◦. Initial conditions and labels of the main set of
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Table 1. Orbital configurations and labels for the main set of

simulations. δ◦ is the initial companion misalignment angle,

e◦ is the initial companion eccentricity, and ‘Label’ is the

shorthand used to refer to the simulations in the text and

figures.

δ◦ e◦ Label

22.◦5 0 pe0d225

0 pe0d450

0.2 pe2d450
45◦

0.4 pe4d450

0.6 pe6d450

67.◦5 0 pe0d675

90◦ 0 pe0d900

112.◦5 0 re0d675

0 re0d450
135◦

0.4 re4d450

157.◦5 0 re0d225

simulations are listed in Table 1. Later we will also introduce the

initial number of particles in the disc, but for now all simulations

have 300 k particles.

Note that the results throughout depend on resolution, and in

particular on the relationship between the SPH artificial viscosity

and the effective disc viscosity that this gives which is highly non-

trivial (see e.g. Lodato & Price 2010; Rosotti et al. 2014). Therefore

care should be taken in comparing only the general trends of our

results with analytic predictions: exact numbers/time-scales etc. will

almost certainly vary depending on the resolution, exact form of the

artificial viscosity etc. and should be treated with caution.

4.2.1 Aligned systems

Before discussing misaligned systems it is worth very quickly con-

sidering aligned (coplanar) systems. We find that tidal perturbations

from the companion have a negligible effect on the stability of the

disc, and the disc remains stable through to the end of the simula-

tion. The outward transfer of angular momentum in the disc makes

the disc expand and fill its Roche lobe on the plane, resulting in

mass transfer from the disc to the companion star. The transferred

mass forms a secondary disc around the companion which rotates

in the same direction as that of the primary (counterclockwise).

In aligned systems with highly elliptical orbits (e◦ = 0.6), the

tidal effects of the companion are strong enough to generate a spiral

density waves in the disc during the pericentric passage. The mass

accretion rate of the primary star, however, changes only slightly as

a response to the passage of the companion, even in the system with

e◦ = 0.6. Therefore the tidal effects of our binary companions are

not very significantly affecting the stability or longevity of our discs.

This allows us to examine misaligned discs with some confidence

that effects we see are largely down to their misalignment.

4.2.2 Precession in misaligned systems

The angular momentum vector of the disc will precess about the

angular momentum vector of the companion, and the angle at any

time is φ.

The change in the precession angle φ with time of systems in

the main set of simulations are shown in Fig. 6. On the y-axis

is the precession angle φ in multiples of 360◦ evolving with time

Figure 6. Changes in the precession angle (φ) against time (t) for systems

with different initial misalignment angles and eccentricities (for labels see

text).

(on the x-axis) for less than 800 kyr. A positive change in φ is pro-

grade precession, and negative change is retrograde precession. For

example, discs that precess φ/360◦ = −4 have completed four ret-

rograde cycles. Each curve ends at the time when the disc resolution

is less than 10 k particles (i.e. we can no longer believe our results

at all).

The first (unsurprising) thing to note in Fig. 6 is that pro-

grade misaligned companions produce prograde precession (pos-

itive φ), and retrograde companions produce retrograde precession

(negative φ).

The next thing to note is that the speed of precession (or how fast

the angle φ changes) depends on the initial misalignment angle δ◦
and eccentricity e◦ of the companion.

For systems with the same eccentricity, those with δ◦ closer to

either 0◦ or 180◦ (coplanar) precess faster. For example (see Fig. 6),

in the prograde system, pe0d225 (orange line above φ = 0) pre-

cesses faster than pe0d450 (light red line above φ = 0) and

pe0d675 (light blue line above φ = 0). Similarly, in retrograde

system, re0d225 (orange line below φ = 0) precesses faster than

re0d450 (light red line below φ = 0) and re0d675 (light blue

line below φ = 0).

For systems with the same misalignment angle, higher eccentric

systems, with either prograde or retrograde orbit, precess faster.

In particular compare those prograde systems with δ◦ = 45◦ (four

red lines above φ = 0 in Fig. 6), pe6d450 precesses faster than

pe4d450, pe2d450 and pe0d450 (darker line is steeper).

This behaviour is consistent with that predicted by equation equa-

tion (23) where the time-averaged precession rate goes as cos δ and

(1 − e2)−3/2. We investigate this later in Section 5.1.

4.2.3 Disc-companion misalignment angle

As well as precessing, the disc-companion misalignment angle δ

changes from its initial value of δ◦, as a consequence of angular

momentum transfers between the objects. The change in δ with

time for various values of δ◦ (the value of δ at t = 0) is shown in
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Figure 7. Changes in the misalignment angle δ in prograde and retrograde

misaligned systems with time (t). Cross symbols are marked on each curve,

at times when φ is an integer multiple of 90◦, to indicate how fast the

precession is compared to the change in δ or vice versa. For the meaning of

the labels see text.

Fig. 7. This includes a number of systems with low values of δ◦
(15◦, 10◦, 5◦ and 0◦ towards the bottom of the plot not illustrated

in Fig. 6). Note that in all cases, the rate of change in alignment is

much lower than the rate of precession.

In Fig. 7 we can see that systems with δ◦ ≥ 45◦ tend to adjust

themselves towards the 0◦-alignment, with the alignment rate (δ̇)

depending on the misalignment angle δ and the eccentricity e. In the

four systems with δ◦ = 45◦ towards the bottom of Fig. 7, the fastest

realignment is for the e = 0.6 system (pe6d450 towards the left),

and the slowest for the e = 0 system (pe0d450 towards the right).

Moving up Fig. 7 we see that systems with δ◦ close to 90◦ (e.g.

pe0d675, pe0d900 and re0d675) attempt to align themselves

more rapidly. The retrograde systemre0d675 can even bring itself

to be prograde with δ changing from 112.◦5◦ to ∼70◦. However, this

trend becomes reverse in systems with δ◦ close to 0◦ or 180◦, e.g.

pe0d050-225, re0d225 and re0d450: the systems attempt

to misalign themselves instead. This behaviour is crucial as it can

prevent misaligned systems from being aligned. Misaligned systems

may not be able to align themselves within the disc lifetime. The

behaviour is due to the presence of two torques, which we will

return to in the next subsection.

In addition, another characteristic of change in alignment is the

nodding motion between the disc midplane and the orbital plane.

The motion makes the value of δ oscillate two times per binary

orbit, as suggested by the term sin [2(θ + φ)] in equation (20). The

amplitude of the oscillation is only a fraction of degree, just enough

to make the curves in Fig. 7 look slightly irregular.

4.2.4 Changes in the companion orbit

As well as the companion changing the orientation of the disc, the

disc causes changes in the semimajor axis (a), the eccentricity (e),

and the orientation of the companion. The orientation of the binary

is given by the orbital angular momentum Jb which is also related

to a and e via Jb ∝
√

a(1 − e2), where Jb is the magnitude of Jb.

Changes in a and e of all the systems in Fig. 7 are shown in Fig. 8.

The top panel of Fig. 8 shows the evolution of the companion’s

semimajor axis. All systems have the same initial apastron of 300 au

but different semimajor axes as they have different eccentricities.

The bottom panel of Fig. 8 shows the evolution of the eccentricities

for e = 0, 0.2, 0.4 and 0.6. Note that all e = 0 systems are laid on

top of one another at the bottom of the plot, as zero-eccentricity

orbits do not change their eccentricities significantly.

What is clear from both panels is that the change in a and e is not

simple. In particular, a can either increase or decrease in different

systems. Here, changes in the orbital parameters tell us about the

net torque exerted on the binary orbit.

If we consider the change in a in a prograde system with e = 0

(circular orbit) then the magnitude of Jb is only proportional to
√

a.

From Fig. 8(a), the change in a tell us that Jb tends to increase in

systems with low δ (e.g. pe0d225-000) and decrease in systems

with high δ (e.g. pe0d450-900). In terms of the torque, this

implies that the component of torque exerted on the binary orbit

changes its direction from parallel to Jb, in low-δ systems, to anti-

parallel to Jb, in high-δ systems, at some value of δ (between 22.◦5

and 45◦).

This can be understood if we consider the torque as the sum of two

(or more) torques acting against each other and having amplitudes

which vary with δ. The two most plausible torques are the tidal

torque and the encounter torque.

The tidal torque is due to the gravitational interaction between

the companion and the fluid disc.

The encounter torque is due to a drag force exerted during encoun-

ters between the companion and the disc. Since the direction of the

drag force acting on the companion is mainly against the azimuthal

direction of motion, the direction of the encounter torque would be

more or less opposite to that of Jb. Hence, the encounter torque

always tends to decrease the magnitude of Jb. From Fig. 8(a), the

influence of the encounter torque seems to increase with a decrease

in the periastron (compare pe0d450 with pe4d450) and an in-

crease in the companion-disc relative velocity (compare pe0d450

with re0d450).

The direction of the tidal torque, on the other hand, can be deter-

mined from the change in Jb (or a) in prograde systems with low δ,

where the tidal interaction dominates the encounter interaction (as

the encounter velocity is close to zero). The increase in Jb in systems
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Figure 8. Changes in the semimajor axis, a, (top panel), and eccentricity,

e, (bottom panel) with time, t. Systems with e = 0 are not labelled in panel

(b) as their curves change insignificantly and lay on top of one another. See

text for the meaning of the labels.

from pe0d225 to pe0d000 suggests that the direction of the tidal

torque is roughly the same as that of Jb, i.e. the torque tends to

increase the magnitude of Jb. In systems with δ > 0◦, the direction

of the tidal torque would lie somewhere between Jb and Jd. We

will discuss the roles of the torques in changing δ in Section 5.3

below.

4.2.5 Star–disc misalignment angle

The star–disc misalignment angle (ψ) changes periodically as a

consequence of precession. Fig. 9 shows how the angle ψ changes

with respect to φ in systems pe0d225, pe0d450 and pe0d675,

i.e. the same systems as shown in Fig. 2. We can see that the value

of ψ varies between 0 and <2δ◦, as suggested by equation (4).

Figure 9. Changes in the star–disc misalignment angle ψ in systems

pe0d225, pe0d450 and pe0d675. Compare this figure to Fig. 2, where

δ is assumed to be constant.

The change in the angle ψ due to precession is one possible

explanation for the spin-orbit misalignment found in exoplanetary

systems (Batygin 2012). Since the disc midplane defines the orbital

plane of planets that form in the disc, the orbital axis of the planets

would later be misaligned from the spin axis of the central star if

the original star–disc system has ψ > 0.

4.2.6 Resolution and numerics

Resolution is one of the major numerical issues in disc simulations

using SPH. In our simulated misaligned systems, using lower res-

olution (particle numbers) tends to increase the rates of precession

and change in alignment, as shown in Fig. 10.

The top panel of Fig. 10 shows the change in the precession

angle φ with time for different resolutions for 150 k, 300 k, and

600 k particles in the initial disc. The particle number proceeds the

usual simulation code, e.g. 150ke0d225 and 600ke0d225 are

simulations with zero eccentricity and an initial misalignment of

22.5◦ but with 150 k and 600 k particles, respectively. For both 22.◦5

(orange lines) and 45◦ (red lines) initial misalignments, φ changes

more slowly at higher resolutions.

The lower panel of Fig. 10 shows the change in alignment angle

δ with time (same legend as the panel above). Again, we see that

higher resolution discs change their alignments more slowly.

The lower rates of change when higher resolution is used are due

to the decreased effect of artificial viscosity. However, we see that

both high and low resolution discs have very similar final states,

despite the higher resolution discs taking a longer (physical) time

to reach this state.

5 A NA LY SI S AND DI SCUSSI ON

5.1 Precession rates

The aim of this subsection is to examine the consistency of the rigid-

disc model in describing the precession process. By examining
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Figure 10. Changes in the precession angle (φ, top panel), and the mis-

alignment angle (δ, bottom panel) with time (t). For systems pe0d225 and

pe0d450 with discs of 150 k, 300 k and 600 k particles.

the evolution of the precession angles in Fig. 6, we see that the

precession rates are roughly consistent with the analytic derivation

in equation (23). That is, systems that precess rapidly have low δ

and high e (or small a).

We now compare the precession rate calculated from equation

(23) with that found in the simulations (by means of polynomial

regression). In calculating ˙〈φ〉 from equation (23), the values of all

the input parameters are taken directly from the result, except that

of the power-law index p and the radius Rd that are obtained from

estimation.

The value of the index p is the slope of the surface density

curve within a certain radial range (see Fig. 5). To avoid noise

and complications from potentially low-density and disturbed outer

regions, we calculate the value of p only within 40 au from the

central star. As the system evolves and the disc changes, the value of

p changes. In most cases, the value varies between −0.14 and 0.33.

However, the value of p does not significantly affect the calculation

of ˙〈φ〉.
The radius Rd, on the other hand, is the important parameter in

equation (23) since ˙〈φ〉 is proportional to R
3/2
d . Unfortunately, Rd is

not a well-defined parameter. We determine Rd using the weighted

average radius

Rav =
∫ Md

0
R dM

∫ Md

0
dM

=
∫ Rmax

0
�R2dR

∫ Rmax

0
�R dR

, (27)

where dM = 2π�R dR and Rmax is the extent of the disc.

Let us consider systems with zero-eccentricity orbits such as

pe0d225,pe0d450,pe0d675 and their retrograde counterparts.

Figure 11. Density profiles of discs in the selected systems at various times

from t = 0 (lightest grey) progressing in steps of 50 kyr (darker grey). Small

peaks on the profiles at R ∼ 200–300 au, clearly seen in systems pe0d225

and pe0d450, are of the disc surrounding the companion (the secondary

disc). Blue square symbols mark values of Rav, which are calculated from

equation (27). Red square symbols mark values of Reff (see text).

The surface density profiles of the discs in these systems are shown

in Fig. 11. As before the profiles are plotted in steps of 50 kyr. We

can see that all systems have most of their disc mass contained

within Rmax = 200 au throughout their evolution. With this value

of Rmax, the values of Rav can be calculated from equation (27). In

Fig. 11 we mark the values of Rav by blue squares on each evolving

surface density profile. We see that Rav marks the points at which the

surface density begins to decline rapidly: i.e. it is the point within

which the surface density is roughly constant. We will return to the

meaning of the red points later.

Once we have the index p and the radius Rd for each simulation,

the average precession rates can be obtained from equation (23).

Comparisons between the precession rates from the rigid-disc cal-

culations and the simulations are shown in Fig. 12. From left to right

the panels show the prograde and retrograde simulations and rigid-

disc calculations for 22.◦5, 45◦ and 67.◦5 misalignments. In each

panel, the solid black lines labelled with ‘mod’ are the rigid-disc

approximation and the lines with ‘sim’ are the simulation results.

The rigid-disc model predicts the general behaviour seen in the

simulations for all initial misalignment angles (comparing the mod-

els ‘mod’, with the simulations ‘sim’). At moderate and high initial

misalignments (middle and far right panels in Fig. 12), the models

and simulations agree well but the magnitudes of the precession rate

are underestimated by the model by a factor of ∼2. At low initial

misalignments (far left panel in Fig. 12), the model underpredicts

the magnitudes of the precession rate by a factor of 2–3. Similar

results are also found in 150 k- and 600 k-particles simulations of

the same systems.

These results suggest that the rigid-disc model can describe the

trend of the precession rate well, but underestimates the magnitude

(especially when the initial misalignment is low). The underestima-

tion in magnitude is mainly due to our choice of Rd (i.e. Rav from

equation 27) being somewhat arbitrary, and rather too low.

To obtain the ‘effective’ radius (Reff) at which we would find the

right magnitude for the precession rates, we simply use equation

(23) again with ˙〈φ〉 and other parameters taken from the result, but

now solving the equation for Rd instead. For the selected systems,

the values of Reff which would match the simulation results are

marked on the density profiles in Fig. 11 with red square symbols.
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Figure 12. Precession rates (φ̇) with time (t) obtained from the model (mod) and the simulation results (sim) for initial misalignment angles of 22.◦5 (left-hand

panel), 45◦ (middle panel), and 67.◦5 (right-hand panel).

This is a rather back-to-front approach of fitting the models to

the simulations and the simulations to the models. However, Fig. 11

shows that it is uncertainties in our disc radius estimates that cause

the difference between the model predictions and the simulations,

not any significant failure of the model. In most cases, the effective

radius is larger than the average radius by a factor of ∼1.5–2.

Similar results are also found in systems with higher eccentricities

and different resolutions.

5.2 Alignment rates

Similarly to the precession rate above, we can compare the

alignment rate from the simulations and the rigid-disc model in

equation (24).

For simplicity, let us consider a misaligned system with eccen-

tricity e = 0. The average alignment rate ˙〈δ〉 from equation (24)

then reduces to

˙〈δ〉 ≃ −
˙〈φ〉 tan δ

2π

∫ 2π

0

sin [2 (θ + φ)] dθ. (28)

To simplify further, we assume that φ changes linearly with time

over an orbital period, i.e. φ ≃ φ◦ + φ̇�t .

For a circular orbit, where θ also changes linearly with time, �t

can be written as �t = θ/θ̇ , where θ ranges from 0 to 2π and θ̇ is

constant.

The angle φ thus becomes φ ≃ φ◦ + (φ̇/θ̇ )θ . Substituting φ in

equation (28) gives us

˙〈δ〉 ≃ −
˙〈φ〉 tan δ

2π

∫ 2π

0

sin

[

2

(

1 +
φ̇

θ̇

)

θ + 2φ◦

]

dθ. (29)

Integrating this equation gives

˙〈δ〉 ≃ −
˙〈φ〉 tan δ

4π
(

1 + φ̇

θ̇

)

[

cos(2φ◦) − cos

(

2φ◦ +
4πφ̇

θ̇

)]

. (30)

The rates φ̇ and θ̇ are obtained from the polynomial regressions of

φ and θ , respectively.

The comparisons between ˙〈δ〉 from equation (30) and from the

simulation result are shown in Fig. 13. This figure shows ˙〈δ〉 against

φ, and here we only present prograde systems with initial misalign-

ments of 22.◦5 (top), 45◦ (middle), and 67.◦5 (bottom).

In the rigid-disc predictions (black lines in Fig. 13), the align-

ment rate ˙〈δ〉 oscillates with a period of φ = 180◦, as suggested by

Figure 13. Alignment rates (δ̇) with time (t) obtained from the model (mod)

and the simulation results (sim) for initial misalignment angles of 22.◦5 (top

panel), 45◦ (middle panel), and 67.◦5 (bottom panel).

equation (30). Given the low alignment rates in both the models

and the simulations for initial misalignments of 22.◦5 and 45◦ (top

and middle panels in Fig. 13), it is difficult to argue that the model

succeeds or fails to fit the simulated behaviour. However, in the

bottom panel, the model clearly fails to match the behaviour of the

simulation. The rigid-disc model predicts that the alignment rate

should oscillate around zero, whilst the simulation clearly shows

that it is growing with time.

In this case we find that the rigid-disc model fails, and that to

calculate the alignment rate we require a model that accounts for

the fluidity of the disc.

5.3 Disc-companion misalignment in system

with a non-rigid disc

As we mentioned earlier in Section 4.2.4, the change in alignment

between the disc and the companion orbit may be viewed as a

consequence of the tidal torque and the encounter torque acting

against each other. We explain the mechanism in this subsection.
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Figure 14. Orientations of the tidal torque T t (blue arrows) and the en-

counter torque T e (red arrows). The torques exerted on the binary orbit

(panels (a) and (c)) have their own counterparts of the same magnitude but

opposite in direction exerted on the disc (panels (b) and (d)). The misalign-

ment angle is δ = δb + δd, where δb is the angle between Jb and J sys,

and δd is between Jd and J sys. Change in δb is due to the sum of torques

projected on the xb-axis, while change in δd is due to that projected on the

xd-axis.

In a realistic misaligned system where the angular momentum

Jd of the disc is not negligible compared to the angular momentum

Jb of the binary, we have Jb and Jd precessing around the total

angular momentum J sys of the system, instead of Jd around Jb as

in the rigid-disc model. The three vectors also lie on the same plane.

For convenience, let us consider two new coordinate systems,

(xb, yb) for the binary and (xd, yd) for the disc. The xb − yb plane

and xd − yd plane coincide. The direction of the positive yb-axis is

defined by the vector Jb and the direction of the positive yd-axis by

the vector Jd, as shown in Fig. 14.

We know from Section 4.2.4 that, on the binary orbit, the tidal

torque T tb lies somewhere between Jb and Jd while the encounter

torque T eb lies approximately opposite to Jb. In a prograde system,

this can be illustrated in Fig. 14(a) where T tb is represented (not to

scale) by the blue arrow and T eb by the red arrow. Similarly, the

two torques in a retrograde system can be illustrated in Fig. 14(c).

It should be noted that all the torques and angular momenta (except

J sys) we discuss here are time-averaged over an orbital period (the

instantaneous values oscillate somewhat).

Since the angular momentum J sys of the system must be con-

served, the counterpart torques of T tb and T eb exerted on the disc

must be equal in magnitudes but opposite in directions. That is,

we have the tidal torque T td = −T tb and the encounter torque

T ed = −T eb exerted on the disc. The two torques are illustrated

(with the same colour code) in Fig. 14(b) and (d) for prograde and

retrograde systems, respectively.

Now we have the net torque T b = T tb + T eb as the net rate of

change of Jb and T d = T td + T ed as the net rates of change of Jd.

Figure 15. Change of δb (top panel) and δd (bottom panel) with time (t) in

selected prograde systems.

Figure 16. Change of δb (top panel) and δd (bottom panel) with time (t) in

selected retrograde systems.

However, it is the components of T b on the xb-axis and T d on the

xd-axis that actually cause a change in the misalignment angle δ.

Let us consider the misalignment angle δ as the sum of the angles

δb, between Jb and J sys (see Fig. 14(a)), and δd, between Jd and

J sys (see Fig. 14(b)). That is, δ = δb + δd. The change in δb is due

to the component of T b on the xb-axis, as well as the change in δd

is due to the component of T d on the xd-axis.

We can see from Fig. 14(a) and (c) that the component of T b on the

xb-axis is mostly from T tb, since T eb is approximately perpendicular

to the xb-axis. The change in δb therefore depends only on the tidal

torque T tb. In contrast, the component of T d on the xd-axis (and

thus the change in δd) depends on both T td and T ed, see Fig. 14(b)

and (d).

To explain how δb and δd are changed by the associated torques,

we examine the differences between the angles and their initial

values (�δb and �δd) of some prograde systems in Fig. 15, and

retrograde systems in Fig. 16. Note that the net difference in mis-

alignment angle is �δ = δ − δ◦ = �δb + �δd. Using what we

also know from Section 4.2.4 that the tidal torque dominates the

encounter torque when δ is close to 0◦ or 180◦, and vice versa when

δ is close to 90◦, we can explain the changes in Figs 15 and 16 as

follows.

The change in δb. In the binary frame of reference in Fig. 14(a)

and (c) where the encounter torque T eb is perpendicular to the

xb-axis, the change in δb is only due to the component of the tidal
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torque T tb on the positive xb-axis. The torque will bring Jb towards

J sys, decreasing δb from its initial value. This results in the negative

value of �δb in both prograde and retrograde systems, as shown in

Figs 15(a) and 16(a). Note that the component of T tb on the xb-axis

depends on both the magnitude of T tb itself, which increases with

decreasing δ, and the cosine value of the angle between T tb and the

xb-axis, which increases with increasing δ. This makes the curves

in Fig. 15(a) become more negative from pe0d225 to pe0d450

and then less negative from pe0d675 to pe0d900; the turning

point is at some angle between 45◦ and 67.◦5. Similar trends are also

found in retrograde systems as shown in Fig. 16(a).

The change in δd. In the disc’s frame of reference in Fig. 14(b)

and (d), the net torque on the xd-axis depends on both tidal torque

and encounter torque. In systems with δ close to 0◦ or 180◦, where

T td is almost on the yb-axis and having magnitude greater than T ed,

the component of T td dominates that of T ed on the xd-axis. The

net torque then points along the positive xd-axis, turning Jd away

from J sys. The value of δd is therefore increased from its initial

value (positive �δd), as we can see for pe0d225 in Fig. 15(b) and

re0d225 in 16(b).

In more misaligned systems, on the other hand, the magnitude of

T ed increases while the magnitude of T td decreases. The direction of

T td also turns away from the yb-axis, making its component on the

xd-axis even smaller. In highly misaligned systems, the component

of T ed on the negative xd-axis dominates the component of T td on

the positive xd-axis. The net torque on the negative xd-axis will

then turn Jd towards J sys, decreasing the value of δd. This situation

occurs in pe0d675 and pe0d900 in Fig. 15(b), and re0d675 in

Fig. 16(b).

6 C O N C L U S I O N S

We have performed a number of simulations of circumprimary discs

in misaligned binary systems. The companion starts misaligned to

the disc at 22.◦5, 45◦ and 67.◦5 in both prograde and retrograde orbits

with eccentricities from 0 to 0.6. We assume that the disc and central

star begin with aligned rotation. We then compare the outcome of

our simulations to the analytic rigid-disc approximation.

Our goal is to examine how the relative misalignments of the

companion and disc, and disc and primary star change with time.

We find that a misaligned companion will misalign the circum-

primary disc with respect to the primary star. The degree and speed

of this misalignment depends on the initial misalignment of the disc

and companion as well as the orbital direction of the companion.

First, we have shown that the rigid-disc model can describe

the precession rate of the disc. However, we find that the rigid-

disc model fails to describe the change in alignment between

the disc and the companion star (Section 5.2). The failure of the

rigid-disc model implies that the alignment process is associated

with torques exerted on the disc as fluid body. The most plausible

torques are the tidal torque (which dominates in systems with initial

misalignments near 0◦ or 180◦), and the encounter torque (dominat-

ing in systems with initial misalignments near 90◦). The tidal torque

tends to make the disc-companion system more misaligned, while

the encounter torque tends to align them. Although we have not pro-

vided any mathematical description for these torques, our schematic

description presented in Section 5.3 seems to be consistent with the

results.

Secondly, our simulation results suggest that complete alignment

between the disc and the binary orbit in misaligned systems may

never be achieved within the disc lifetime. This is because (1) the

change in alignment is a slow process, especially in systems with

δ ≪ 90◦, and (2) there is an anti-alignment process (due to the

tidal torque), in system with low δ, preventing the systems from

being aligned. Therefore, misaligned systems will eventually stay

misaligned.

Finally, we have also shown that precession is an efficient pro-

cess to misalign the rotational axis of the disc from the spin axis

of the host star. Precession can make the star–disc misalignment

angle (ψ) reach a value near 2δ◦, where δ◦ is the initial disc-binary

misalignment angle. The disc can then be highly misaligned or

even temporarily retrograde in systems with high δ◦, e.g. δ◦ > 45◦

(Section 4.2.5).

The change in the misalignment angles between the primary, disc

and companion may be important in explaining the origin of (some)

spin-orbit misaligned exoplanetary systems (Batygin 2012).
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APP ENDIX A : PARTICLE D ISTRIBUTION

IN AN SPH D ISC

An SPH disc can be constructed by distributing gas particles in a

volume constrained by equation (25) and (26) (e.g. Stamatellos &

Whitworth 2008). It is convenient to calculate the distribution in

cylindrical coordinates (R, ϕ, z) and then transform to Cartesian

coordinates (x, y, z) which are used in the simulations.

The radial distribution of particles can be constructed by ran-

domly sampling the mass distribution fR = M(R)/Md, where M(R)

is the mass of the disc within radius R from the central star. The

mass M(R) can be obtained from integrating dM = 2π�R dR from

R = Rin to R. One can rearrange the terms and find that

R =
[

3

4π

Md

�1

fR + R3/2
in

]2/3

. (A1)

Drawing a set of random numbers fR uniform in 0 ≤ fR ≤ 1, we then

have the radial distribution of particles for the disc. Similarly, the

azimuthal distribution can be constructed by randomly sampling the

angle fϕ = ϕ/2π . This is the standard way of sampling to match a

particular mass distribution.

The vertical distribution, on the other hand, is rather more com-

plicated, we construct it from the fraction of surface densities

fz =
∫ z

−z
d�

∫ ∞
−∞ d�

=
∫ z

−z
ρ dz

∫ ∞
−∞ ρ dz

, (A2)

where ρ = ρ(R, z) is the volume density.

To find an expression for ρ(R, z), let us consider the balance of

vertical accelerations at the vertical scale height z◦ = z◦(R) of a thin

disc (z◦ ≪ R):

GMpz◦

R3
+ 2πG� = −

1

ρ

∂P

∂z

∣

∣

∣

∣

∣

z=z◦

, (A3)

where G is the gravitational constant and P = P(R, z) is the local

pressure. The first and second terms on the LHS are the gravitational

accelerations due to the central star and the self gravity between disc

particles (estimated by Gauss’s law for gravity), respectively. The

term on the RHS is the vertical hydrostatic acceleration in the disc.

In an isothermal approximation, the pressure P may be written in

terms of density ρ and sound speed cs (or temperature T) as

P (R, z) = ρ(R, z)c2
s (R) = ρ(R, z)

[

kBT (R)

μ̄mH

]

, (A4)

where kB is the Boltzmann constant, μ̄ = 2.35 the mean molecular

weight, and mH the hydrogen mass.

In a system with Md ≪ Mp, the second term on the LHS of

equation (A3) is very small compared to the first term. In this

case, the approximate expression for ρ(R, z) can be obtained by

neglecting the second term (for a moment) and considering z◦ as z.

We see that ∂ρ/∂z ∝ −zρ. This means that the local density is a

Gaussian function of z, i.e.

ρ(R, z) = ρ(R, 0)e−(bz/z◦)2

, (A5)

where ρ(R, 0) is the volume density at the disc midplane and b is an

arbitrary constant. By using ρ from equation (A5), the vertical scale

height (z◦) obtained from solving equation (A3) can be written as

z◦ ≃ −
π�(R)R3

Mp

+

[

(

π�(R)R3

Mp

)2

+
2b2R3c2

s (R)

GMp

]1/2

. (A6)

In order to obtain the vertical distribution from equation (A2),

however, we employ an integrable Gaussian-like function

ρ(R, z) ≃ ρ(R, 0) sech2(bz/z◦) (A7)

instead of the exact Gaussian function in equation (A5). By using

this function for the density in equation (A2), we have

z =
z◦

b
tanh−1 (fz) , (A8)

where z◦ is obtained from equation (A6). The value of b defines

the initial thickness of the disc: the bigger the value, the thicker the

disc. For our simulations, we simply use b = 1. Finally, the random

number fz in this case is −1 < fz < 1 (exclusive).

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 460, 3505–3518 (2016)

 at U
niversity of Sheffield on A

ugust 15, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/

