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Abstract

Purpose Epidemiological evidence suggests a role for an

infectious etiology for cancers in teenagers and young

adults (TYAs). We investigated this by describing associ-

ations between infection transmission using the population

mixing (PM) proxy and incidence of cancers in TYAs in

Yorkshire, UK.

Methods We extracted cancer cases from the Yorkshire

Specialist Register of Cancer in Children and Young

People from 1990 to 2013 (n = 1929). Using multivariable

Poisson regression models (adjusting for effects of depri-

vation and population density), we investigated whether

PM was associated with cancer incidence. We included

population mixing–population density interaction terms to

examine for differences in effects of PM in urban and rural

populations.

Results Nonsignificant IRRs were observed for leukemias

(IRR 1.20, 95% CI 0.91–1.59), lymphomas (IRR 1.09, 95%

CI 0.90–1.32), central nervous system tumors (IRR 1.06,

95% CI 0.80–1.40) and germ cell tumors (IRR 1.14, 95%

CI 0.92–1.41). The association between PM and cancer

incidence did not vary in urban and rural areas.

Conclusions Study results suggest PM is not associated

with incidence of cancers among TYAs. This effect does

not differ between rural and urban settings.

Keywords Cancer � Teenagers and young adults �
Population mixing

Introduction

In the UK, cancer is the leading cause of death in teenage

and young adult (TYA) populations between the ages of 15

and 24 years with very little known about its etiology [1].

Recent findings have, however, suggested infections might

play a role in the etiology of cancers in this age-group [2].

This is because seasonality of tumor incidence has been

described in relation to time of diagnosis and time of birth,

and this might reflect a seasonal variation in infections [2].

Population mixing is seen as a proxy measure for infection

transmission [3]. The original population mixing hypothesis

proposed by Kinlen [4] suggests leukemia occurs as a rare

response to a mini-epidemic arising from the intermixing of

rural immunologically naive populations with migrants of

predominantly urban origins. The hypothesis has been

extended by other researchers to explain incidence of other

cancers, particularly in children [5, 6].

Few studies have, however, investigated the effects of

population mixing on the incidence of adolescent cancers

[7]. An earlier study which examined associations between

population mixing and incidence of leukemia, lymphoma

and central nervous system tumors among 15–24 year olds

diagnosed between 1996 and 2005 in England only found a

significant inverse relationship for CNS tumors [7].

Our study aims to examine statistical associations

between population mixing and incidence of cancers in
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TYAs aged between 15 and 24 years in Yorkshire, UK. In

contrast to the earlier published study by van Laar et al., we

considered an extended period of diagnosis between 1990

and 2013 and we determined whether any effects of pop-

ulation mixing differed among rural and urban population.

Materials and methods

Study population

Data on all individuals diagnosed with cancer between the

ages of 15 and 24 years from 1990 to 2013 were extracted

from the Yorkshire Specialist Register of Cancer in Chil-

dren and Young People (YSRCCYP). The YSRCCYP is a

population-based register which covers the Yorkshire and

Humber Strategic Health Authority and has records of

TYA cancer cases aged between 15 and 29 years dating

back to 1990 [8].

Extracted data consisted of individual ages, sex, year of

diagnosis, tumor diagnostic groups and postcodes (zip

codes) at diagnosis which was mapped to an electoral ward

based on the 1991 UK census. We also obtained population

data based on 1991 census geography from the Office for

National Statistics [9]. These included midyear populations

by gender and 5-year age bands for all electoral wards in

the Yorkshire region using 1991 UK census figures. We

selected the 1991 census as our reference census because it

is midway between the potential exposure window

(1966–2013) for the effect of population mixing on the

study population and thus might best reflect effects of

population mixing on our study population. We also

derived model covariates (Shannon index of diversity,

Townsend deprivation index and person-weighted popula-

tion density) for each electoral ward using data from the

same reference census. The Shannon index is a measure of

diversity and estimates levels of population mixing based

on diversity of origins of incoming migrants into a defined

area (electoral ward) from anywhere in England [5]. In-

migrants are defined as the proportion of individuals with a

different address in the year preceding the 1991 census and

not those who merely moved within wards [5], nor does it

take account of the distance moved by in-migrants. Higher

values of this index suggest a greater diversity of in-mi-

grants in the defined area. The Townsend deprivation index

is an area-based measure of deprivation which uses readily

available census data including proportion of unemployed

persons, households not owner-occupied, overcrowded

households and households without a car [10]. Person-

weighted population density of an electoral ward is cal-

culated by summing weighted averages of individual cen-

sus enumeration districts within an electoral ward [11].

Previous research has identified both population density

and deprivation to be confounding variables when ana-

lyzing effects of population mixing on incidence of cancers

[5, 12].

We grouped our case data using the International

Classification of Childhood Cancer (ICCC) coding [13] to

classify tumor groups into 12 distinct categories. For the

population mixing analysis, we, however, used four main

tumor groups: leukemias, lymphomas and CNS tumors and

germ cell tumors and further diagnostic subgroups for

leukemia, including acute lymphoblastic leukemia (ALL)

and acute myeloid leukemia (AML) and for lymphomas we

included Hodgkin lymphoma (HL) and non-Hodgkin

lymphoma (NHL). We, however, could not look at CNS

tumor subgroups because of the small sample sizes of

individual subgroups. These groups were included based

on tumor groups and subgroups that have previously been

examined by researchers focusing on the PM hypothesis,

particularly in children [5–7]. These tumors have also been

shown to demonstrate seasonality in incidence among

TYAs [2]. We also included germ cell tumors as these are

tumors are typical within this age range although no pre-

vious association with population mixing has been

examined.

Statistical analysis

We used Poisson or negative binomial models to observe for

an association of incidence of tumors with population mix-

ing. The negative binomial model was preferred if overdis-

persion was evident. Overdispersion was tested by running

the negative binomial equivalent for the best fitting Poisson

model. In cases where the p value of the likelihood statistic

was\0.05, models were deemed to be overdispersed.

To derive an estimate of person-year which we used as

our model offset term, we added population fig-

ures (derived from the 1991 census) for each electoral ward

for 5-year age bands and sex for individuals aged between

15–19 year olds and 20–24 year olds and multiplied the

total population for each ward by 24 (length of the study

period). Model covariates included population mixing

(measured using the Shannon index of diversity), person-

weighted population density and deprivation measured

using the Townsend score. These covariates were initially

examined for collinearity. Person-based population density

and Townsend index demonstrated collinearity (correlation

coefficient of 0.77), so both variables were not included in

the same model.

In our model building, we considered 2 initial univari-

able base models. A first model with population mixing as

a continuous covariate and a second base model with ter-

tiles of population mixing (model was divided into a low,

medium and a high mixing category)—the latter to allow

for any threshold effects associated with population
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mixing. In both models, we adjusted for age-group and sex.

We then added categorical and continuous forms of pop-

ulation density and Townsend separately (but never in

combination due to the collinearity) to the best fitting base

model for each individual tumor group considered. A

population mixing–population density interaction term was

then added to each model to assess whether there was a

significant improvement in fit. This was done to assess for

differential effects of population mixing in a rural and an

urban setting. Best fit univariable base models and multi-

variable models were all selected using Akaike’s infor-

mation criteria (AIC) fit statistics, and all derived model

coefficients were exponentiated to give IRRs and 95%

confidence intervals. IRRs with corresponding 95% inter-

vals were reported for each tumor group for univariable

models which included population mixing as a continuous

variable (this was the best fitting base model), multivari-

able models which involved adjustments for either Town-

send index and population density as dictated by model fit

statistics and a multivariable model which involved the

addition of a population mixing–population density inter-

action to the best fitting multivariable model.

Results

Between 1990 and 2013, there were 1,929 incident cases of

cancer in individuals aged between 15 and 24 years,

61.7 % of whom were males and 38.3 % females. Table 1

shows the total number of incident cases divided into the

main tumor groups with comparative proportions of each

tumor across age-group and gender. The most common

tumor groups overall were lymphomas (28.6 %), germ cell

tumors (22.2 %), leukemias (13.4 %) and CNS tumors

(13.2 %). Gender differences were observed in tumor

incidence. Germ cell tumors were the most common in

male and accounted for about a third of all such tumors.

Lymphomas were the most common tumors in females,

accounting for around a third of all tumors.

Table 2 shows descriptive statistics for key variables.

The Shannon index showed a small amount of variation

between electoral wards (mean = 3.39, SD = 0.46).

Table 3 shows IRR and 95% confidence intervals for

univariable models of population mixing, the best fitting

multivariable model and a model containing the population

mixing–population density interaction term (all models

were adjusted for age and sex). The best fitting multivari-

able model involved adjusting for person-weighted popu-

lation density score for most tumor groups and subgroups

except CNS tumors, germ cell tumors and Hodgkin lym-

phoma for which an adjustment for the effect of Townsend

deprivation resulted in the best fitting model. Most tumor

groups and subgroups demonstrated a direct association

between population mixing and risk of tumor incidence

except NHL and AML subgroups which demonstrated an

inverse relationship. These relationships were, however,

not statistically significant for any diagnostic tumor group

or subgroup. This level of association was evident for both

univariable and multivariable models. Addition of an

interaction term did not result in any distinct pattern of

incidence of tumor groups in the tertiles of population

density except for leukemias where there was a non-

significant gradual increase in effect size from the first

(lowest) tertile of population density to the third (highest)

tertile.

Discussion

Our study investigated whether there was any evidence of a

relationship between population mixing and cancers

occurring in TYAs. We found no significant association

between population mixing and incidence of leukemias,

lymphomas, CNS tumors and germ cell tumors occurring

Table 1 Incident cases of

tumors across gender and age-

group

Tumor groups Gender Age-group Total (%)

Male (%) Female (%) 15–19 (%) 20–24 (%)

Leukemias 148 (12.4) 110 (14.9) 142 (17.0) 116 (10.6) 258 (13.4)

Lymphomas 298 (25.0) 254 (34.4) 236 (28.2) 316 (28.9) 552 (28.6)

CNS tumors 138 (11.6) 116 (15.7) 124 (14.8) 130 (11.9) 254 (13.2)

Germ cell tumors 385 (32.3) 43 (5.8) 141 (16.9) 287 (26.2) 428 (22.2)

Other solid tumors 221 (18.6) 216 (29.2) 192 (23.0) 245 (22.4) 437 (22.7)

Total 1190 739 835 1094 1929

Percentages are column percentages

Other solid tumor group includes neuroblastoma, renal tumors, hepatic tumors, malignant bone tumors soft

tissue sarcoma, malignant epithelial neoplasms, other and unspecified malignant neoplasm

CNS central nervous system
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in TYAs. The addition of a population mixing–population

density interaction term was not significant across tertiles

of population density. Tertiles of population density were

used as a proxy to determine whether wards were rural or

urban with wards in the lowest tertiles representing more

rural wards, while those in the highest tertile represented

more urban wards. Our results therefore indicate that the

level of rurality did not affect the observed association with

population mixing.

The findings of a nonsignificant association between

population mixing and incidence of tumors in TYAs con-

trast with Kinlen’s population mixing hypothesis which

describes a direct association between childhood leukemia

and population mixing [4]. Kinlen proposes that childhood

Table 2 Summary

table showing descriptive

statistics of key exposure

variables

Variable Range Median (IQR) Mean (SD)

Shannon index 1.89 to 5.16 3.36 (3.09 to 3.68) 3.39 (0.5)

Townsend score -4.8 to 17.9 -1.1 (-2.4 to 1.8) 0 (3.4)

Population density 0.01 to 51.0 5.5 (0.8 to 10.8) 7.0 (7.2)

Table 3 Incidence rate ratios (IRR), 95% confidence intervals models of population mixing, best fitting multivariable models and models with

addition of a population mixing–population density interaction term

Diagnostic group Population

mixing

Age- and sex-

adjusted model

Multivariable

model*

Multivariable model with interaction term#

IRR 95% CI IRR 95% CI Tertiles of population

density

IRR 95% CI

Leukemia Continuous 1.19 0.90–1.56 1.20 0.91–1.59a First tertile 1.02 0.44–2.36

Second tertile 1.04 0.66–1.66

Third tertile 1.49 0.98–2.28

Acute lymphoblastic leukemia

(ALL)

Continuous 1.16 0.77–1.75 1.18 0.77–1.79a First tertile 0.94 0.29–3.03

Second tertile 1.27 0.62–2.62

Third tertile 1.43 0.75–2.72

Acute myeloid leukemia (AML) First tertile 1.0 – 1.0a First tertile 1.34 0.41–4.39

Second tertile 0.70 0.39–1.24 0.68 0.38–1.21 Second tertile 0.85 0.43–1.66

Third tertile 1.09 0.66–1.78 1.08 0.66–1.77 Third tertile 1.39 0.72–2.69

Lymphoma Continuous 1.09 0.90–1.32 1.09 0.90–1.32a First tertile 0.69 0.34–1.39

Second tertile 1.00 0.73–1.36

Third tertile 1.22 0.91–1.63

Hodgkin lymphoma Continuous 1.18 0.95–1.46 1.19 0.96–1.48b First tertile 0.79 0.38–1.68

Second tertile 1.08 0.75–1.54

Third tertile 1.40 1.00–1.95

Non-Hodgkin lymphoma Continuous 0.80 0.50–1.27 0.80 0.50–1.28a First tertile 0.35 0.05–2.43

Second tertile 0.94 0.45–1.95

Third tertile 0.61 0.29–1.28

Central nervous system tumors Continuous 1.09 0.83–1.44 1.06 0.80–1.40b First tertile 1.10 0.54–2.22

Second tertile 1.16 0.75–1.80

Third tertile 1.04 0.65–1.66

Germ cell tumors Continuous 1.15 0.93–1.43 1.14 0.92–1.41b First tertile 0.99 0.55–1.77

Second tertile 1.54 1.09–2.19

Third tertile 0.99 0.71–1.38

* Multivariable models are best fit multivariable models and do not have a population mixing–population density interaction term added, age and

sex adjusted
a Model estimates are adjusted for population density as a continuous variable
b Model estimate is adjusted for Townsend score as a continuous variable
# Interaction term is a population mixing–population density interaction term which was added to the best fit multivariable model containing

population density as a covariate. The first tertile represents areas with the lowest third of population densities while the third tertile represents

areas with the highest third of population densities
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leukemia is an uncommon response of an immunologically

naive rural and geographically isolated population exposed

to an otherwise commonplace infection due to a sudden

influx of a predominantly urban population [4]. Although

Kinlen’s original hypothesis was restricted to leukemia and

its occurrence in childhood, the concept of population

mixing has, however, been extended by researchers beyond

this specific hypothesis and has been used as a proxy

measure for infection spread among populations [3].

Researchers have thus examined relationships between

incidence of cancers and population mixing when a bio-

logical plausibility for an infectious cause for cancer exists.

Our study findings also contrast with the Greaves

immunological model [14]. In this model, Greaves

hypothesizes that childhood leukemia arises from immune

dysregulation occurring as a result of a delayed exposure to

infection in infancy, thus suggesting early life exposures to

infection might protect against childhood leukemia.

Our study findings are similar to two previous studies

conducted in children. Parslow et al. [5] in the UK in 2002

also demonstrated nonsignificant associations for CNS

tumors, while Dockerty et al. [15] in a study conducted in

rural New Zealand in 1996 demonstrated nonsignificant

associations for childhood leukemia. The only other study

that has examined effects of population mixing exclusively

in the TYA group is a recent study by van Laar et al. [7].

This study described an inverse association between inci-

dence of CNS tumors and population mixing in TYAs. A

possible explanation for this difference might be geo-

graphical since van Laar et al. considered the effect of

population mixing in the whole of UK, whereas this study

was limited to the Yorkshire region. Because population

mixing is a proxy for infection transmission, it is possible

that the putative agent associated with incidence of CNS

tumors in these age-groups might not be widely distributed

in the population and thus might not have been present in

the Yorkshire region. This might have implications in a

study investigating the effect of population mixing on the

incidence of CNS tumors as study area size might affect

results. Future research investigating this might also

highlight possible differences. However, our study differed

from the study by van Laar et al. by (1) extending the

period of analysis to 1990–2013 from 1996 to 2005 and (2)

exploring the effect of interaction terms on population

mixing. We have, however, used a smaller study popula-

tion than van Laar’s study which looked at TYAs in the

whole of England and so we were unable to perform sub-

group analyses for CNS tumors due to small numbers of

cases.

We also included germ cell tumors in our analysis as

this group represents the second most frequent diagnosis

within the TYA age range. There is no previous evidence

to suggest an association between population mixing and

germ cell tumors, and we did not find a statistically sig-

nificant association.

Our study findings, however, contrast with earlier works

by Kinlen et al. [16] and Clark et al. [17]. Although these

studies were carried out in childhood populations rather

than TYAs, other reasons might exist for differences

between our study findings and these studies. One reason

for these differences might be explained by different

approaches to study the effect of mixing. While Kinlen

et al. and Clark et al. have derived estimates of relative

risks by dividing observed case counts by expected case

counts derived from standardized incidence rates (SIRs),

this study has used regression analysis. Studies using rates

to determine effects of population mixing might be quite

sensitive to slight changes in either the numerator or

denominator. In instances where even a few observed cases

were missed, estimates of relative risks would tend to be

markedly lower than the true effect size; the converse of an

erroneous exaggerated relative risk might apply if observed

cases were overrepresented. Future research replicating our

study using SIRs might highlight how effect estimates

could differ when varying methods are used in an analysis

of population mixing.

Strengths and limitations

Our study is one of the few studies that have described the

effects of population mixing in the TYA populations. We

have also adjusted for the confounding effects of popula-

tion density in the interrelationship between population

mixing and incidence of cancers using person-weighted

population densities. Such weighted densities have been

shown to be a better and more accurate reflection of pop-

ulation density than area-based densities [18]. Using such

estimates should lead to improved accuracy of our effect

estimates.

We have also geo-coded all potential study subjects

from the population-based specialist cancer registry to an

electoral ward of diagnosis; thus, because of this and the

high levels of case ascertainment [19], selection bias is

likely to be minimal.

Comparatively, the Yorkshire region might have a

smaller population and thus smaller potential study par-

ticipants than most studies conducted in entire countries or

regions with a larger population. We, however, attempted

to address that deficiency by considering a longer study

period of 24 years, thus accruing a larger sample of

potential study subjects. Although this helped with most of

our analyses, our ability to perform subgroup analysis, in

particular for CNS subgroups, was limited. Our study

design was ecological, so it may be prone to the ecologic

fallacy and so findings from this study cannot be ascribed
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to individuals within the wards. Population denominators

for offset terms in the population mixing models have also

been multiplied by the length of study period to derive the

person-years offset; this is based on an assumption that

population denominators did not change much during the

study period. If an electoral ward experienced a significant

net increase in population during the study period, popu-

lation denominators would have been underestimated

leading to exaggerated effect estimates. The converse also

applies for a net decrease in population. Reviewing the

population change in the Yorkshire region from ONS

statistics [8] suggested a 2 % decrease in population of

15–24 year olds between 1990 and 2013, suggesting the

population denominator might not have changed signifi-

cantly during the study period.

Conclusions

We did not find a statistically significant relationship between

population mixing and incidence of leukemia, lymphoma,

CNS tumors or germ cell tumors for TYAs in Yorkshire.

Although a previous study had described a relationship

between CNS tumors and population mixing in this age-

group, further analyses investigating what effects geography

might play in these differences would be valuable.
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