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Abstract

Using key tools such as Itô’s formula for general semimartingales, Kunita’s
moment estimates for Lévy-type stochastic integrals, and the exponential
martingale inequality, we find conditions under which the solutions to the stochastic
differential equations (SDEs) driven by Lévy noise are stable in probability, almost
surely and moment exponentially stable.
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1 Introduction

There has recently been increasing interest in stochastic differential equations (SDEs)
driven by noise that has discontinuous jumps. The case where the noise is obtained from
a Lévy process via its Lévy-Itô decomposition into a Brownian motion (continuous part)
and independent Poisson random measure (jump part) has attracted particular interest
and Applebaum [1] is a recent monograph devoted to this topic. Indeed such SDEs
are finding a considerable range of applications including financial economics (see e.g.
Cont and Tankov [4] and references therein), stochastic filtering and control (Øksendal
and Sulem [17]), CARMA time series models (Brockwell [2]) and stochastic resonance
in non-linear signal processing (Patel and Kosko [18]).

The long-time asymptotic behaviour of solutions to SDEs is very important. In
particular we would like to know if a stationary solution exists and to be able to estimate
the rate of convergence to it. In the literature particular attention has focussed on the
case where there is a trivial solution and Lyapunov exponents can be calculated. In
the case of SDEs driven by Brownian motion, the linear case was first investigated by
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Khasminski [8]. The extension to non-linear SDEs driven by continuous semimartingales
and also to stochastic delay and more general stochastic functional differential equations
has been extensively studied by X. Mao in a series of books and articles (see [12, 14, 15]
and references therein).

The theory is much less well-developed in the case where the driving noise has jumps.
Mao and Rodkina [16] have studied a class of SDEs driven by semimartingales with
jumps but the conditions they impose are not easily applied in the Lévy noise case. An
extensive study of linear SDEs driven by Lévy noise has been carried out by Li, Dong and
Situ [11] while Grigoriu [5] has studied some special cases (both linear and non-linear)
for SDEs driven by compound Poisson processes (see also Grigoriu and Samorodnitsky
[5]).

The purpose of this paper is to extend Mao’s techniques to the case of non-linear SDEs
driven by Lévy noise, i.e. a Brownian motion and an independent (and separately
coupled) Poisson random measure. We focus on the results given in Chapter 4 of [15]
and extend these to the Lévy case. We will omit proofs when these are straightforward
generalisations of the Brownian motion case and concentrate on those results where
more careful analysis is needed. We mainly study two types of stochastic stability in
this paper - almost sure exponential stability and moment exponential stability. Full
definitions of these and related concepts are given in section 2. In section 3 we present
our results on almost sure exponential stability while moment exponential stability is
tackled in section 4.

In general there is no obvious relation between exponential and almost sure stability (see
Kozin [9] p.107). However it is possible when moment stability holds to deduce almost
sure stability under some additional conditions as shown for the Brownian motion case
by Mao [15]. In the last section we extend this result for SDEs driven by Lévy noise.

Finally we remark that all our results extend easily to suitable SDEs with time-
dependent coefficients as in Mao [15].

Notation. Throughout this paper R+ := [0,∞). The open ball of radius c > 0 that is
centred on the origin is denoted by Bc and B̂c := Bc−{0}. Md,m(R) is the space of all

real-valued d ×m matrices and if A ∈ Md,m(R) then ||A|| :=
(∑d

i=1

∑m
j=1 |AijAji|

) 1
2 .

The Euclidean norm of a vector x is denoted by |x| throughout.

2 Preliminaries

Let (Ω,F , (Ft, t ≥ 0), P ) be a filtered probability space that satisfies the usual
hypotheses of completeness and right continuity. Assume that we are given an m-
dimensional standard Ft-adapted Brownian motion B = (B(t), t ≥ 0) with each
B(t) = (B1(t), . . . , Bm(t)) and an independent Ft-adapted Poisson random measure
N defined on R+ × (Rd − {0}) with compensator Ñ and intensity measure ν, where
we assume that ν is a Lévy measure so that Ñ(dt, dy) := N(dt, dy) − ν(dy)dt and∫
Rd−{0}(|y|2 ∧ 1)ν(dy) < ∞. We call the pair (B, N) a Lévy noise.

Let 0 ≤ t0 ≤ T ≤ ∞. Assume that the mappings f : Rd → Rd, g : Rd → Md,m(R),
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H : Rd × Rd → Rd satisfy the usual global Lipschitz and growth conditions (see
Applebaum [1] Theorem 6.2.3 p. 304). We consider SDEs driven by Lévy noise of
the form

dx(t) = f(x(t−))dt + g(x(t−))dB(t) +
∫

|y|<c
H(x(t−), y)Ñ(dt, dy) on t ≥ t0 (1)

with initial value x(t0) = x0, such that x0 ∈ Rd. Here c ∈ (0,∞] is the maximum
allowable jump size. We remark that all the results in the sequel can alternatively be
established under local Lipschitz conditions and a suitable monotone growth condition
as in Siakalli [19] p.52 (see also Mao [15], section 2.3).

We assume that f(0) = 0, g(0) = 0, H(0, y) = 0 for all |y| < c then (1) has a unique
solution x(t) = 0 for all t ≥ t0 corresponding to the initial value x(t0) = 0, which is
called the trivial solution.

We will consider three types of stability, these being stability in probability, almost sure
and moment exponential stability.

Definition 2.1 The trivial solution of (1) is said to be stable in probability if for every
pair of ε ∈ (0, 1) and r > 0, there exists a δ = δ(ε, r, t0) such that

P {|x(t)| < r for all t ≥ t0} ≥ 1− ε (2)

whenever |x0| < δ.

Definition 2.2 The trivial solution of (1) is said to be almost surely exponentially stable
if

lim sup
t→∞

1
t

log |x(t)| < 0 a.s. (3)

for all x0 ∈ Rd. The quantity in the left hand side of (3) is called the sample Lyapunov
exponent.

Definition 2.3 Assume that p > 0. The trivial solution of (1) is said to be pth moment
exponentially stable if there is a pair of constants λ > 0 and C > 0 such that

E[|x(t)|p] ≤ C|x0|p exp(−λ(t− t0)) for all t ≥ t0 (4)

for all x0 ∈ Rd. In this case we call the quantity lim supt→∞
1
t

log(E(|x(t)|p)) the pth
moment Lyapunov exponent.

In this paper we will need Kunita’s estimates (see Kunita [10]) for the solution of an
SDE of the form (1).

Theorem 2.4 (Kunita) For all p ≥ 2, there exists C(p, t) > 0 such that for each
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t > t0 ≥ 0,

E

[
sup

t0≤s≤t
|x(s)|p

]
≤ C(p, t)

{
|x0|p + E

[∫ t

t0

|f(x(r−))|pdr

]
+ E

[∫ t

t0

‖g(x(r−))‖pdr

]

+E




∫ t

t0

(∫

|y|<c
|H(x(r−), y)|2ν(dy)

) p
2

dr




+E

[∫ t

t0

∫

|y|<c
|H(x(r−), y)|pν(dy)dr

]}
(5)

where x(t0) = x0 ∈ Rd is the initial condition.

The proof can be found in Kunita [10] pp.332-335 (see also Corollary 4.2.44 in
Applebaum [1], second edition).

We will also need the following technical exponential martingale inequality for stochastic
integrals involving both Brownian motion and Poisson random measures. In the former
case the integrand lives in the space P2(T ) which is the linear space of all predictable
mappings F : [0, T ]×Ω → Rd for which P

[∫ T
0 |F (t)|2dt < ∞

]
= 1 and in the latter case

we require integrands that belong to the space P2(T, E) which comprises predictable
mappings (in the sense of Applebaum [1] Chapter 4) H : [0, T ] × E × Ω → Rd which
satisfy P

[∫ T
0

∫
E |H(s, y)|2ν(dy)ds < ∞

]
= 1 where E is a given Borel set in Rd − {0}.

Theorem 2.5 (Exponential Martingale Inequality)
Let T, α, β be any positive numbers. Assume that g ∈ P2(T ) and H ∈ P2(T, E). Then

P
[

sup
0≤t≤T

{ ∫ t

0
g(s) dB(s)− α

2

∫ t

0

∣∣g(s)
∣∣2 ds +

∫ t

0

∫

|y|<c
H(s, y) Ñ(ds, dy)

− 1
α

∫ t

0

∫

|y|<c

[
exp

(
αH(s, y)

)− 1− αH(s, y)
]
ν(dy)ds

}
> β

]
≤ exp

(− αβ
)
. (6)

For the proof see Applebaum [1] second edition pp 287-288 or Siakalli [19].

In this paper we will mainly be concerned with almost sure asymptotic stability and
moment exponential stability. However we will include one result on stability in
probability. For this we need the linear operator L : C2(Rd) → C(Rd) associated
to the SDE (1).

(LV )(x) = f i(x)(∂iV )(x) +
1
2
[g(x)g(x)T ]ik(∂i∂kV )(x)

+
∫

|y|<c

[
V (x + H(x, y))− V (x)−H i(x, y)(∂iV )(x)

]
ν(dy) (7)

where V ∈ C2(Rd), x ∈ Rd.

Theorem 2.6 Let c ∈ (0,∞) and let Bh be the open ball of radius h ≥ 2c that
is centred on the origin in Rd. Assume that there exists a positive definite function
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V ∈ C2(Bh;R+) such that

LV (x) ≤ 0

for all x ∈ Bh. Then the trivial solution of (1) is stable in probability.

We omit the proof as it is very similar to the Brownian motion case presented in Mao
[15], Chapter 4, Theorem 2.2. For full details see Siakalli [19], section 3.3. We will
however point out that there is a slight variation in the statement of Theorem 2.6 from
the Brownian motion case which involves the jump size c. This is because a stopping
time argument in Mao [15] needs to be slightly adapted to take account of the jumps
of the solution. We also point out that positive definiteness here is in the sense of
Lyapunov, i.e. we require that V (0) = 0 and that V (x) ≥ κ(|x|) for all x ∈ Bh for some
continuous non-decreasing function κ : R+ → R+.

3 Almost surely asymptotic stability

In order to be able to develop the theory in this section we need the following technical
inequality.

Lemma 3.1 If x, y ∈ Rd, x, x + y 6= 0 then

1
|x + y| −

1
|x| +

〈x, y〉
|x|3 ≤ 2|y|

|x|2
( |y|+ |x|
|x + y|

)
.

Proof : Using the Cauchy-Schwarz inequality we find that

1
|x + y| −

1
|x| +

〈x, y〉
|x|3 =

|x|3 − |x|2.|x + y|+ |x + y|.〈x, y〉
|x|3.|x + y|

≤ |x|3 − |x|2.|x + y|+ (|x + y|) .|x|.|y|
|x|3.|x + y|

≤ |x|2 − |x|.(|x| − |y|) + |y|. (|x|+ |y|)
|x|2.|x + y|

=
|y|2 + 2|x|.|y|
|x|2.|x + y| ≤ 2|y|

|x|2 .

( |y|+ |x|
|x + y|

)
.

2

The main result of this section depends critically on the result of the lemma below which
is a generalization of Mao’s work in the Brownian motion case (see [13, 15] pp. 280-281
and pp. 120-121 respectively). We will prove that under some conditions the solution
of (1) can never reach the origin provided that x0 6= 0.

Assumption 3.2 We suppose that H is always such that

ν
{

y ∈ B̂c, there exists x 6= 0 such that x + H(x, y) = 0
}

= 0.

We require that Assumption 3.2 holds for the rest of this section.
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Lemma 3.3 Assume that for any θ > 0 there exists Kθ > 0, such that

|f(x)|+ ‖g(x)‖+ 2
∫

|y|<c
|H(x, y)|

( |x|+ |H(x, y)|
|x + H(x, y)|

)
ν(dy) ≤ Kθ|x| if |x| ≤ θ. (8)

If x0 6= 0 then

P (x(t) 6= 0 for all t ≥ t0) = 1. (9)

Proof : Assume that (9) is false. This implies that for some x0 6= 0 there will be a
stopping time τ with P (τ < ∞) > 0 when the solution will be zero for the first time:

τ = inf{t ≥ t0 : |x(t)| = 0}.

Since the paths of x are almost surely right continuous with left limits (see e.g.
Applebaum [1] Theorem 6.2.3, p.304) there exists T > t0 and θ > 1 such that P (B) > 0
where

B = {ω ∈ Ω : τ(ω) ≤ T and |x(t)(ω)| ≤ θ − 1 for all t0 ≤ t ≤ τ(ω)} .

Let V (x) = |x|−1. If 0 < |x| ≤ θ it follows from (7) and Lemma 3.1 that

LV (x) ≤ |f(x)|
|x|2 +

‖g(x)‖2

|x|3 + 2
∫

|y|<c

[ |H(x, y)|
|x|2

( |H(x, y)|+ |x|
|x + H(x, y)|

)]
ν(dy) (10)

Applying (8) to (10) then

LV (x) ≤ αV (x) if 0 < |x| ≤ θ

where α is a positive constant.

Now define the following family of stopping times

τε = inf{t ≥ t0 : |x(t)| ≤ ε or |x(t)| ≥ θ}

for each 0 < ε < |x0|. Following exactly the same arguments as in Mao [13, 15] pp.
280-281 and pp. 120-121 respectively we have that

E
[
e−α(τε∧T−t0)V (x(τε ∧ T ))

]
≤ V (x0).

If ω ∈ B, then τε(ω) ≤ T and |x(τε(ω))| ≤ ε. Then,

E
[
e−α(T−t0)ε−11B

]
≤ E

[
e−α(τε−t0)|x(τε(ω))|−11B

]
= E

[
e−α(τε∧T−t0)V (x(τε ∧ T ))1B

]

≤ E
[
e−α(τε∧T−t0)V (x(τε ∧ T ))

]
≤ V (x0).

Hence,

P (B) ≤ ε eα(T−t0)|x0|−1, for all ε ≥ 0.
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Now let ε → 0. Then it follows that P (B) = 0 which contradicts the definition of the
set B and the required result follows. 2

Remark 3.4 Condition (8) in Lemma 3.3 seems quite complicated. We will now show
that there is a natural class of mappings H for which this is satisfied, at least in the
case d = 1. To begin suppose that we can find a mapping H1 for which

∫

|y|<c
|H1(x, y)|ν(dy) < Kθ|x|, for all x ∈ R.

Now let A = {(x, y) ∈ R2 : x ≥ 0,H1(x, y) ≥ 0} ∪ {(x, y) ∈ R2 : x ≤ 0,H1(x, y) ≤ 0}
and so Ac = {(x, y) ∈ R2 : x ≥ 0,H1(x, y) < 0} ∪ {(x, y) ∈ R2 : x ≤ 0, H1(x, y) > 0}.
Define H(x, y) =

(
1A(x, y)− 1Ac(x, y)

)
H1(x, y).

Hence,

|H1(x, y)| = |H(x, y)| and |x + H(x, y)| = |x|+ |H1(x, y)|.

Then we find that
∫

|y|<c
|H(x, y)|.

( |x|+ |H(x, y)|
|x + H(x, y)|

)
ν(dy) =

∫

|y|<c
|H1(x, y)|ν(dy) < Kθ|x|, for all x ∈ R.

To construct specific examples of mappings of the form H1 we can take e.g. H1(x, y) =
H2(x)y2 where H2(x)

x is bounded.

For the next two results, we require that the following local boundedness constraint on
the jumps holds:

Assumption 3.5 For all bounded sets M in Rd,

sup
x∈M

sup
0<|y|<c

|H(x, y)| < ∞.

In the sequel conditions for almost sure exponential stability of the trivial solution of
(1) will be obtained. First we need a useful technical result.

Let V ∈ C2(Rd;R+) be such that V (x) 6= 0 for every x ∈ Rd. Define the following
processes I1 = (I1(t), t ≥ t0), I2 = (I2(t), t ≥ t0) and I = (I(t), t ≥ t0) where for each
t ≥ t0

I1(t) =
∫ t

t0

∫

|y|<c

(
V

(
x(s−) + H(x(s−), y)− V (x(s−))

)

V (x(s−))
− H i(x(s−), y)

V (x(s−))
∂iV (x(s−))

)
ν(dy)ds,

(11)

I2(t) =
∫ t

t0

∫

|y|<c

(
log

(V
(
x(s−) + H(x(s−), y)

)

V (x(s−))

)
+ 1− V

(
x(s−) + H(x(s−), y)

)

V (x(s−))

)
ν(dy)ds,

(12)
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I(t) =
∫ t

t0

∫

|y|<c

(
log

(V
(
x(s−) + H(x(s−), y)

)

V (x(s−))

)
− H i(x(s−), y)

V (x(s−))
∂iV (x(s−))

)
ν(dy)ds.

(13)

Note that for each t ≥ t0, I(t) = I1(t) + I2(t).

Lemma 3.6 Let I1 = (I1(t), t ≥ t0), I2 = (I2(t), t ≥ t0) and I = (I(t), t ≥ t0) be
defined for each t ≥ t0 as in (11), (12), (13) respectively. Then for each t ≥ t0, it holds
that

(i) |I1(t)| < ∞, (ii) |I(t)| < ∞, and (iii) |I2(t)| < ∞ a.s.

Proof : (i) Following Kunita’s arguments in [10] pp. 317, by using a Taylor’s series
expansion with integral remainder term (see Burkill [3], Theorem 7.7) we obtain for
each y ∈ B̂c and x ∈ Rd

V
(
x + H(x, y)

)− V (x)−H i(x, y)∂iV (x) =
∫ 1

0
∂i∂jV

(
x + θH(x, y)

)
(1− θ)dθH i(x, y)Hj(x, y).

Hence,

|I1(t)|

≤
∫ t

t0

∫

|y|<c

∣∣∣∣∣
V

(
x(s−) + H(x(s−), y)

)− V (x(s−))−H i(x(s−), y)∂iV (x(s−))
V (x(s−))

∣∣∣∣∣ ν(dy)ds

≤ 1
2

∫ t

t0

∫

|y|<c

∣∣∣∣∣ sup
0≤θ≤1

∂i∂jV
(
x(s−) + θH(x(s−), y)

)

V (x(s−))

∣∣∣∣∣
∣∣H i(x(s−), y)Hj(x(s−), y)

∣∣ ν(dy)ds.

(14)

For each z ∈ Rd, y ∈ B̂c, 1 ≤ i, j ≤ d, define

fV
ij (z, y) = sup

0≤θ≤1

∂i∂jV
(
z + θH(z, y)

)

V (z)
.

By Assumption 3.5 it follows that

sup
t0≤s≤t

sup
0<|y|<c

|fV
ij (x(s−), y)| < ∞ a.s.
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Using the Cauchy-Schwarz inequality it follows from (14) that

|I1(t)| ≤ 1
2

sup
t0≤s≤t

sup
0<|y|<c

|fV
ij (x(s−), y)|

∫ t

t0

∫

|y|<c

∣∣H i(x(s−), y)Hj(x(s−), y)
∣∣ ν(dy)ds

≤ 1
2




d∑

i,j=1

sup
t0≤s≤t

sup
0<|y|<c

|fV
ij (x(s−), y)|2




1
2 ∫ t

t0

∫

|y|<c
|H(x(s−), y)|2ν(dy)ds < ∞,

(15)

almost surely. (ii) follows by the same arguments as in (i) and (iii) is then immediate.
2

The following is a generalization of Mao’s work [15] Chapter 4, Theorem 3.3 pp. 121.

Theorem 3.7 Let V ∈ C2(Rd;R+) and let p > 0, c1 > 0, c2 ∈ R, c3 ≥ 0 and c4 ≥ 0 be
such that for all x 6= 0

(i) c1|x|p ≤ V (x),

(ii) LV (x) ≤ c2V (x),

(iii)
∣∣∣(∂V (x))T g(x)

∣∣∣
2
≥ c3

(
V (x)

)2
,

(iv)
∫

|y|<c

[
log

(
V (x + H(x, y))

V (x)

)
− V

(
x + H(x, y))− V (x

)

V (x)

]
ν(dy) ≤ −c4.

Then

lim sup
t→∞

1
t

log |x(t)| ≤ −c3 + 2c4 − 2c2

2p
a.s. (16)

and furthermore if c3 > 2c2 − 2c4, then the trivial solution of (1) is almost surely
exponentially stable for all x0 ∈ Rd.

Remark 3.8 Using the logarithmic inequality log(x) ≤ x− 1 for x > 0 then

∫

|y|<c

[
log

(
V (x + H(x, y))

V (x)

)
− V

(
x + H(x, y))− V (x

)

V (x)

]
ν(dy) ≤ 0.

Hence condition (iv) in Theorem 3.7 is a reasonable constraint to require.

Proof : For x0 = 0, then x = 0 hence (16) holds trivially. For the rest of the proof we
assume that x0 6= 0. We first assume that (8) holds. Due to Lemma 3.3, then x(t) 6= 0
for all t ≥ t0 almost surely. Apply Itô’s formula to Z(t) = log(V (x(t))). Then for each
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t ≥ t0,

log(V (x(t))) = log(V (x0)) +
∫ t

t0

1
V (x(s−))

∂iV (x(s−))
[
f i(x(s−))ds + gij(x(s−))dBj(s)

]

+
1
2

∫ t

t0

[ 1
V (x(s−))

∂i∂kV (x(s−))[g(x(s−))g(x(s−))T ]ik

− 1
(V (x(s−)))2

∣∣∣(∂V (x(s−)))T g(x(s−))
∣∣∣
2 ]

ds

+
∫ t

t0

∫

|y|<c

[
log

(
V

(
x(s−) + H(x(s−), y)

))− log
(
V (x(s−))

)]
Ñ(ds, dy)

+
∫ t

t0

∫

|y|<c

[
log

(
V

(
x(s−) + H(x(s−), y)

))− log
(
V (x(s−))

)

− 1
V (x(s−))

∂iV (x(s−))H i(x(s−), y)
]
ν(dy)ds.

(17)

Note that the last integral in (17) is almost surely finite by Lemma 3.6.

Now using the linear operator L defined in (7) we obtain

log(V (x(t))) ≤ log(V (x0)) +
∫ t

t0

LV (x(s−))
V (x(s−))

ds + M(t)

− 1
2

∫ t

t0

1
(V (x(s−)))2

∣∣∣(∂V (x(s−)))T g(x(s−))
∣∣∣
2
ds + I2(t), (18)

where for each t ≥ t0

M(t) =
∫ t

t0

1
V (x(s−))

∂iV (x(s−))gij(x(s−))dBj(s)

+
∫ t

t0

∫

|y|<c
log

(V
(
x(s−) + H(x(s−), y)

)

V (x(s−))

)
Ñ(ds, dy).

We now apply the exponential martingale inequality (6) for T = n, α = ε and β = εn

where ε ∈ (0, 1) and n ∈ N. Then for every integer n ≥ t0, we find that

P

[
sup

t0≤t≤n

{
M(t)− ε

2

∫ t

t0

1
(V (x(s−)))2

∣∣∣(∂V (x(s−)))T g(x(s−))
∣∣∣
2
ds

− 1
ε

∫ t

0

∫

|x|<c

[
e
log

(
V

(
x(s−)+H(x(s−),y)

)
V (x(s−))

)ε

− 1

− ε log

(
V

(
x(s−) + H(x(s−), y))

V (x(s−))

)]
ν(dy)ds

}
> εn

]
≤ e−ε2n.
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Since
∑∞

n=1 e−ε2n < ∞ an application of the Borel-Cantelli lemma and elementary
probability calculations yields that

P

[
lim inf
n→∞

{
sup

t0≤t≤n

(
M(t)− ε

2

∫ t

t0

1
(V (x(s−)))2

∣∣∣(∂V (x(s−)))T g(x(s−))
∣∣∣
2
ds

− 1
ε

∫ t

0

∫

|x|<c

(
V

(
x(s−) + H(x(s−), y)

)

V (x(s−))

)ε

− 1

− ε log

(
V

(
x(s−) + H(x(s−), y)

)

V (x(s−))

)
ν(dy)ds

)
≤ εn

}]
= 1.

Hence for almost all ω ∈ Ω there is a random integer n0 = n0(ω) such that for n ≥ n0,
t0 ≤ t ≤ n,

M(t) ≤ ε

2

∫ t

t0

1
(V (x(s−)))2

∣∣∣(∂V (x(s−)))T g(x(s−))
∣∣∣
2
ds + εn

+
1
ε

∫ t

t0

∫

|y|<c

[(
V (x(s−) + H(x(s−), y))

V (x(s−))

)ε

− 1

− ε log
(

V (x(s−) + H(x(s−), y))
V (x(s−))

)]
ν(dy)ds. (19)

Substituting (19) into (18) and using conditions (ii) and (iii) it follows immediately
that

log(V (x(t)))

≤ log(V (x0))− 1
2
[(1− ε)c3 − 2c2](t− t0) + εn

+
∫ t

t0

∫

|y|<c

[
log

(
V

(
x(s−) + H(x(s−), y)

)

V (x(s−))

)
+ 1− V

(
x(s−) + H(x(s−), y))

)

V (x(s−))

]
ν(dy)ds

+
1
ε

∫ t

t0

∫

|y|<c

[(
V (x(s−) + H(x(s−), y))

V (x(s−))

)ε

− 1

− ε log
(

V (x(s−) + H(x(s−), y))
V (x(s−))

)]
ν(dy)ds (20)

for n ≥ n0, t0 ≤ t ≤ n.

Fix x ∈ Rd and define for y ∈ B̂c, hε(y) = 1
ε

∣∣∣
(

V (x+H(x,y))
V (x)

)ε
− 1− ε log

(
V (x+H(x,y))

V (x)

) ∣∣∣.
We easily deduce that

(
V (x+H(x,y))

V (x)

)ε
− 1 − ε log

(
V (x+H(x,y))

V (x)

)
≥ 0 for all y ∈ B̂c, by

using the elementary inequality eb − 1 − b ≥ 0 for b ∈ R. Since ε ∈ (0, 1) then we can
use the inequality bc < 1 + c(b− 1) for 0 < c < 1 and b > 0 (see Hardy, Littlewood and
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Pólya [7] pp. 40) to deduce that for all y ∈ B̂c,

hε(y) ≤ 1
ε

[
1 + ε

(
V (x + H(x, y))

V (x)
− 1

)
− 1− ε log

(
V (x + H(x, y))

V (x)

)]

≤ V (x + H(x, y))
V (x)

− 1− log
(

V (x + H(x, y))
V (x)

)
. (21)

Now let ε → 0. Using (21) and Lemma 3.6 (iii) we apply the dominated convergence
theorem to deduce that for all t ≥ t0

lim
ε→0

∫ t

t0

∫

|y|<c

1
ε

[(
V (x(s−) + H(x(s−), y))

V (x(s−))

)ε

− 1

− ε log
(

V (x(s−) + H(x(s−), y))
V (x(s−))

) ]
ν(dy)ds

=
∫ t

t0

∫

|y|<c
lim
ε→0

1
ε

[(
V (x(s−) + H(x(s−), y))

V (x(s−))

)ε

− 1
]

− log
(

V (x(s−) + H(x(s−), y))
V (x(s−))

)
ν(dy)ds

= 0. (22)

Hence by (22) for n ≥ n0, t0 ≤ t ≤ n, (20) becomes

log(V (x(t))) ≤ log(V (x0))− 1
2

(c3 − 2c2) (t− t0)

+
∫ t

t0

∫

|y|<c

[
log

(
V

(
x(s−) + H(x(s−), y)

)

V (x(s−))

)
+ 1

− V
(
x(s−) + H(x(s−), y)

)

V (x(s−))

]
ν(dy)ds. (23)

Now substituting condition (iv) into (23), we see that for almost all ω ∈ Ω, t0 +n− 1 ≤
t ≤ t0 + n, n ≥ n0

1
t

log(V (x(t))) ≤ − t− t0
2t

(c3 − 2c2) +
log(V (x(t0)))

t0 + n− 1
− t− t0

t
c4.

Now applying condition (i), the required result follows. In the case where (8) fails
to hold we may assume without loss of generality that H 6= 0 and that the process
x(t) hits the origin infinitely many times (with probability one). Define an increasing
sequence of stopping times (Tn, n ∈ N) by T1 = inf{t > t0, x(t) = 0} and for
n > 1, Tn = inf{t > Tn−1, x(t) = 0}. We now argue as above but with x(t) replaced
throughout by y(t) where

y(t) = x(t)1[t0,T1)(t) +
∞∑

n=1

x(t)1(Tn,Tn+1)(t). 2
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4 Moment Exponential Stability

The main aim of this section is to introduce criteria for the solution of an SDE driven by
Lévy noise to be moment exponentially stable and to derive a relation between moment
and almost sure exponential stability.

Theorem 4.1 Let p, α1, α2, α3 be positive constants. If V ∈ C2(Rd;R+) satisfies

(i) α1|x|p ≤ V (x) ≤ α2|x|p,
(ii) LV (x) ≤ −α3V (x),

for all x ∈ Rd, then

E [|x(t)|p] ≤ α2

α1
|x0|p exp(−α3(t− t0)) for all t ≥ t0 (24)

for all x0 ∈ Rd. As a result the trivial solution of (1) is pth moment exponentially
stable under conditions (i) and (ii) and the pth moment Lyapunov exponent should not
be greater than −α3.

The proof is omitted as it is a straightforward extension of the Brownian motion case
as can be found in [15] Chapter 4, Theorem 4.4 pp. 130. We will however give a simple
(linear) example to confirm that the conditions (i) and (ii) can be verified in the jump
case. We take d = 1 and also c = 1. Let V (x) = x2 so that (i) is automatically satisfied
with p = 2. Now choose f(x) = bx where b ∈ R, g(x) = x and H(x, y) = xy. Then
(7) yields LV (x) =

(
2b + 1 +

∫
|y|<1 |y|2ν(dy)

)
V (x) and so (ii) is satisfied provided b is

chosen to satisfy b ≤ −1
2

(
1 +

∫
|y|<1 |y|2ν(dy)

)
.

We note that if the hypotheses of Theorem 4.1 hold then the trivial solution of (1) is
almost surely exponential stable as can be seen by taking c3 = c4 = 0 in Theorem 3.7. In
the last part of the paper we will give conditions under which pth moment exponential
stability for p ≥ 2 always implies almost surely exponential stability for our equation.

Assumption 4.2 For all 2 ≤ q ≤ p and K > 0
∫

|y|<c

∣∣H(x, y)
∣∣qν(dy) ≤ K

∣∣x∣∣q.

We require that Assumption 4.2 holds for the remainder of this section.

The following is an extension of Mao’s work [15] Theorem 4.2, Chapter 4 pp. 128 that
refers to SDEs driven by Brownian motion. We will generalize this result and give the
relationship between the pth moment exponential stability and almost sure exponential
stability for the trivial solution of (1).

Remark 4.3 Recall that in the context of stability theory we are always assuming that
f(0) = 0 and g(0) = 0, hence from the Lipschitz conditions on f and g we deduce that
for all x ∈ Rd there exists L > 0 such that |f(x)| ≤ √

L|x| and ‖g(x)‖2 ≤ L|x|2.
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Hence,

xT f(x) ∨ ‖g(x)‖2 ≤ |xT f(x)| ∨ ‖g(x)‖2 ≤ |x|.|f(x)| ∨ ‖g(x)‖2 ≤ L′|x|2 (25)

where L′ = max{√L,L} and this will be used in the proof of the theorem below.

Theorem 4.4 Assume that Assumption 4.2 holds. For p ≥ 2, pth moment exponential
stability, of the trivial solution to (1), implies almost sure exponential stability.

Proof : Fix any x0 6= 0 on Rd and let n ∈ N. Apply Ito’s formula to Z(t) = |x(t)|p, then
using (25) and taking expectations it follows that

E

[
sup

t0+n−1≤t≤t0+n
|x(t)|p

]

≤ E [|x(t0 + n− 1)|p] + α

∫ t0+n

t0+n−1
E [|x(s−)|p] ds

+ E

[
sup

t0+n−1≤t≤t0+n

∫ t

t0+n−1
p|x(s−)|p−2x(s−)T g(x(s−))dB(s)

]
+ I1 (26)

where α = pL′ + pL′
2 [1 + (p− 2)] and

I1 = E

[
sup

t0+n−1≤t≤t0+n

{∫ t

t0+n−1

∫

|y|<c

(
|x(s−) + H(x(s−), y)|p − |x(s−)|p

)
Ñ(ds, dy)

+
∫ t

t0+n−1

∫

|y|<c

(
|x(s−) + H(x(s−), y)|p − |x(s−)|p

− p|x(s−)|p−2x(s−)T H(x(s−), y)
)

ν(dy)ds

}]
.

For the Brownian motion integral, as in Mao [15] pp. 129 we apply the Burkholder-
Davis-Gundy inequality:

E

[
sup

t0+n−1≤t≤t0+n

∫ t

t0+n−1
p|x(s−)|p−2x(s−)T g(x(s−))dB(s)

]

≤ 1
2
E

[
sup

t0+n−1≤t≤t0+n
|x(t−)|p

]
+ 16p2L′

∫ t0+n

t0+n−1
E[|x(s−)|p]ds. (27)

Applying Kunita’s estimates for f = 0 and g = 0 it follows that

I1 ≤ β(p, t)

{
E




∫ t0+n

t0+n−1

(∫

|y|<c
|H(x(s−), y)|2ν(dy)

) p
2

ds




+ E

[(∫ t0+n

t0+n−1

∫

|y|<c
|H(x(s−), y)|pν(dy)ds

)]}
(28)
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where β(p, t) is a positive constant that depends only on t and p. Using Assumption
4.2 within (28), we obtain

I1 ≤ γ(p, t)E
[∫ t0+n

t0+n−1
|x(s−)|pds

]
(29)

where γ(p, t) = β(p, t)(K
p
2 + K). Then (26) becomes

E

[
sup

t0+n−1≤t≤t0+n
|x(t)|p

]
≤ E[|x(t0 + n− 1)|p] + 1

2
E

[
sup

t0+n−1≤t≤t0+n
|x(t−)|p

]

+(c1 + 16p2L′ + γ(p, t))
(∫ t0+n

t0+n−1
E[|x(s)|p]ds

)
. (30)

Rearranging, for p ≥ 2

E

[
sup

t0+n−1≤t≤t0+n
|x(t)|p

]
≤ 2E[|x(t0 + n− 1)|p] + δ(p, t)

∫ t0+n

t0+n−1
E[|x(s)|p]ds (31)

where δ(p, t) is a positive constant depending on p and t. Now we argue as in Mao [15]
pp. 129-130 and the required result follows. 2
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