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Abstract

In this paper we introduce deep Gaussian process

(GP) models. Deep GPs are a deep belief net-

work based on Gaussian process mappings. The

data is modeled as the output of a multivariate

GP. The inputs to that Gaussian process are then

governed by another GP. A single layer model is

equivalent to a standard GP or the GP latent vari-

able model (GP-LVM). We perform inference in

the model by approximate variational marginal-

ization. This results in a strict lower bound on the

marginal likelihood of the model which we use

for model selection (number of layers and nodes

per layer). Deep belief networks are typically ap-

plied to relatively large data sets using stochas-

tic gradient descent for optimization. Our fully

Bayesian treatment allows for the application of

deep models even when data is scarce. Model se-

lection by our variational bound shows that a five

layer hierarchy is justified even when modelling

a digit data set containing only 150 examples.

1 Introduction

Probabilistic modelling with neural network architectures

constitute a well studied area of machine learning. The re-

cent advances in the domain of deep learning [Hinton and

Osindero, 2006, Bengio et al., 2012] have brought this kind

of models again in popularity. Empirically, deep models

seem to have structural advantages that can improve the

quality of learning in complicated data sets associated with

abstract information [Bengio, 2009]. Most deep algorithms

require a large amount of data to perform learning, how-

ever, we know that humans are able to perform inductive

reasoning (equivalent to concept generalization) with only

a few examples [Tenenbaum et al., 2006]. This provokes

Appearing in Proceedings of the 16th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2013, Scottsdale,
AZ, USA. Volume XX of JMLR: W&CP XX. Copyright 2013 by
the authors.

the question as to whether deep structures and the learning

of abstract structure can be undertaken in smaller data sets.

For smaller data sets, questions of generalization arise: to

demonstrate such structures are justified it is useful to have

an objective measure of the model’s applicability.

The traditional approach to deep learning is based around

binary latent variables and the restricted Boltzmann ma-

chine (RBM) [Hinton, 2010]. Deep hierarchies are con-

structed by stacking these models and various approxi-

mate inference techniques (such as contrastive divergence)

are used for estimating model parameters. A significant

amount of work has then to be done with annealed impor-

tance sampling if even the likelihood1 of a data set under

the RBM model is to be estimated [Salakhutdinov and Mur-

ray, 2008]. When deeper hierarchies are considered, the

estimate is only of a lower bound on the data likelihood.

Fitting such models to smaller data sets and using Bayesian

approaches to deal with the complexity seems completely

futile when faced with these intractabilities.

The emergence of the Boltzmann machine (BM) at the core

of one of the most interesting approaches to modern ma-

chine learning is very much a case of a the field going back

to the future: BMs rose to prominence in the early 1980s,

but the practical implications associated with their train-

ing led to their neglect until families of algorithms were

developed for the RBM model with its reintroduction as a

product of experts in the late nineties [Hinton, 1999].

The computational intractabilities of Boltzmann machines

led to other families of methods, in particular kernel meth-

ods such as the support vector machine (SVM), to be con-

sidered for the domain of data classification. Almost con-

temporaneously to the SVM, Gaussian process (GP) mod-

els [Rasmussen and Williams, 2006] were introduced as a

fully probabilistic substitute for the multilayer perceptron

(MLP), inspired by the observation [Neal, 1996] that, un-

der certain conditions, a GP is an MLP with infinite units in

the hidden layer. MLPs also relate to deep learning models:

deep learning algorithms have been used to pretrain autoen-

coders for dimensionality reduction [Hinton and Salakhut-

1We use emphasis to clarify we are referring to the model like-
lihood, not the marginal likelihood required in Bayesian model
selection.
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Deep Gaussian Processes

dinov, 2006]. Traditional GP models have been extended

to more expressive variants, for example by considering

sophisticated covariance functions [Durrande et al., 2011,

Gönen and Alpaydin, 2011] or by embedding GPs in more

complex probabilistic structures [Snelson et al., 2004, Wil-

son et al., 2012] able to learn more powerful representa-

tions of the data. However, all GP-based approaches con-

sidered so far do not lead to a principled way of obtaining

truly deep architectures and, to date, the field of deep learn-

ing remains mainly associated with RBM-based models.

The conditional probability of a single hidden unit in an

RBM model, given its parents, is written as

p(y|x) = σ(w⊤x)y(1− σ(w⊤x))(1−y),

where here y is the output variable of the RBM, x is

the set of inputs being conditioned on and σ(z) = (1 +
exp(−z))−1. The conditional density of the output de-

pends only on a linear weighted sum of the inputs. The

representational power of a Gaussian process in the same

role is significantly greater than that of an RBM. For the

GP the corresponding likelihood is over a continuous vari-

able, but it is a nonlinear function of the inputs,

p(y|x) = N
(

y|f(x), σ2
)

,

where N
(

·|µ, σ2
)

is a Gaussian density with mean µ and

variance σ2. In this case the likelihood is dependent on a

mapping function, f(·), rather than a set of intermediate

parameters, w. The approach in Gaussian process mod-

elling is to place a prior directly over the classes of func-

tions (which often specifies smooth, stationary nonlinear

functions) and integrate them out. This can be done an-

alytically. In the RBM the model likelihood is estimated

and maximized with respect to the parameters, w. For the

RBM marginalizing w is not analytically tractable. We

note in passing that the two approaches can be mixed if

p(y|x) = σ(f(x))y(1 − σ(f(x))(1−y), which recovers a

GP classification model. Analytic integration is no longer

possible though, and a common approach to approximate

inference is the expectation propagation algorithm [see e.g.

Rasmussen and Williams, 2006]. However, we don’t con-

sider this idea further in this paper.

Inference in deep models requires marginalization of x as

they are typically treated as latent variables2, which in the

case of the RBM are binary variables. The number of the

terms in the sum scales exponentially with the input dimen-

sion rendering it intractable for anything but the smallest

models. In practice, sampling and, in particular, the con-

trastive divergence algorithm, are used for training. Simi-

larly, marginalizing x in the GP is analytically intractable,

even for simple prior densities like the Gaussian. In the

GP-LVM [Lawrence, 2005] this problem is solved through

2They can also be treated as observed, e.g. in the upper most
layer of the hierarchy where we might include the data label.

maximizing with respect to the variables (instead of the pa-

rameters, which are marginalized) and these models have

been combined in stacks to form the hierarchical GP-LVM

[Lawrence and Moore, 2007] which is a maximum a pos-

teriori (MAP) approach for learning deep GP models. For

this MAP approach to work, however, a strong prior is re-

quired on the top level of the hierarchy to ensure the algo-

rithm works and MAP learning prohibits model selection

because no estimate of the marginal likelihood is available.

There are two main contributions in this paper. Firstly, we

exploit recent advances in variational inference [Titsias and

Lawrence, 2010] to marginalize the latent variables in the

hierarchy variationally. Damianou et al. [2011] has already

shown how using these approaches two Gaussian process

models can be stacked. This paper goes further to show

that through variational approximations any number of GP

models can be stacked to give truly deep hierarchies. The

variational approach gives us a rigorous lower bound on the

marginal likelihood of the model, allowing it to be used

for model selection. Our second contribution is to use this

lower bound to demonstrate the applicability of deep mod-

els even when data is scarce. The variational lower bound

gives us an objective measure from which we can select dif-

ferent structures for our deep hierarchy (number of layers,

number of nodes per layer). In a simple digits example we

find that the best lower bound is given by the model with

the deepest hierarchy we applied (5 layers).

The deep GP consists of a cascade of hidden layers of la-

tent variables where each node acts as output for the layer

above and as input for the layer below—with the observed

outputs being placed in the leaves of the hierarchy. Gaus-

sian processes govern the mappings between the layers.

A single layer of the deep GP is effectively a Gaussian

process latent variable model (GP-LVM), just as a single

layer of a regular deep model is typically an RBM. [Tit-

sias and Lawrence, 2010] have shown that latent variables

can be approximately marginalized in the GP-LVM allow-

ing a variational lower bound on the likelihood to be com-

puted. The appropriate size of the latent space can be com-

puted using automatic relevance determination (ARD) pri-

ors [Neal, 1996]. Damianou et al. [2011] extended this

approach by placing a GP prior over the latent space, re-

sulting in a Bayesian dynamical GP-LVM. Here we extend

that approach to allow us to approximately marginalize any

number of hidden layers. We demonstrate how a deep hier-

archy of Gaussian processes can be obtained by marginal-

ising out the latent variables in the structure, obtaining an

approximation to the fully Bayesian training procedure and

a variational approximation to the true posterior of the la-

tent variables given the outputs. The resulting model is very

flexible and should open up a range of applications for deep

structures 3.

3A preliminary version of this paper has been presented in
[Damianou and Lawrence, 2012].
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2 The Model

We first consider standard approaches to modeling with

GPs. We then extend these ideas to deep GPs by consid-

ering Gaussian process priors over the inputs to the GP

model. We can apply this idea recursively to obtain a deep

GP model.

2.1 Standard GP Modelling

In the traditional probabilistic inference framework, we are

given a set of training input-output pairs, stored in matri-

ces X ∈ RN×Q and Y ∈ RN×D respectively, and seek

to estimate the unobserved, latent function f = f(x), re-

sponsible for generating Y given X. In this setting, Gaus-

sian processes (GPs) [Rasmussen and Williams, 2006] can

be employed as nonparametric prior distributions over the

latent function f . More formally, we assume that each dat-

apoint yn is generated from the corresponding f(xn) by

adding independent Gaussian noise, i.e.

yn = f(xn) + ǫn, ǫ ∼ N (0, σǫI), (1)

and f is drawn from a Gaussian process, i.e. f(x) ∼
GP (0, k(x, x′)). This (zero-mean) Gaussian process prior

only depends on the covariance function k operating on

the inputs X. As we wish to obtain a flexible model, we

only make very general assumptions about the form of the

generative mapping f and this is reflected in the choice

of the covariance function which defines the properties of

this mapping. For example, an exponentiated quadratic co-

variance function, k (xi,xj) = (σse)
2 exp

(

− (xi−xj)
2

2l2

)

,

forces the latent functions to be infinitely smooth. We

denote any covariance function hyperparameters (such as

(σse, l) of the aforementioned covariance function) by θ.

The collection of latent function instantiations, denoted by

F = {fn}
N
n , is normally distributed, allowing us to com-

pute analytically the marginal likelihood 4

p(Y|X) =

∫ N
∏

n=1

p(yn|fn)p(fn|xn)dF

= N (Y|0,KNN + σ2
ǫ I),KNN = k(X,X). (2)

Gaussian processes have also been used with success in un-

supervised learning scenarios, where the input data X are

not directly observed. The Gaussian process latent vari-

able model (GP-LVM) [Lawrence, 2005, 2004] provides

an elegant solution to this problem by treating the unob-

served inputs X as latent variables, while employing a

product of D independent GPs as prior for the latent map-

ping. The assumed generative procedure takes the form:

ynd = fd(xn) + ǫnd, where ǫ is again Gaussian with vari-

ance σ2
ǫ and F = {fd}

D
d=1 with fnd = fd(xn). Given a

4All probabilities involving f should also have θ in the con-
ditioning set, but here we omit it for clarity.

finite data set, the Gaussian process priors take the form

p(F|X) =

D
∏

d=1

N (fd|0,KNN ) (3)

which is a Gaussian and, thus, allows for general non-linear

mappings to be marginalised out analytically to obtain the

likelihood p(Y|X) =
∏D

d=1 N (yd|0,KNN + σ2
ǫ ), analo-

gously to equation (2).

2.2 Deep Gaussian Processes

Our deep Gaussian process architecture corresponds to a

graphical model with three kinds of nodes, illustrated in

figure 1(a): the leaf nodes Y ∈ RN×D which are ob-

served, the intermediate latent spaces Xh ∈ RN×Qh , h =
1, ..., H − 1, where H is the number of hidden layers, and

the parent latent node Z = XH ∈ RN×QZ . The parent

node can be unobserved and potentially constrained with a

prior of our choice (e.g. a dynamical prior), or could con-

stitute the given inputs for a supervised learning task. For

simplicity, here we focus on the unsupervised learning sce-

nario. In this deep architecture, all intermediate nodes Xh

act as inputs for the layer below (including the leaves) and

as outputs for the layer above. For simplicity, consider a

structure with only two hidden units, as the one depicted in

figure 1(b). The generative process takes the form:

ynd =fY
d (xn) + ǫYnd, d = 1, ..., D, xn ∈ RQ

xnq =fX
q (zn) + ǫXnq, q = 1, ..., Q, zn ∈ RQZ (4)

and the intermediate node is involved in two Gaussian pro-

cesses, fY and fX , playing the role of an input and an out-

put respectively: fY ∼ GP(0, kY (X,X)) and fX ∼
GP(0, kX(Z,Z)). This structure can be naturally extended

vertically (i.e. deeper hierarchies) or horizontally (i.e. seg-

mentation of each layer into different partitions of the out-

put space), as we will see later in the paper. However, it is

already obvious how each layer adds a significant number

of model parameters (Xh) as well as a regularization chal-

lenge, since the size of each latent layer is crucial but has

to be a priori defined. For this reason, unlike Lawrence and

Moore [2007], we seek to variationally marginalise out the

whole latent space. Not only this will allow us to obtain

an automatic Occam’s razor due to the Bayesian training,

but also we will end up with a significantly lower number

of model parameters, since the variational procedure only

adds variational parameters. The first step to this approach

is to define automatic relevance determination (ARD) co-

variance functions for the GPs:

k (xi,xj) = σ2
arde

− 1

2

∑Q
q=1

wq(xi,q−xj ,q)
2

. (5)

This covariance function assumes a different weight wq

for each latent dimension and this can be exploited in a

Bayesian training framework in order to “switch off” irrel-

evant dimensions by driving their corresponding weight to
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zero, thus helping towards automatically finding the struc-

ture of complex models. However, the nonlinearities intro-

duced by this covariance function make the Bayesian treat-

ment of this model challenging. Nevertheless, following

recent non-standard variational inference methods we can

define analytically an approximate Bayesian training pro-

cedure, as will be explained in the next section.

2.3 Bayesian Training

A Bayesian training procedure requires optimisation of the

model evidence:

log p(Y) = log

∫

X,Z

p(Y|X)p(X|Z)p(Z). (6)

When prior information is available regarding the observed

data (e.g. their dynamical nature is known a priori), the

prior distribution on the parent latent node can be selected

so as to constrain the whole latent space through propaga-

tion of the prior density through the cascade. Here we take

the general case where p(Z) = N (Z|0, I). However, the

integral of equation (6) is intractable due to the nonlinear

way in which X and Z are treated through the GP priors

fY and fX . As a first step, we apply Jensen’s inequality to

find a variational lower bound Fv ≤ log p(Y), with

Fv =

∫

X,Z,FY ,FX

Q log
p(Y,FY ,FX ,X,Z)

Q
, (7)

where we introduced a variational distribution Q, the form

of which will be defined later on. By noticing that the joint

distribution appearing above can be expanded in the form

p(Y,FY ,FX ,X,Z) =

p(Y|FY )p(FY |X)p(X|FX)p(FX |Z)p(Z), (8)

we see that the integral of equation (7) is still intractable be-

cause X and Z still appear nonlinearly in the p(FY |X) and

p(FX |Z) terms respectively. A key result of [Titsias and

Lawrence, 2010] is that expanding the probability space of

the GP prior p(F|X) with extra variables allows for priors

on the latent space to be propagated through the nonlinear

mapping f . More precisely, we augment the probability

space of equation (3) with K auxiliary pseudo-inputs X̃ ∈
RK×Q and Z̃ ∈ RK×QZ that correspond to a collection of

function values UY ∈ RK×D and UX ∈ RK×Q respec-

tively 5. Following this approach, we obtain the augmented

probability space: p(Y,FY ,FX ,X,Z,UY ,UX , X̃, Z̃) =

p(Y|FY )p(FY |UY ,X)p(UY |X̃)

·p(X|FX)p(FX |UX ,Z)p(UX |X̃)p(Z) (9)

The pseudo-inputs X̃ and Z̃ are known as inducing points,

and will be dropped from our expressions from now on, for

5The number of inducing points, K, does not need to be the
same for every GP of the overall deep structure.

clarity. Note that FY and UY are draws from the same

GP so that p(UY ) and p(FY |UY ,X) are also Gaussian

distributions (and similarly for p(UX), p(FX |UX ,Z)).

We are now able to define a variational distribution Q
which, when combined with the new expressions for the

augmented GP priors, results in a tractable variational

bound. Specifically, we have:

Q =p(FY |UY ,X)q(UY )q(X)

·p(FX |UX ,Z)q(UX)q(Z). (10)

We select q(UY ) and q(UX) to be free-form variational

distributions, while q(X) and q(Z) are chosen to be Gaus-

sian, factorised with respect to dimensions:

q(X) =

Q
∏

q=1

N (µX
q ,SX

q ), q(Z) =

QZ
∏

q=1

N (µZ
q ,S

Z
q ). (11)

By substituting equation (10) back to (7) while also re-

placing the original joint distribution with its augmented

version in equation (9), we see that the “difficult” terms

p(FY |UY ,X) and p(FX |UX ,Z) cancel out in the frac-

tion, leaving a quantity that can be computed analytically:

Fv =

∫

Q log
p(Y|FY )p(UY )p(X|FX)p(UX)p(Z)

Q′
,

(12)

where Q′ = q(UY )q(X)q(UX)q(Z) and the above inte-

gration is with respect to {X,Z,FY ,FX ,UY ,UX}. More

specifically, we can break the logarithm in equation (12) by

grouping the variables of the fraction in such a way that the

bound can be written as:

Fv = gY + rX +Hq(X) − KL (q(Z) ‖ p(Z)) (13)

where H represents the entropy with respect to a distribu-

tion, KL denotes the Kullback – Leibler divergence and,

using 〈·〉 to denote expectations,

gY = g(Y,FY ,UY ,X)

=
〈

log p(Y|FY ) + log p(UY )
q(UY )

〉

p(FY |UY ,X)q(UY )q(X)

rX = r(X,FX ,UX ,Z)

=
〈

log p(X|FX) + log p(UX)
q(UX)

〉

p(FX |UX ,Z)q(UX)q(X)q(Z)

(14)

Both terms gY and rX involve known Gaussian densities

and are, thus, tractable. The gY term is only associated

with the leaves and, thus, is the same as the bound found

for the Bayesian GP-LVM [Titsias and Lawrence, 2010].

Since it only involves expectations with respect to Gaussian

distributions, the GP output variables are only involved in
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a quantity of the form YYT. Further, as can be seen from

the above equations, the function r(·) is similar to g(·) but

it requires expectations with respect to densities of all of the

variables involved (i.e. with respect to all function inputs).

Therefore, rX will involve X (the outputs of the top layer)

in a term
〈

XXT
〉

q(X)
=

∑Q

q=1

[

µX
q

(

µX
q

)T
+ SX

q

]

.

3 Extending the hierarchy

Although the main calculations were demonstrated in a

simple hierarchy, it is easy to extend the model ver-

tically, i.e. by adding more hidden layers, or horizon-

tally, i.e. by considering conditional independencies of

the latent variables belonging to the same layer. The

first case only requires adding more rX functions to the

variational bound, i.e. instead of a single rX term we

will now have the sum:
∑H−1

h=1 rXh
, where rXh

=
r(Xh,F

Xh ,UXh ,Xh+1), XH = Z .

Now consider the horizontal expansion scenario and as-

sume that we wish to break the single latent space Xh,

of layer h, to Mh conditionally independent subsets. As

long as the variational distribution q(Xh) of equation (11)

is chosen to be factorised in a consistent way, this is fea-

sible by just breaking the original rXh
term of equation

(14) into the sum
∑Mh

m=1 r
(m)
Xh

. This follows just from

the fact that, due to the independence assumption, it holds

that log p(Xh|Xh+1) =
∑Mh

m=1 log p(X
(m)
h |Xh+1). No-

tice that the same principle can also be applied to the leaves

by breaking the gY term of the bound. This scenario arises

when, for example we are presented with multiple different

output spaces which, however, we believe they have some

commonality. For example, when the observed data are

coming from a video and an audio recording of the same

event. Given the above, the variational bound for the most

general version of the model takes the form:

Fv =

MY
∑

m=1

g
(m)
Y +

H−1
∑

h=1

Mh
∑

m=1

r
(m)
Xh

+

H−1
∑

h=1

Hq(Xh)

− KL (q(Z) ‖ p(Z)) . (15)

Figure 1(c) shows the association of this objective func-

tion’s terms with each layer of the hierarchy. Recall that

each r
(m)
Xh

and g
(m)
Y term is associated with a different GP

and, thus, is coming with its own set of automatic relevance

determination (ARD) weights (described in equation (5)).

3.1 Deep multiple-output Gaussian processes

The particular way of extending the hierarchies horizon-

tally, as presented above, can be seen as a means of per-

forming unsupervised multiple-output GP learning. This

only requires assigning a different gY term (and, thus, as-

sociated ARD weights) to each vector yd, where d indexes

the output dimensions. After training our model, we hope

that the columns of Y that encode similar information will

be assigned relevance weight vectors that are also similar.

This idea can be extended to all levels of the hierarchy, thus

obtaining a fully factorised deep GP model.

This special case of our model makes the connection be-

tween our model’s structure and neural network architec-

tures more obvious: the ARD parameters play a role similar

to the weights of neural networks, while the latent variables

play the role of neurons which learn hierarchies of features.

...

(a)

(b)

(c)

Figure 1: Different representations of the Deep GP model:

(a) shows the general architecture with a cascade of H hid-

den layers, (b) depicts a simplification of a two hidden layer

hierarchy also demonstrating the corresponding GP map-

pings and (c) illustrates the most general case where the

leaves and all intermediate nodes are allowed to form con-

ditionally independent groups. The terms of the objective

(15) corresponding to each layer are included on the left.

3.2 Parameters and complexity

In all graphical variants shown in figure 1, every arrow rep-

resents a generative procedure with a GP prior, correspond-

ing to a set of parameters {X̃,θ, σǫ}. Each layer of la-

tent variables corresponds to a variational distribution q(X)
which is associated with a set of variational means and

covariances, as shown in equation (11). The parent node

can have the same form as equation (11) or can be con-

strained with a more informative prior which would couple

the points of q(Z). For example, a dynamical prior would

introduce Q × N2 parameters which can, nevertheless,

be reparametrized using less variables [Damianou et al.,

2011]. However, as is evident from equations (10) and

(12), the inducing points and the parameters of q(X) and

q(Z) are variational rather than model parameters, some-

thing which significantly helps in regularizing the problem.
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Therefore, adding more layers to the hierarchy does not

introduce many more model parameters. Moreover, as in

common sparse methods for Gaussian processes [Titsias,

2009], the complexity of each generative GP mapping is

reduced from the typical O(N3) to O(NM2).

4 Demonstration

In this section we demonstrate the deep GP model in toy

and real-world data sets. For all experiments, the model

is initialised by performing dimensionality reduction in the

observations to obtain the first hidden layer and then re-

peating this process greedily for the next layers. To obtain

the stacked initial spaces we experimented with PCA and

the Bayesian GP-LVM, but the end result did not vary sig-

nificantly. Note that the usual process in deep learning is

to seek a dimensional expansion, particularly in the lower

layers. In deep GP models, such an expansion does occur

between the latent layers because there is an infinite basis

layer associated with the GP between each latent layer.

4.1 Toy Data

We first test our model on toy data, created by sampling

from a three-level stack of GPs. Figure 2 (a) depicts the true

hierarchy: from the top latent layer two intermediate latent

signals are generated. These, in turn, together generate 10-

dimensional observations (not depicted) through sampling

of another GP. These observations are then used to train

the following models: a deep GP, a simple stacked Isomap

[Tenenbaum et al., 2000] and a stacked PCA method, the

results of which are shown in figures 2 (b, c, d) respec-

tively. From these models, only the deep GP marginalises

the latent spaces and, in contrast to the other two, it is not

given any information about the dimensionality of each true

signal in the hierarchy; instead, this is learnt automatically

through ARD. As can be seen in figure 2, the deep GP finds

the correct dimensionality for each hidden layer, but it also

discovers latent signals which are closer to the real ones.

This result is encouraging, as it indicates that the model can

recover the ground truth when samples from it are taken,

and gives confidence in the variational learning procedure.

(a) (b) (c) (d)

Figure 2: Attempts to reconstruct the real data (fig. (a))

with our model (b), stacked Isomap (c) and stacked PCA

(d). Our model can also find the correct dimensionalities

automatically.

We next tested our model on a toy regression problem.

A deep regression problem is similar to the unsupervised

learning problem we have described, but in the uppermost

layer we make observations of some set of inputs. For this

simple example we created a toy data set by stacking two

Gaussian processes as follows: the first Gaussian process

employed a covariance function which was the sum of a

linear and an quadratic exponential kernel and received as

input an equally spaced vector of 120 points. We generated

1-dimensional samples from the first GP and used them as

input for the second GP, which employed a quadratic expo-

nential kernel. Finally, we generated 10-dimensional sam-

ples with the second GP, thus overall simulating a warped

process. The final data set was created by simply ignor-

ing the intermediate layer (the samples from the first GP)

and presenting to the tested methods only the continuous

equally spaced input given to the first GP and the output of

the second GP. To make the data set more challenging, we

randomly selected only 25 datapoints for the training set

and left the rest for the test set.

Figure 3 nicely illustrates the effects of sampling through

two GP models, nonstationarity and long range correlations

across the input space become prevalent. A data set of this

form would be challenging for traditional approaches be-

cause of these long range correlations. Another way of

thinking of data like this is as a nonlinear warping of the

input space to the GP. Because this type of deep GP only

contains one hidden layer, it is identical to the model de-

veloped by [Damianou et al., 2011] (where the input given

at the top layer of their model was a time vector, but their

code is trivially generalized). The additional contribution

in this paper will be to provide a more complex deep hier-

archy, but still learn the underlying representation correctly.

To this end we applied a standard GP (1 layer less than the

actual process that generated the data) and a deep GP with

two hidden layers (1 layer more than the actual generating

process). We repeated our experiment 10 times, each time

obtaining different samples from the simulated warped pro-

cess and different random training splits. Our results show

that the deep GP predicted better the unseen data, as can

be seen in figure 3(b). The results, therefore, suggest that

our deep model can at the same time be flexible enough to

model difficult data as well as robust, when modelling data

that is less complex than that representable by the hierar-

chy. We assign these characteristics to the Bayesian learn-

ing approach that deals with capacity control automatically.

4.2 Modeling human motion

For our first demonstration on real data we recreate a mo-

tion capture data experiment from Lawrence and Moore

[2007]. They used data from the CMU MOCAP database

representing two subjects walking towards each other and

performing a ‘high-five’. The data contains 78 frames of

motion and each character has 62 dimensions, leading to

124 dimensions in total (i.e. more dimensions than data).

To account for the correlated motions of the subjects we
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Figure 3: (a) shows the toy data created for the regression

experiment. The top plot shows the (hidden) warping func-

tion and bottom plot shows the final (observed) output. (b)

shows the results obtained over each experiment repetition.

applied our method with a two-level hierarchy where the

two observation sets were taken to be conditionally inde-

pendent given their parent latent layer. In the layer closest

to the data we associated each GP-LVM with a different set

of ARD parameters, allowing the layer above to be used

in different ways for each character. In this approach we

are inspired by the shared GP-LVM structure of Damianou

et al. [2012] which is designed to model loosely correlated

data sets within the same model. The end result was that

we obtained three optimised sets of ARD parameters: one

for each modality of the bottom layer (fig. 4(b)), and one

for the top node (fig. 4(c)). Our model discovered a com-

mon subspace in the intermediate layer, since for dimen-

sions 2 and 6 both ARD sets have a non-zero value. This

is expected, as the two subjects perform very similar mo-

tions with opposite directions. The ARD weights are also

a means of automatically selecting the dimensionality of

each layer and subspace. This kind of modelling is impos-

sible for a MAP method like [Lawrence and Moore, 2007]

which requires the exact latent structure to be given a priori.

The full latent space learned by the aforementioned MAP

method is plotted in figure 5 (d,e,f), where fig. (d) corre-

sponds to the top latent space and each of the other two

encodes information for each of the two interacting sub-

jects. Our method is not constrained to two dimensional

spaces, so for comparison we plot two-dimensional projec-

tions of the dominant dimensions of each subspace in figure

5 (a,b,c). The similarity of the latent spaces is obvious. In

contrast to Lawrence and Moore [2007], we did not have to

constrain the latent space with dynamics in order to obtain

results of good quality.

Further, we can sample from these spaces to see what kind

of information they encode. Indeed, we observed that the

top layer generates outputs which correspond to different

variations of the whole sequence, while when sampling

from the first layer we obtain outputs which only differ in

a small subset of the output dimensions, e.g. those corre-

sponding to the subject’s hand.

(a) (b) (c)

Figure 4: Figure (a) shows the deep GP model employed.

Figure (b) shows the ARD weights for fY1 (blue/wider

bins) and fY2 (red/thinner bins) and figure (c) those for fX .

(a) (b) (c) (d) (e) (f)

Figure 5: Left (a,b,c): projections of the latent spaces dis-

covered by our model, Right (d,e,f): the full latent space

learned for the model of Lawrence and Moore [2007].

4.3 Deep learning of digit images

Our final experiment demonstrates the ability of our model

to learn latent features of increasing abstraction and we

demonstrate the usefulness of an analytic bound on the

model evidence as a means of evaluating the quality of the

model fit for different choices of the overall depth of the

hierarchy. Many deep learning approaches are applied to

large digit data sets such as MNIST. Our specific intention

is to explore the utility of deep hierarchies when the digit

data set is small. We subsampled a data set consisting of

50 examples for each of the digits {0, 1, 6} taken from the

USPS handwritten digit database. Each digit is represented

as an image in 16× 16 pixels. We experimented with deep

GP models of depth ranging from 1 (equivalent to Bayesian

GP-LVM) to 5 hidden layers and evaluated each model

by measuring the nearest neighbour error in the latent fea-

tures discovered in each hierarchy. We found that the lower

bound on the model evidence increased with the number of

layers as did the quality of the model in terms of nearest

neighbour errors 6. Indeed, the single-layer model made 5
mistakes even though it automatically decided to use 10 la-

tent dimensions and the quality of the trained models was

increasing with the number of hidden layers. Finally, only

one point had a nearest neighbour of a different class in the

4−dimensional top level’s feature space of a model with

depth 5. A 2D projection of this space is plotted in fig.7.

The ARD weights for this model are depicted in fig. 6.

6As parameters increase linearly in the deep GP with latent
units, we also considered the Bayesian Information Criterion, but
we found that it had no effect on the ranking of model quality.
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Our final goal is to demonstrate that, as we rise in the hier-

archy, features of increasing abstraction are accounted for.

To this end, we generated outputs by sampling from each

hidden layer. The samples are shown in figure 8. There,

it can be seen that the lower levels encode local features

whereas the higher ones encode more abstract information.

1 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

layer 1

...1 2 3 4 5 6 7 8 9 10 11 12

layer 2

...

1 2 3 4 5 6 7 8 9 10

layer 3

...1 2 3 4 5 6 7 8

layer 4

...

layer 5

...

Figure 6: The ARD weights of a deep GP with 5 hidden

layers as learned for the digits experiment.

Figure 7: The nearest neighbour class separation test on a

deep GP model with depth 5.

5 Discussion and future work

We have introduced a framework for efficient Bayesian

training of hierarchical Gaussian process mappings. Our

approach approximately marginalises out the latent space,

thus allowing for automatic structure discovery in the hi-

erarchy. The method was able to successfully learn a hi-

erarchy of features which describe natural human motion

and the pixels of handwritten digits. Our variational lower

bound selected a deep hierarchical representation for hand-

written digits even though the data in our experiment was

relatively scarce (150 data points). We gave persuasive ev-

idence that deep GP models are powerful enough to en-

code abstract information even for smaller data sets. Fur-

ther exploration could include testing the model on other

inference tasks, such as class conditional density estima-

tion to further validate the ideas. Our method can also be

used to improve existing deep algorithms, something which

Figure 8: The first two rows (top-down) show outputs ob-

tained when sampling from layers 1 and 2 respectively and

encode very local features, e.g. explaining if a “0” has a

closed circle or how big the circle of a “6” is. We found

many more local features when we sampled from different

dimensions. Conversely, when we sampled from the two

dominant dimensions of the parent node (two rows in the

bottom) we got much more varying outputs, i.e. the higher

levels indeed encode much more abstract information.

we plan to further investigate by incorporating ideas from

past approaches. Indeed, previous efforts to combine GPs

with deep structures were successful at unsupervised pre-

training [Erhan et al., 2010] or guiding [Snoek et al., 2012]

of traditional deep models.

Although the experiments presented here considered only

up to 5 layers in the hierarchy, the methodology is directly

applicable to deeper architectures, with which we intend to

experiment in the future. The marginalisation of the latent

space allows for such an expansion with simultaneous reg-

ularisation. The variational lower bound allows us to make

a principled choice between models trained using different

initializations and with different numbers of layers.

The deep hierarchy we have proposed can also be used with

inputs governing the top layer of the hierarchy, leading to

a powerful model for regression based on Gaussian pro-

cesses, but which is not itself a Gaussian process. In the

future, we wish to test this model for applications in multi-

task learning (where intermediate layers could learn repre-

sentations shared across the tasks) and in modelling nonsta-

tionary data or data involving jumps. These are both areas

where a single layer GP struggles.

A remaining challenge is to extend our methodologies to

very large data sets. A very promising approach would be

to apply stochastic variational inference [Hoffman et al.,

2012]. In a recent workshop publication Hensman and

Lawrence [2012] have shown that the standard variational

GP and Bayesian GP-LVM can be made to fit within this

formalism. The next step for deep GPs will be to incorpo-

rate these large scale variational learning algorithms.
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