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Abstract 

Springback after unloading is an issue that directly reduces the accuracy of bent tubes, especially 

for Ti-alloy tubes which are of high strength and low Young’s modulus. The Young’s modulus, E; 
wall thickness, t; and neutral layer, De, of a tube vary during the bending process. These variations 

may influence the bending deformation of components, thus on springback. Considering these 

variations, an analytic elastic-plastic tube bending springback model was established in this study 

based on the static equilibrium condition. When these variations were considered individually or 

combined, the resulting springback angles were all larger and closer to the experimental results 

than the results when variations were not considered for a D6 mm × t0.6 mm Ti-3Al-2.5V Ti-alloy 

tube. The t variation contribution is the large stand decreases the prediction error by 41.2%–45.3%. 

De variation ranks second and decreases the error by 21.2%-25.3%. E variation is the least 

significant, decreasing the error by only 2.4%. Furthermore, the influence of the stable Young’s 
modulus Ea on the springback is larger than the initial Young’s modulus E0. Therefore, for the 

bending springback of tubes with a small difference between E0and Ea and under a normal bending 

radius, E variation effects can be neglected. While for tubes with large differences between E0 and 

Ea, and high springback prediction requirements, the E variation should be replaced by Ea. The 

influences of the initial tube sizes, material properties and bent tube sizes of the Ti-3Al-2.5V tube 

on springback were obtained using the newly developed model. 
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Abstract 

Springback after unloading is an issue that directly reduces the accuracy of bent tubes, especially 

for Ti-alloy tubes which are of high strength and low Young’s modulus. The Young’s modulus, E; wall 

thickness, t; and neutral layer, De, of a tube vary during the bending process. These variations may 

influence the bending deformation of components, thus on springback. Considering these variations, an 

analytic elastic-plastic tube bending springback model was established in this study based on the static 

equilibrium condition. When these variations were considered individually or combinedly, the resulting 

springback angles were all larger and closer to the experimental results than the results when variations 

were not considered for a D6 mm × t0.6 mm Ti-3Al-2.5V Ti-alloy tube. The t variation contribution is 

the largest and decreases the prediction error by 41.2%-45.3%. De variation ranks second and decreases 

the error by 21.2%-25.3%. E variation is the least significant, decreasing the error by only 2.4%. 

Furthermore, the influence of the stable Young’s modulus Ea on the springback is larger than the initial 

Young’s modulus E0. Therefore, for the bending springback of tubes with a small difference between E0 

and Ea and under a normal bending radius, E variation effects can be neglected. While for tubes with 

large differences between E0 and Ea, and high spingback prediction requirements, the E variation 

should be replaced by Ea. The influences of the initial tube sizes, material properties and bent tube sizes 

of the Ti-3Al-2.5V tube on springback were obtained using the newly developed model.  

Keywords: Springback; Analytic model; Tube bending; Young’s modulus; Wall thickness; Neutral 

layer. 

1. Introduction 
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When metal tubes undergo bending to form bent tubes, elastic-plastic deformation occurs. The 

elastic deformation will recover after unloading, i.e., springback will occur. The springback directly 

influences the precise form of the bent tube. When the springback value exceeds the permissible error, 

the geometric shape cannot satisfy the requirement, which significantly reduces the performance of the 

bent tube. This phenomenon is especially remarkable for tubes with high strength and low Young’s 

modulus, such as Ti-alloy tubes. Thus, tube springback analyses after bending deformation have gained 

significant interest.  

With the development of numerical simulation technology, the finite element method (FEM) has 

become one of most common methods used to analyze stainless steel, Al-alloy and Ti-alloy tube 

springback after bending. Via FE simulation, Murata et al. (2008) investigated the springback of 

Al -alloy and stainless steel tubes in the draw bending and press bending. They found that the hardening 

exponent had little effect on the springback. Paulsen and Welo (1996) conducted three-dimensional (3D) 

elastic-plastic finite element analyses (FEA) focused on the bending of Al -alloy profiles. They found 

that springback was influenced by the strain-hardening characteristic and the amount of axial loading, 

including that decreased strain hardening and increased tension reduced springback. Liao et al. (2014) 

performed FEA on twist springback prediction of asymmetric tube in rotary draw bending with 

different constitutive models. They found that the springback angle is sensitive to the hardening model. 

Xue et al. (2015) developed an FE model of mandrel rotary draw bending for accurate twist springback 

prediction of an asymmetric aluminium alloy tube. They found that the interfacial frictions have 

significant effects on twist springback of the tube. Through FE simulations, Zhan et al. (2014) found 

that Young’s modulus variations had no effect on the variations trends of springback angles or the 

springback radius with the bending angle of Ti-alloy tubes. However, it did cause the values increase. 

Gu et al. (2008) established an FE model for the numerical controlled (NC) bending of thin-walled 

Al -alloy tubes and obtained the effects of geometry, materials and process parameters on springback. 

The results showed that the springback angle increases with the relative bending radius and Poisson 

ratio. Jiang et al. (2010b) developed an FE model for simulating the entire bending and springback 

process of a Ti-3Al-2.5V tube. Using the model, Jiang et al. (2010a) revealed the coupling effects of 

the bending angle and material properties on the springback angle of the Ti-3Al-2.5V tube. They found 

that, regardless of the bending angle, the Young’s modulus, strength coefficient and hardening exponent 

have significant effect on the springback angle. Huang et al. (2015) embedded the variation law of the 
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contractile strain ratio (CSR) with deformation into the FE simulation for the NC bending of 

Ti-3Al-2.5V tubes. Through considering this CSR variation, Zhan et al. (2015) found that the 

prediction accuracy of the Ti-3Al-2.5V tube springback angles can be improved.  

Considering that theoretical analysis can quickly solve for the springback and reflect the 

associated mechanism, law and major influence factors, it is important to analyze tube bending 

springback using analytic methods. In recent years, multiple analytic models have been developed to 

predict tube bending springback based on the classical springback theory, in which the springback 

bending moment and the bending moment are assumed equal in quantity and opposite in direction. 

Based on the classical springback theory, Al -Qureshi and Russo (2002) derived an analytic formula for 

predicting springback and residual stress distributions of thin-walled aluminum tubes. However, in 

their study, the material was presumed to be elastic-perfectly plastic, which does not reflect the 

response of metal tubes during bending deformation. Thus, to improve tube bending springback 

prediction accuracy, analytic models have been derived by assuming the material to be elastic-plastic 

hardening material. Megharbel et al. (2008) modified Al-Qureshi’s model by assuming the material to 

be elastic-exponent hardening plastic material. Based on the classic springback theory, Li et al. (2012) 

deduced a springback equation by assuming the material to be an exponent hardening plastic material 

and considered neutral layer variation (or offset) effects. However, the elastic deformation was 

neglected in their analysis. In addition, making use of the triangle similarity relation of the tangential 

deformation during tube bending loading and unloading, E et al. (2009b) deduced a calculation formula 

for a 1Cr18Ni9Ti tube bending springback. They found that the springback angle decreases with the 

plastic modulus and relative wall thickness, but increases with the hardening exponent and Young’s 

modulus. 

As commonly known, the wall thickness and neutral layer vary with tube bending deformation. 

Using an FEA on NC bending of two Ti-3Al-2.5V tubes with outside diameters of 8 mm and 14 mm, 

respectively, under various normal bending radii, Jiang et al. (2011) discovered that the wall 

thicknesses along the crest lines of two bent tubes both resemble plateaus when the bending angle 

exceeds the critical angle. The maximum thinning reached 7% and 12.5% for the 8 mm and 14 mm 

tubes, respectively, and the maximum thickening reached 11% and 16% for both tubes, respectively. 

Through theoretical analyses, Tang (2000) considered that the neutral layer should move toward the 

bending center to balance the moment of the internal force because the outer wall is thinner than the 
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inner wall during pure tube bending. E et al. (2009a) found that the amount of neutral layer movement 

is inversely proportional to the relative bending radius based on theoretical analyses. Stachowicz (2000) 

found that the neutral layer of a copper elbow shifts outwards the bending center when the stress 

pattern is asymmetric by the theoretical analysis. Through 3D numerical analysis for a torque 

superposed spatial bending (TSSB) of high strength steel square profiles, Hudovernik et al. (2013) also 

found that there exists stress neutral layer shifts outwards the bending center. In recent years, the 

Young’s modulus of tubes has been observed to vary with the deformation level. Through repeated 

loading-unloading experiments, Zhan et al. (2014) found that the Young’s modulus of Ti-3Al-2.5V 

tubes rapidly decreased in the initial stage, then slowly decreased until stabilizing in the final stage. 

The variation can be approximately expressed as an exponential model. These Young’s modulus, wall 

thickness and neutral layer variations influence bending deformation and springback of components. 

However, most existing analytic tube bending springback models did not consider these variations. 

Furthermore, most existing analytic tube bending springback models are based on the classical 

springback theory, where the springback bending moment and the bending moment are assumed equal 

in quantity and opposite in direction. However, for a bent tube undergoing an elastic-plastic 

deformation, after unloading, residual deformation, residual stress and residual bending moment still 

exist. This means that the springback bending moment should not equal the bending moment, which no 

longer meets the unloading principle of the classical springback theory. Therefore, an analytic 

springback model was derived in this study based on the static equilibrium condition and the 

deformation compatibility of deformation and aimed at improving the accuracy of tube bending 

springback predictions. In the model, the material was assumed to be an elastic-plastic hardening 

material and Young’s modulus, wall thickness and neutral layer variations were considered. This model 

was evaluated by investigating the contributions of Young’s modulus, wall thickness and neutral layer 

variations to the springback of a Ti-3Al-2.5V Ti-alloy tube. Then, the model was compared to existing 

springback analytic models and experimental results. Finally, the model was used to determine the 

influencing laws of various springback factors on the Ti-alloy tube. 

2. Theoretical basis 

2.1 Fundamental assumptions 

Deformation processes are extremely complicated during tube bending and springback. The 

following assumptions are given to develop a springback prediction model for tube bending:  
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(1) The tube material is continuous and exhibits elastic-plastic and exponent-hardening behaviors, 

which satisfy the stress-strain relationship showing in Eq. (1). 
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where E is Young’s modulus, K is strength coefficient, n is hardening exponent, b is a constant, ı is the 

flow stress, İ is strain, ıs is the yielding stress, İs is the yielding strain and at yielding point 

n
ss bKE )(   .  

The Young’s modulus variation with deformation is assumed to be a function of equivalent strain 

during elastic-plastic tube bending, as shown in Eq. (2). 
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where 0E  is initial Young’s modulus and Eȝ is the Young’s modulus relative to plastic deformation in 

the current moment, which can be expressed as Eq. (3) (Chatti and Hermi, 2011 and Zhan et al., 2014). 

0 0 a( )(1-e )E E E E 
                                   (3) 

where   is a mechanical parameter that determines the rate of decrease of Eȝ,   is the equivalent 

strain and Ea is the stable Young’s modulus for an infinitely large equivalent strain in Eq. (3).  

(2) The shear stress, shear strain, thickness stress and circumferential deformation are ignored 

during tube bending and springback, which can be expressed by Eq. (4). 
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where ( )ij i j  , ( )ij i j  , t  and D  represent the shear stress, shear strain, thickness stress and 

circumferential strain, respectively. 

(3) The tube is isotropic and Bauchinger effects are ignored. 

(4) The arbitrary cross-section of the tube remains plane before and after bending. 

(5) The stress neutral layer always coincides with the strain neutral layer during the bending 

process. 

(6) The volume is constant during the bending process, which can be written as Eq. (5).  
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0 zyx                                 
(5)

 

where ,x y z  ,  represent the three normal strain components. 

(7) The friction between the dies and tube is neglected during the bending process.  

(8) The inside radius of the tube, r, is considered constant because there is a mandrel inside the 

tube during the bending process. 

(9) The flattening during tube bending was neglected. 

2.2 Mechanical basis 

(1) The balance differential equation and deformation equation compatibility 

The material deformation obeys the balance differential equation (Eq. (6)) and deformation 

equation compatibility (Eq. (7)). 
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where ıx, ıy and ız are three normal stress components and Ĳyx, Ĳzx, Ĳxy, Ĳzy, Ĳxz, Ĳyz are the six shear stress 

components. 
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where Ȗyx, Ȗzx, Ȗxy, Ȗzy, Ȗxz, Ȗyz are the six shear strain components and u, v and w are the three 

displacement components.

 
(2) Generalized Hooke’s law 

When the material undergoes elastic deformation, its stress-strain relationship follows the elastic 

generalized Hooke’s law, which can be written as Eq. (8). 
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where ν is Poisson ratio. 

(3) Total strain theory 

When the material undergoes plastic deformation, it’s volume is invariant, and the material obeys 

the Hencky total strain theory containing the elastic strain (Hencky, H., 1924), as shown in Eq. (9). 
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where E  and G are plastic modulus and shear modulus, respectively.

 
(4) Equivalent stress and equivalent strain 

The equivalent stress and equivalent strain can be obtained by Eqs. (10) and (11), respectively. 

2 2 2
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where 1 , 
2  and 3  are the three major stresses, respectively, and 

1 , 2  and 3  are three 

major strains, respectively. 

When the shear stress and strain are ignored during elastic-plastic bending, the major stress is 

equal to the normal stress, and the equivalent stress and strain formulas can be simplified as Eqs. (12) 

and (13), respectively. 

2 2 21
( ) ( ) ( )

2
x y y z z x                          (12) 

2 2 22
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3 x y y z z x                          (13) 

(5) Yield condition 

Tubes are assumed to be isotropic materials that obey the von Mises yield criterion (Eqs. (14) and 

(15)) when elastic-plastic deformation occurs. 
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where '
2J  is the second deviator stress tensor. 

Combining Eq. (10) and Eq. (15), the yield equation can be written as Eq. (16). 

s=                                  (16)

 

(6) Static equilibrium condition 

When the bent tube reaches a static equilibrium state after springback, the sum of axial forces on 

the tube cross-section is zero, as shown in Eq. (17). 

0F                                  (17)

 

3. Development of a tube bending springback model 

3.1 Proposal of a springback analysis method 

The unloading principle of the classic springback theory states that the springback bending 

moment during unloading and the bending moment during loading are equal in quantity and opposite in 

direction. During the elastic bending process, tube bending deformation will completely recover after 

unloading and the residual deformation is zero. Thus, the springback bending moment and the bending 

moment are equal in quantity and opposite in direction, which matches the classical springback theory 

unloading principle. However, for a tube undergoes an elastic-plastic bending, the deformation includes 

elastic deformation and plastic deformation. After unloading, residual deformation and residual stress 

exist (Jiang et al., 2010b), which means that a residual bending moment still exists. Therefore, the 

value of the springback bending moment should not be equal to the bending moment. This means that 

it no longer meets the classical springback theory unloading principle. 

Therefore, this study proposes an elastic-plastic bending springback analysis based on the static 

equilibrium condition, where the residual stress and residual bending moment are allowed to exist after 

springback while they meet the static equilibrium condition. According to the condition, the sum of the 

residual stress after the springback is zero, for which an analytic tube bending springback model can be 

obtained. In the model, Young’s modulus, wall thickness and neutral layer variations with deformation 

were incorporated to improve prediction accuracy.  

3.2 Development of an analytic tube bending springback model 

For a tube experiencing external loading, the wall thickness of the outer arc area becomes thinner 

and the wall thickness of inner arc area becomes thicker due to tensile and compressive deformation in 

these two zones, respectively. A strain neutral layer exists between the outside tensile deformation and 
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the inside compressive deformation of the tube. The strain neutral layer slightly offset toward the 

bending center from the geometrical neutral layer (De in Fig. 1) because the stress pattern is 

asymmetric (Stachowicz, 2000). Thus, it balances the force moments of the inside and outside 

deformations during the bending process.  

Elastic deformation occurs first during external loading. As the external loading increases, 

deformation increases. During the process, the outermost and innermost materials reach a yield limit. 

They then undergo plastic deformation. The closer to the neutral layer, the less plastic deformation 

occurs. Certain material near the neutral layer experiences elastic deformation during the entire 

bending process. Thus, the bent tube cross-section can be divided into two elastic deformation zones 

and two plastic deformation zones, as shown in Fig. 1, including an outside elastic deformation zone, 

an outside plastic deformation zone, an inside elastic deformation zone and an inside plastic 

deformation zone. In Fig. 1, 1he  is the distance from the parting line of the outside elastic deformation 

zone and the outside plastic deformation zone to the geometrical neutral layer, with a position angle of 

Į. 2he  is the distance from the parting line of the inside elastic deformation zone and the inside plastic 

deformation zone to the geometrical neutral layer, with a position angle of  . 

 

Fig. 1 The bent tube cross-section. 

3.2.1 Stress during the tube bending process 

In the elastic deformation zone, the stress-strain relationship of material obeys the general Hooke’s 

law (Eq. (18)). 
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where   and 
D  are the axial stress and the circumferential stress, respectively, and    and

t   

are the axial strain and thickness strain, respectively. 

According to Eqs. (4) and (18), the axial stress-strain equation in the elastic deformation zone can 

be written as Eq. (19). 

0
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In the plastic deformation zone, the stress-strain equation can be written as Eq. (20), according to 

the Hencky total strain theory containing the elastic strain (Hencky, H., 1924). 
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According to Eqs. (4) and (20), Eq. (21) can be obtained. 

2
 D                                  (21) 

According to Eqs. (4) and (5), the relationship between the axial and thickness strain in the 

plastic deformation zone can be written as Eq. (22). 

 t                                 (22) 

According to Eqs. (12), (13), (21) and (22), the equivalent stress and equivalent strain can be 

written as Eqs. (23) and (24), respectively. 

_
2 2 21 3

( )
22

D D                               (23) 

_ 2
3                                  (24) 

According to Eqs. (1), (23) and (24), the axial stress-strain relationship of the plastic deformation 
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zone during the tube bending process can be written as Eq. (25). 

2 2 2

3 3 3
nK

b     ˄ ˅                          (25) 

The neutral layer variation (or offset) can be determined via Eq. (26), according to assumption (5) 

in Section 2.1 and the results of E et al. (2009a). 

2
e ( / ) 1D r r                                (26) 

According to the definition of strain, the thickness strain and axial strain on a bent tube 

cross-section can be expressed as Eqs. (27) and (28), respectively, when considering the neutral layer 

variation (or offset). 

0

ln
t

t
t                                    (27) 

eD

y






 ln                               (28) 

In Eqs. (26)-(28) and Fig. 1, De is the stress and strain neutral layer variation/offset, r is the inside 

tube radius, 
0t  is the initial tube wall thickness, t is the tube wall thickness after bending, ȡ is the 

bending radius before springback and y is the distance between the measured position and the 

geometric neutral layer, which can be written as Eq. (29). 

cos)( try                              (29) 

where   is the position angle of the tube cross-section, as shown in Fig. 1.
 

By substituting Eqs. (27)-(29) into Eq. (22), the tube wall thickness after bending can be deduced 

as Eq. (30). 



















2
,

cos2

)(cos4)cos()cos(

2
,

)(

e0
2

0e











Dtrr

tD

t       (30)

 

From Eqs. (24) and (28), the axial strain between the elastic deformation zone and the plastic 

deformation zone at the outside portion of the tube cross-section can be written as Eq. (31) since where 

yielding occurs. 

1
s

e

2 2
= ln

3 3

he

D 
  



 


                         (31)
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According to Eq. (31), 1he  can be expressed as Eq. (32). 

3

2
1 e( )e -

s

he D


                                (32) 

From Fig. 1, Eq. (33) can be obtained. 

 cos)(1 trhey                           (33) 

According to Eq. (30), tĮ can be expressed as Eq. (34). 




 cos2

)(cos4)cos()cos( e0
2 Dtrr

t


          (34) 

By substituting Eqs. (32) and (34) into Eq. (33),   can be deduced as Eq. (35). 

                
  s s

s

3 3

2 2
e

3

2
0

e e

arccos

e

D

r t

 



 



 
  

  



                     (35)

 

Using the same procedures that produced 1he  and Į, 2he  and   can be determined via Eqs. 

(36) and (37), respectively. 

3

2
2 e( )e

s

he D


 


                            (36) 

  s s

s

3 3
- -

2 2
e

3
-

2
0

e e

arccos

e

D

r t

 



 



 



 
  

  



                  (37)

 

From Eqs. (19), (25), (35) and (37), the axial stress on the bent tube cross-section can be 

expressed by Eq. (38). 

0
2

2 2
, 0

3 3

,
1

2 2
,

3 3

n

n

K
b

E

K
b



 



  

    


   

      
 

   
        

 

                      (38) 

3.2.2 Residual stress after springback  

The residual axial stress, r
 , after springback can be expressed as Eq. (39). 

r
                                   (39) 

whereΔıθ is the axial stress during springback. Assuming that the deformation during the springback 
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process is completely elastic deformation (Al-Qureshi, 1999), the axial stress during springback can be 

obtained by Eq. (40), according to Eq. (19). 

2 2
e

-
ln( )

1 1 +
e

e

yE E

D 
 

  
   

 
                     (40) 

where   is the axial strain during springback, e  is the springback radius (Fig. 1) and 

e

ln( )e

e

y

D







 can be simplified to e

ee

y D

D
 


 because the axial strain during springback is very small. 

From Eqs. (2) and (38)-(40), the residual axial stress distribution on the cross-section after 

springback can be written as Eq. (41). 

2
e

0
2

e

2
e

2 2
( ) , 0

13 3

( ),
1

2 2
( ) ,

13 3

n u e

e

r e

e

n u e

e

E y DK
b

D

E y D

D

E y DK
b

D



 



  
 

    
 

   
 

  
     

  
     
  
     

 

                (41) 

3.2.3 Springback model 

According to the static equilibrium condition (Eq. (17)), the sum of the residual axial stress after 

springback should equal zero (Eq. (42)). 

 


 
0

2 0)2( drttF r
                     (42)  

From Eqs. (41) and (42), Eqs. (43) and (43.1) can be obtained. 
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where C1 is the sum of the axial forces in the outside plastic deformation zone before springback, C2 is 

the sum of the axial forces in the outside and inside elastic deformation zones before springback, C3 is 

the sum of the axial forces in the inside plastic deformation zone before springback, C4 is -( e eD  ) 

times the sum of the axial forces in the outside plastic deformation zone during springback, C5 is 

-( e eD  ) times the sum of the axial forces in the outside and inside elastic deformation zones during 

springback, C6 is -( e eD  ) times the sum of the axial forces in the inside plastic deformation zone 

during springback and trtM 22  . 

Thus, the residual curvature after springback can be obtained by Eq. (44). 

e e

1 1 1
r
e eD D  
 

 
                            (44) 

Because the difference in tube fiber lengths before and after springback is minor, they can be 

assumed equal (Eq. (45)). 

( - ) r r
e eD                                  (45) 

where r  is the bending angle after springback. 

From Eqs. (44) and (45), the springback angle can be obtained as Eq. (46). 

e e

-r eD

D

   


   


                             (46) 

3.2.4 Resolving for the springback angle 

The springback angle is an implicit function of the position angle,  , according to Eqs. (43), 

(43.1) and (46). Thus, it is difficult to explicitly express and directly resolve. Therefore, numerical 

integral methods can be used to resolve the values of C1-C6, allowing the tube springback angle after 

bending to be obtained. The detailed flow chart used to solve for the springback angle is shown in Fig. 

2. 
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Input material parameters of tube: K, n, b, E0, Ea, ȟ, Ȟ;  initial geometric 
parameters of tube: t0, r; geometric parameters of bent tubes: ȡ, ș

 According to Eq. (30), calculate wall thickness of tube after bending: t 

According to Eq. (26), calculate the offset of neutral layer: De

                      According to Eq. (28), calculate axial strain: 

According to Eq. (29), calculate the distance of the measure point to the 
geometry neutral layer: y

According to Eq. (35), calculate the parting angle between the outside 
elastic deformation zone and the outside plastic deformation zone: Į 

                 According to Eq. (46), calculate springback angle: 





            According to                        , calculate yielding strain:  s s= ( + nE K b  ˅ s

According to Eq. (37), calculate the  parting angle between the inside 
elastic deformation zone and the inside plastic deformation zone: ȕ 

                  According to Eq. (3), calculate Young's modulus:   

According to                         , calculate value of factor: M trtM 22   

E

Loop 3rd: i, ,   

        Set loop increments in outside plastic deformation zone, elastic
   deformation zone and inside plastic deformation zone:o, ,n i  

Loop 2nd: n, ,   Loop 1st: o0, ,  

For Loop 1st, calculate 
C1, C4 using numerical 

integration method 
based on Eq. (43.1)  

For Loop 2nd, calculate 
C2, C5 using numerical 

integration method 
based on Eq. (43.1) 

For Loop 3rd, calculate 
C3, C6 using numerical 

integration method 
based on Eq. (43.1)  

According to Eq. (43), calculate  springback curvature: 1/(ȡe+De) 

Carry out three loops:

Start

End  

Fig. 2 Flow chart used to solve for the springback angle 

4. Results and discussion 

First, the analytic tube bending springback model developed in this study was evaluated based on 

the contributions of Young’s modulus, wall thickness and neutral layer variations to the springback. 

Then, this model was testified via comparison with existing analytic models and experimental 

springback results. Furthermore, error sources relative to this model were analyzed. Finally, this model 

was applied to a tube bending to investigate the influence of the initial tube geometric shapes, tube 

material properties and bent tube geometric shapes. 

In recent years, Ti-3Al-2.5V Ti-alloy tubes have been used frequently in fields of aeronautics and 

aerospace due to their advantages of high strength/weight ratio, excellent fatigue resistance and 

corrosion resistance, and good welding performance (Zhan et al., 2015). Therefore, two sizes of 

Ti-3Al-2.5V Ti-alloy tubes were analyzed in this study. One is a D6 mm × t0.6 mm tube with an initial 

outside diameter of 6 mm and wall thickness of 0.6 mm, while the other is a D12 mm × t0.9 mm tube 

with an initial outside diameter of 12 mm and wall thickness of 0.9 mm. The property parameters of 
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these two tubes were obtained via tensile testing, as shown in Table 1.  

 

Table 1 Material property parameters of the tubes. 

Parameters 
Tubes 0E /MPa 

aE /MPa     K /MPa n b 

D6 mm × t0.6 mm 97541 94215 -97.45 0.3 1038.9 0.093 -0.0040 
D12 mm × t0.9 mm 100380 94109 -59.08 0.291 1326.5 0.070 -0.0006 

 

The bending experiments for D6mm×t0.6mm Ti-3Al-2.5V tubes were conducted on an Eaton 

VB50 rotary bender, and the bending experiments for D12mm×t0.9mm Ti-3Al-2.5V tubes were 

conducted on a GQ W27YPC-63 rotary bender. The basic die composition for rotary tube bending is 

composed of a bending die, a clamping die, a wiper die, a pressure die, a cylindrical mandrel and 

several balls (or a cylindrical mandrel with a hemisphere head), as shown in Fig. 3. The die 

composition for bending the D6mm×t0.6mm Ti-3Al-2.5V tubes was composed of a bending die, a 

clamping die, a pressure die and a cylindrical mandrel with a hemisphere head. For the bending of the 

D12mm × t0.9mm Ti-3Al-2.5V tubes, a wiper die was applied, and the cylindrical mandrel with a 

hemisphere head was replaced by a cylindrical mandrel and a ball. During bending experiments, the 

lubricant among the tube, mandrel, ball, pressure die and wiper die is extrusion oil S980B. The bending 

parameters for these two kinds of tubes are shown in Table 2. The springback angle is the difference of 

bending angle before and after springback. After springback, the bending angle was measured by a 

universal bevel protractor.   

 

 

Fig. 3 Basic die composition for rotary tube bending. 
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Table 2 Bending parameters of Ti-3Al-2.5V tubes.  

Parameters D12mm×t0.9mm D6mm×t0.6mm 
Bending radius /mm 24 18 
Mandrel feed /mm 1 1 
Ball thickness /mm 5 - 

Bending speed /rad/s 0.80 0.80 
Boosting velocity /mm/s 19.2 14.4 

Pushing ratio /% 100 100 
Mandrel diameter /mm 9.94 4.64 

 

4.1 Effect of Young’s modulus, wall thickness and neutral layer variations 

In this section, the contributions of Young’s modulus, E, wall thickness, t, and neutral layer, De, 

variations to tube bending springback were studied by comparing springback angles of experiment and 

prediction obtained using the model in this study under various considerations about De, t and E for a 

D6 mm × t0.6 mm × ȡ18 mm Ti-3Al-2.5V tube, as shown in Fig. 4. During the bending process, the 

bending radius was 18 mm (i.e., the relative bending radius ȡ/D=3). Fig. 4 shows that the springback 

angle prediction errors of the model under various bending angles are different. Thus to easily evaluate 

the prediction capability of the analytic springback model in this study, an index named the average 

relative springback angle error at different bending angles (Eq. (47)) was proposed. Based on Eq. (47), 

the average relative springback angle errors under different considerations about De, t and E were 

calculated, as shown in Table 3.  

 

0
i ie

10 ie

1
100

m
a

im

 


 
 

                            (47) 

where 
ia  represents the analytic springback angle value, 

ie  is the experimental springback 

angle value,   is the average relative error and m0 is the total data number of various bending angles. 
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Fig. 4 Springback angles of experiment and prediction obtained using the model in this study under various 

considerations about De, t and E for a D6 mm × t0.6 mm × ȡ18 mm Ti-3Al-2.5V tube. 

 

Table 3 Average relative springback angle errors of analytic results from the model in this study and different 

considerations about De, t and E. 

Considerations of De, 
t, and E  

None De t E De and t De and E t and E De, t and E 

Average relative 
error (%) 74.0 49.5 30.1 73.0 6.6 47.7 27.7 6.5 

 

Fig. 4 and Table 3 illustrate that the springback angles at a given bending angle become larger and 

approach the experimental results when considering one, two or all three parameters than those without 

considering variations in E, t and De. The predicted springback angles are closest to the experimental 

results for the cases that consider t and De and that consider t, De and E. 

Fig. 4 and Table 3 also show that the springback angle significantly increases after introducing t 

variations, while De ranks second and E variations cause only a slight increase. The last finding is in 

accordance with that from the previous finite element analysis on the bending of a D6 mm × t0.5× ȡ12 

mm Ti-3Al-2.5V tube (Zhan et al., 2014). Though except for the outside diameter, the conditions in 

these two cases, including wall thickness, the bending radius and material properties are different. The 

springback angle prediction errors can be decreased by 43.9%, 24.5% and 1.0% under these three cases, 

respectively. This means that, when only one of three parameters was considered, the variation in t and 

E are the most and the least significant parameters affecting on springback, respectively.  

As comparing to the springback angles without considering the variation in E, t, and De, the 

springback angle increases after introducing both t and De variations is the largest, while introducing t 
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and E variations ranks second and considering De and E variations ranks last. The springback angle 

prediction precisions can be improved by 67.4%, 46.3%, and 26.3% under these three cases, 

respectively. This means that, when the variations of two parameters were considered together, the 

comprehensive contribution of De and t is the largest, that of t and E is second and that of De and E is 

the least.  

As comparing to the springback angles without considering the variation in t, De and E, there is a 

significant springback value increase when all three parameters are considered together, resulting in an 

average error decrease from 74.0% to 6.5%.  

From Fig. 4 and Table 3, it can be noted that the springback values significantly increase when 

considering t variations versus without considering t variations, with average error decreases from 

74.0% to 30.1% (decreased by 43.9%), from 73.0% to 27.7% (decreased by 45.3%), from 49.5% to 

6.6% (decreased by 42.9%) and from 47.7% to 6.5% (decreased by 41.2%) when comparing the values 

considering t to those without considering t, E and De, considering both t and E to those only 

considering E, considering both t and De to those only considering De, considering t, De and E to those 

considering both De and E, respectively.  

These springback angle differences are caused by the original uniform wall thickness becoming 

non-uniform, with decreasing thickness from the neutral layer to the outermost portion and increasing 

thickness from the neutral layer to the innermost portion (with the maximum thinning ratio and 

thickening ratio of about 15% and 20%, respectively, as shown in Fig. 5). This will result in axial strain 

(Fig. 6), axial stress (Fig. 7) and axial force (Fig. 8) variations under these conditions. As seen from Fig. 

6, the t variations cause the axial strain to decrease before springback (Fig. 6a), increase during 

springback (Fig. 6b) and decrease after springback (Fig. 6c) by comparing the results considering t to 

those without considering t, E and De, considering both t and E to those only considering E, 

considering both t and De to those only considering De, considering t, De, E, and to those considering 

both De and E, respectively. These strain variations from t variations cause stress variations (Fig. 7). As 

Fig. 7b illustrates, the farther to the neutral layer, the larger the axial stress value during springback. 

Thus, it leads to significant differences in the axial stress values and distribution after springback (Fig. 

7c) versus before springback (Fig. 7a). The axial stress after springback is smaller than before 

springback. In the zones farther from the neutral layer, the axial stress after springback becomes 

opposite of the axial stress before springback (Fig. 7a and c). As Figs. 7a, b and c illustrate, the t 
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variations cause a decrease in the axial stress before springback (Fig. 7a) and an increase in the axial 

tensile stress during and after springback (Figs. 7b and c) .by comparing the results considering t to 

those without considering t, E and De, considering both t and E to those only considering E, 

considering both t and De to those only considering De, considering t, De, E, and to those considering 

both De and E, respectively. Introducing t variations will lead to a decrease in the area of the outside 

deformation zone and an increase in the area of the inside deformation zone. These stress and area 

variations from t variations cause the axial force to decrease in the outer plastic deformation zone 

before springback (C1) (Fig. 8a) and during springback (C4) (Fig. 8d), in the elastic deformation zone 

before springback (C2) (Fig. 8b) and during springback (C5) (Fig. 8e), and in the inside plastic 

deformation zone before springback (C3) (Fig. 8c) and during springback (C6) (Fig. 8f). Thus, the sums 

of the axial forces before springback (the sum of C1, C2 and C3 in Fig. 8g) and during springback both 

increase (the sum of C4, C5 and C6 in Fig. 8h), and the increased axial force ratio before springback are 

larger than during springback. This difference in ratios leads to an increase in the springback curvature 

according to Eq. (43) (Fig. 8i). 
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Fig. 5 Analytic and experimental thickness distribution along the midst bending plane of a D6 mm × 

t0.6 mm × ȡ18 mm Ti-3Al-2.5V bent tube with  = 120ώ 
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       (c) 

Fig. 6 Axial strain distributions before springback (a), during springback (b) and after springback (c) along a 

cross-section of a D6 mm × t0.6 mm × ȡ18mm Ti-3Al-2.5V tube under various considerations about t, De and E. 
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     (c) 

Fig. 7 Axial stress distributions before springback (a), during springback (b) and after springback (c) along a 

cross-section of a D6 mm × t0.6 mm × ȡ 18mm Ti-3Al-2.5V tube under various considerations about t, De and E. 
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(i) 

Fig. 8 Effect of various considerations of De, t and E on C1 (a), C2 (b), C3 (c), C4 (d), C5 (e), C6 (f), C1+C2+C3 (g), 

C4+C5+C6 (h) and e e1/ ( )D   (i). 

 

Fig. 4 and Table 3 also illustrate that the springback values considering neutral layer variations are 

larger than those without this consideration, with average errors decrease from 74.0% to 49.5% 

(decreased by 24.5%), from 73.0% to 47.7% (decreased by 25.3%), from 30.1% to 6.6% (decreased by 

23.5%) and from 27.7% to 6.5% (decreased by 21.2%), by comparing values considering De to those 
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without considering E, t and De, considering both De and E to those only considering E, considering 

both De and t to those only considering t and considering E, t and De to those considering both E and t, 

respectively.  

These springback angle differences caused by different considerations about De are due to that the 

strain neutral layer, which will slightly offset toward the inside deformation zone, causes axial strain 

(Fig. 6), axial stress (Fig. 7) and axial force (Fig. 8) variations under these conditions. As seen from Fig. 

6, the De variations cause an increase in the axial strain before springback (Fig. 6a), a decrease in the 

axial strain during springback (Fig. 6b) and an increase in the axial strain after springback (Fig. 6c), by 

comparing the results considering De to those without considering E, t and De, considering both De and 

E to those only considering E, considering both De and t to those only considering t, considering E, t 

and De to those considering both E and t, respectively. These strain variations cause an increase in the 

axial stress before springback (Fig. 7a) and a decrease in the axial stress during (Fig. 7b) and after 

springback (Fig. 7c). The introduction of neutral layer variations will lead to an increase in the area of 

the outside deformation zone and a decrease in the area of the inside deformation zone. These axial 

strain, axial stress and deformation zone area variations due to De variations exhibit an opposite trend 

as those caused by t variations. The stress and area variations caused by De variations lead to an 

increased axial force in the outside plastic deformation zone before springback (C1) (Fig. 8a) and 

during springback (C4) (Fig. 8d), a decrease in the elastic deformation zone before springback (C2) (Fig. 

8b) and during springback (C5) (Fig. 8e) and a decrease in the inside plastic deformation zone before 

springback (C3) (Fig. 8c) and during springback (C6) (Fig. 8f). Thus, the sum of the axial forces 

increases from a negative value to a positive value before springback (the sum of C1, C2 and C3 in Fig. 

8g) and also during springback (the sum of C4, C5 and C6 in Fig. 8h). In addition, the increased axial 

force ratio before springback is larger than during springback. This difference in ratios leads to a 

springback curvature increase based on Eq. (43) (Fig. 8i). Because the degree of variation in the sum of 

the axial forces (including C1+C2+C3 and C4+C5+C6) caused by De is significantly less than that caused 

by t, the springback considering De variations is smaller than considering t variations. 

Furthermore, Fig. 4 and Table 3 illustrate that the springback angles considering E variations 

slightly increase when compared to those without considering E variations, with average errors 

decreasing from 74.0% to 73.0%, from 49.5% to 47.7%, from 30.1% to 27.7%, and from 6.6% to 6.5%, 

when comparing these values considering E to those without considering E, t and De, considering both 
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E and De to those only considering De, considering both E and t to those only considering t, considering 

E, t and De to those considering both De and t, respectively. These are a result of the Young’s modulus 

distribution in the hoop direction of the tube (Fig. 9), and the variations in C1-C6 when E variations are 

introduced (Fig. 8). As Fig. 9 showing, the Young’s modulus near the neutral layer sharply increases 

from a stable value, Ea, to the initial value, E0, and remains unchanged in a very narrow zone. It then 

decreases to Ea, which is nearly equal to the stable Ea value in constant zones. This is because most of 

the zone along the cross-section underwent large plastic deformation after bending, and only the 

narrow zone near the neutral layer experienced elastic deformation. Thus, E variations have no 

influence on the bending deformation in any zone or the springback deformation within the elastic 

deformation zones. Therefore, no C1, C2, C3 and C5 (Figs. 8a-c and e) variations occur. In addition, only 

a slight decrease occurs in the unloading slope of the outside and inside plastic deformation zones, 

which is a result of the limited E variations within 3.4% from its initial value (97541 MPa) to its stable 

value (94215 MPa) for the tube, thus a little decreases in C4 and C6 (Figs. 8d and f), respectively. Thus, 

the springback angle slightly increases due to introducing E variations. 
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Fig. 9 Distribution of E along a cross-section of a D6 mm × t0.6 mm × ȡ18mm Ti-3Al-2.5V bent tube. 

To further investigate the effect of Young’s modulus on springback, tube springback angle 

variations with various initial Young’s modulus and stable Young’s modulus values were studied, as 

shown in Fig. 10. In Fig. 10, the reference value of initial Young’s modulus and stable Young’s 

modulus values are 97541 MPa and 94215 MPa, respectively, which are the same as those in Table 1. 

Because the initial Young’s modulus value should be larger than its stable value, the initial Young’s 

modulus floats 5%, 10%, 15% and 20% upward based on its reference value in Fig. 10a, while the 

stable Young’s modulus floats 5%, 10%, 15% and 20% downward based on its reference value in Fig. 
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10b.  

Fig. 10a illustrates that the initial Young’s modulus has little influence on the springback. This is 

because the variation in E0 only causes a variation in the unloading slope within the elastic deformation 

zone and the small plastic deformation zone, which account for a very small portion of the 

cross-section (Fig. 9). Fig. 10b shows that the springback angle increases as the stable Young’s 

modulus decreases, and increase trend increases as the bending angle increases. This is because the 

decrease in Ea will cause a decrease in the unloading slope of the outside and inside plastic deformation 

zones (Fig. 9), thereby increasing the springback angle. Comparing Fig. 10a and Fig. 10b, it can be 

seen that the influence of Ea on the springback is more obvious than that of E0. This is because the 

range of the outside and inside large plastic deformation zones, which Ea affects, is larger a lot than the 

range of the elastic deformation zone and small plastic deformation zone, which E0 affects.  

This different effects between E0 and Ea on springback means that the effects of the Young’s 

modulus variations can be negligible for the springback of tubes with a small difference between E0 

and Ea and bent under a normal bending radius (/ D =2-4) (Jiang et al., 2011), where elastic 

deformation encompasses a very small portion of all deformation zones (Fig. 9). While for tubes with 

large differences between E0 and Ea, if given high spingback prediction requirements, the E variations 

should be replaced by the stable value of Young’s modulus Ea since it affects most of deformation 

zones on cross-section. 
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(a)                                   (b) 

Fig. 10 Springback angle variations based on different initial Young’s moduli (a) and stable Young’s moduli (b). 

4.2 Reliability evaluation 

To evaluate the reliability of the analytic elastic-plastic tube bending springback model developed 

in this study, the springback results of D6 mm × t0.6 mm × ȡ18 mm and D12 × t0.9mm × ȡ24 mm 

Ti-3Al-2.5V Ti-alloy tubes after bending, while introducing t, De and E variations were examined 
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compared our model results to existing analytic model results (Al-Qureshi and Russo (2002), 

Megharbel et al. (2008), Li et al. (2012), and E et al. (2009b)), as shown in Fig. 11 and Table 4. The 

characteristics of these existing analytic models are listed in Table 5.  
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(a)                                      (b) 

Fig. 11 Predicted and experimental springback angles: (a) D6 mm × t0.6 mm (b) D12 mm × t0.9 mm. 

 

Table 4 Average relative springback errors of existing analytic models and the model in this study. 

         Ref. 
   Tubes 

Al -Qureshi and 
Russo (2002) 

Megharbel et al. 
(2008) 

Li et al. (2012) E et al. (2009b) This study 

D6 mm × t0.6 mm 70.3 11.0 18.7 26.7 6.5 
D12 mm × t0.9 

mm 
81.1 26.6 42.4 58.1 21.0 

 

Table 5 Characteristics of existing analytic springback models. 

Ref. Material model 
Principle of unloading 

springback 
Similarities 

Al -Qureshi and Russo (2002) Elastic-perfectly plastic Classical springback theory Without 
considering the 

E, t, and De 
variations, except 

that Li et al. 
(2012) 

considered De 
variations 

E et al. (2009b) Exponent hardening plastic 
Similarity in unloading triangle 

to elastic loading triangle 

Megharbel et al. (2008) Elastic-exponent hardening plastic Classical springback theory 

Li et al. (2012) Exponent hardening plastic Classical springback theory 

 

Fig. 11 illustrates that the springback angles predicted using these analytic models all increase 

nearly linearly as the bending angle increases. Based on the classic springback theory and when 

considering the tube material to be elastic-perfectly plastic, the springback angles predicted by 

Al -Qureshi and Russo (2002) are the lowest. When the tube material was considered to be exponent 

hardening, the Megharbel et al. (2008) prediction yielded the highest springback angle values. When 

the tube material was considered to be an exponent hardening material and neutral layer variations 

were introduced, Li et al. (2012) produced a value between the values of Al-Qureshi and Russo (2002) 

and Megharbel et al. (2008). The prediction line based on the similar triangle unloading theory, which 
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was predicted by E et al. (2009b), is the second lowest. The prediction line using the model developed 

in this study is the second highest. This is due to the classic springback theory assumed that the 

bending and unloading moments are equal, which will cause a large unloading moment leading to 

over-springback. The static equilibrium springback theory can avoid this over-springback because it 

accounts for the residual moment. The similar triangle unloading theory is an approximate method, 

where the unloading stress and strain are determined only through the outer surface stress, strain and 

similarity between the unloading triangle and elastic loading triangle. Furthermore, the elastic-perfectly 

plastic model will lead to under-springback due to neglecting the hardening effect. Accounting for wall 

thickness, neutral layer and Young’s modulus variations will cause the springback to increase due to 

providing more accurate strain, stress and deformation zone area calculations. Additionally, neglecting 

the elastic deformation will also bring about inaccurate springback results. 

Thus, comparing these predictions to the experimental results suggests that for both of the bent 

tubes, the prediction accuracy of the model developed in this study is the highest. The Megharbel et al. 

(2008) model ranks the second, the Li et al. (2012) model ranks third, the E et al. (2009b) model ranks 

fourth and the Al -Qureshi and Russo (2002) model ranks last. These comparisons show that the 

analytic elastic-plastic tube bending springback model, which is based on the static equilibrium 

condition and considers t, E and De variations is reliable. 

4.3 Error analysis 

The analysis in Section 4.2 shows that the springback prediction precision of the Ti-3Al-2.5V 

tubes was improved using the analytic model developed in this study. However, disparities still exist 

between the predicted and experimentally derived springback angles. The disparities for the D6 mm × 

t0.6 mm × ȡ18 mm and D12 mm × t0.9 mm × ȡ24 mm tubes are 6.5% and 21.0%, respectively.  

The difference between the predicted and experimental results may be due to a number of issues. 

During the practical bending process, springback is not only closely related to the shape, performance, 

bending radius, bending angle, neutral layer variations and tube wall thickness. It also has a significant 

relationship with the bending method, die structure, friction state and other parameters. However, these 

effects are ignored in our analytic model. Furthermore, during the practical NC tube bending process, 

cross-sectional flattening will occur, and the smaller the relative bending radius or the larger the 

bending angle, the larger the flattening that occurs. Flattening will lead to decreased springback. 

However, this flattening effect was also neglected in our analytic model. The relative bending radius of 
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the D12 mm × t0.9 mm × ȡ24 mm bent tube is 2 and that of the D6 mm × t0.6 mm × ȡ18 mm bent tube 

is 3. This means that more cross-sectional flattening will occur for the bent tube with the relative 

bending radius of 2. This will cause a larger error for that tube, which is why the error for the D12 mm 

× t0.9 mm × ȡ24 mm bent tube is larger than for the D6 mm × t0.6 mm × ȡ 18mm bent tube. In 

addition, though thicknesses from our analytic model and the experiments vary similarly, there is 

difference between them with the maximum error of about 4% at ߮=90o (Fig. 5). This difference in 

thickness variation would also bring about disparities in springback angle between the predicted and 

experimental results. 

4.4 Springback model application 

As Eq. (46) showing, the springback angle has a relationship with the initial tube geometric sizes 

(including the outside diameter, D, and wall thickness, t0), material properties (including the strength 

coefficient, K, hardening exponent, n, and Poisson ratio, v) and bent tube geometric sizes (including the 

relative bending radius, / D ). The influence and significance of these parameters on the springback 

angle were obtained using the analytic springback model developed in this study, as shown in Fig. 12. 

In the analyses, taking the initial geometric size, material properties and geometric size of the D6 mm × 

t0.6 mm × ȡ 18mm Ti-3Al-2.5V bent tube as reference values, parameters float 5% and 10% upward 

and downward based on their respective reference values, except for the relative bending radius, which 

varies within the range of the normal bending radius, from 2-4. 

Figs. 12a, c and f show that the springback angle increases nearly uniformly with increases in the 

tube’s outside diameter, strength coefficient and relative bending radius. These increasing trends 

become more obvious as the bending angle further increases. These results indicate a coupling effect 

between the tube’s outside diameter, strength coefficient, relative bending radius and bending angle on 

the springback angle.  

Figs. 12b, d and e illustrate that the springback angle decreases almost uniformly with increases in 

wall thickness, hardening exponent, Poisson ratio and the decreasing trend increases with the increase 

in bending angle. These results indicate a coupling effect between the wall thickness, hardening 

exponent, Poisson ratio and bending angle on the springback angle. Figs. 12d and e show that various 

hardening exponents and Poisson ratios have minimal effects on the springback angle.  
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                         (e)                                          (f) 

Fig. 12 Springback angle variations with the tube’s outside diameters (a), wall thicknesses (b), strength coefficient 

(c), hardening exponent (d), Poisson ratio (e) and relative bending radius (f). 

5. Conclusions 

An analytic elastic-plastic tube bending springback model was established based on the static 

equilibrium condition. In the model, Young’s modulus E, wall thickness t and neutral layer De 

variations were considered. Using the model, springback angle variation laws for Ti-3Al-2.5V tubes 

were obtained under various conditions. The main results are as follows: 



 

31 
 

(1) The springback angles, which considered these variations individually or combinedly, increase 

and approach the experimental results compared to the results that did not account for these variations. 

For a D6 mm × t0.6 mm Ti-3Al-2.5V tube, the prediction error was decreased by 1.0%, 24.5% and 

43.9% when only considering E, De and t, respectively; by 26.3%, 46.3% and 67.4% when considering 

both De and E, t and E and De and t, respectively; and by 67.5% when considering all three variations.  

(2) The t variation has the largest impact on the springback angle, decreasing the error by more 

than 40%. This was due to that the non-uniform thickness from the outermost to the innermost tube, 

resulting in an axial stress that decreased before springback, increased during and after springback, and 

a decrease and an increase in the area of outside and inside deformation zones, respectively. The 

contribution from De ranks as the second most influential, decreasing errors by more than 20%. This is 

because De variations cause opposing stress and area of deformation zone variations trends as those 

caused by t variations. 

(3) The E variation contribution is the least significant, as the minimal variations between the 

initial value, E0, and stable value, Ea, only caused a slight decrease in the unloading slope of the plastic 

deformation zone. Furthermore, the influence of Ea on the springback is more obvious than that of E0 

because the affecting range of Ea is larger than that of E0. Therefore, the E variations can be neglected 

for the springback of tubes with a small difference between E0 and Ea and bent under a normal bending 

radius. While for tubes with large differences between E0 and Ea, and high spingback prediction 

requirements, the E variations should be replaced by Ea. 

(4) The springback angle of Ti-3Al-2.5V tubes obtained using the model increased nearly linearly 

with the increase in tube’s outside diameter, strength coefficient and relative bending radius, as well as 

with the decrease in wall thickness, hardening exponent and Poisson ratio. However, the hardening 

exponent and Poisson ratio had little impact on the springback angle. 
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