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Abstract

Computer aided diagnosis (CAD) software is not yet widely used in clinic. This paper aims to identify possible reasons why.

Firstly, the technical maturity of CAD is explored through analysis of diagnostic accuracy metrics in one example application,

the automated classification of Ioflupane I123 (DaTSCAN) images. Software is developed for image classification based on well-

established eigenimage techniques. Using a publicly available database of images an area under the Receiver Operator Curve

(AUROC) of 0.980 is achieved.

Given these impressive results the main blockage to clinical adoption, both in DaTSCAN classification and potentially in other

applications, is likely to relate to wider issues. These are explored with reference to the demands of the National Institute for

Health and Care Excellence (NICE) evaluation processes. It is postulated that in order to enable wider adoption a greater focus on

proving the safety, efficacy and cost effectiveness of CAD may be required.
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1. Introduction

The interpretation of medical images relies largely on the ability of a human observer to visually identify charac-

teristics of an image that are associated with pathological changes. This is not always a straightforward process and

is inherently subjective. In extreme cases clinically significant errors may be made (the incidence of such errors is

estimated to be 1-20%1,2).

Recently, the role of the radiologist has become even harder. With the progression of imaging hardware and

technology, the number and complexity of images produced by modern scanners is rapidly increasing3. The volume

of information generated from individual scans continues to grow and as a practising Clinical Scientist it is clear that

interpretation by humans using standard techniques is becoming more demanding (a problem often referred to as data

overload4). It is envisaged that new ways of working will be required in order to cope5.
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Given these trends it is argued that Computer Aided Diagnosis (CADx) and Computer Aided Detection (CADe)

software, henceforth referred to together as CAD, will eventually become a necessity in radiology departments. How-

ever, despite the obvious and growing need for computer assistance CAD software is not yet widely used in the clinic

outside of mammography in the USA6, and the number of commercial CAD systems is very limited5.

This paper attempts to clarify why clinical uptake has been so modest. The first step in this analysis is an exploration

of the technical maturity of CAD algorithms. If it can be shown that CAD technology is equal to the task of automated

diagnosis then it must be assumed that the blockage to clinical translation lies elsewhere. By way of example, the

current suitability of CAD for the automated classification of Ioflupane I-123 (DaTSCAN) images is examined.

A well-established CAD technology, eigenimage analysis, is demonstrated and applied to a DaTSCAN image

database. Performance figures usefully quantify diagnostic accuracy and are compared with methods reported in the

literature. Beyond this, other aspects of clinical uptake of CAD are considered, with specific reference to the National

Institute for Health and Care Excellence (NICE) evaluation processes. Positive recommendations from NICE can be

highly influential in persuading hospitals to adopt certain technologies. It is prudent to be aware of such requirements,

and their impact in the context of low clinical adoption of CAD.

The novelty of this paper is not in the methods applied to generate CAD output, but the realisation that adoption of

CAD in the field requires more than a novel algorithm; acceptance of the technology implies acceptance by the end

user, which relies heavily on a structured pathway to adoption

1.1. Eigenimage analysis

Fundamentally, this widely used model involves the application of principal component analysis (PCA) to a set of

training images, where the pixel values are the feature of interest. The principal components or eigenimages output

from PCA are then used for subsequent processing of test images, in particular for classification purposes. One

common method for performing PCA is through eigen-decomposition of the variance-covariance matrix:

XXT = EDET (1)

Where X is a matrix containing the pixel values of test images, concatenated into vectors, E is an orthonormal ma-

trix containing the eigenvectors of XXT (i.e. the eigenimages) and D is a diagonal matrix containing the eigenvalues.

The eigenimages are usually stated in order of reducing variance such that the first eigenimage describes the largest

amount of variance in the data.

Eigenimages can be used as a basis for classification in a number of ways. In face recognition tasks, where

eigenimage analysis has been most extensively exploited, the distance between test images and training images in

multidimensional eigenimage space is used as the discrimination metric7. In medical imaging, similar approaches

can be used to establish whether test images are part of normal or pathological groups, usually based on a small subset

of the generated eigenimages. In the following section the Mahalanobis distance from a group of normal training data

in eigenimage space is used as the discrimination method.

2. Method

DaTSCAN is a radioactive tracer with a high affinity for dopamine active transporter (DaT), a protein which

resides in the membrane of presynaptic axon terminals in the striatum. It is administered prior to gamma camera

SPECT imaging, for diagnosis of Parkinsonian syndromes such as Parkinsons Disease (PD). The PPMI database

includes a collection of reconstructed DaTSCAN images taken from controls and diagnosed PD patients (www.ppmi-

info.org/data). This has been used extensively by CAD specialists for validating a range of different algorithms8,9,10.

Striatal uptake of DaTSCAN reduces in extent and intensity with increasing severity of disease, creating two distinct

voxel intensity patterns in the normal and pathological populations: a comma appearance for normal images and a dot

appearance for PD patients.

The performance of eigenimage analysis in relation to DaTSCAN imaging was assessed by measuring the area

under the receiver operator curve (AUROC), which provides the most comprehensive description of diagnostic ac-

curacy11. Although of reduced clinical relevance, for comparison purposes the maximum accuracy of the algorithm

on the ROC curve was also reported. Processing was carried out as follows. All steps were performed using Matlab

software:
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Figure 1. Example DaTSCAN images. Four reconstructed slices are shown from within the 3D brain image.

Figure 2. ROC curve derived from Mahalanobis distance measurements. The blue circle is the point of maximum diagnostic accuracy

1. Images in the PPMI database were affine registered to a template (chosen from the controls) so as to remove the

effects of differences in patient positioning. Registration was carried out using the Sheffield Image Registration

Toolkit (ShIRT12). A striatal region of interest (ROI) was manually drawn on the template image.

2. The ROI was used to mask intensity values outside of the striata in all control and PD images, thereby reducing

the influence of diagnostically unimportant tissues. Data were intensity normalised to the mean intensity level in

the striatal region to account for differences in scaling.

3. 100 eigenimages were generated from the first 100 controls (training images), after mean centring. The coeffi-

cients of these datasets in eigenimage space were retained

4. 100 control and 100 PD test images, separate to the training data, were projected on to the first 5 eigenimages. The

Mahalanobis distances of each test image from the training images in the eigenimage subspace was measured.

5. An ROC curve was generated from the Mahalanobis distance measurements

3. Results

The ROC curve is displayed in figure 2. AUROC was 0.980 (95% confidence interval 0.961-1.000). The maximum

accuracy achieved was 94.0%, highlighted on the ROC curve by the blue circle in figure 2. These results are presented

in table 1, alongside results reported by other authors using the same PPMI image database.
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Table 1. Performance results from automated diagnosis of images in the PPMI database

Authors Method Num. of images Accuracy

(max)

AUROC

J. Taylor, J. Fenner Eigenimage analysis of pixels. Maha-

lanobis distance as discrimination met-

ric.

200 controls, 100

PD

94.0% 0.980

F.J. Martinez-Murcia,

J.M. Gorriz, J. Ramirez,

I.A. Illan, A. Ortiz9

Independent component analysis of ex-

tracted features, input to Support Vec-

tor Machine for discrimination

114 controls, 175

PD

91.3%

F.J. Martinez-Murcia,

J.M. Gorriz, J. Ramrez,

I.A. Illan, C.G. Pun-

tonet8

Extracted features input to Support

Vector Machine for discrimination

209 controls, 445

PD

97.9%

R. Prashanth, S.D. Roy,

P.K. Mandal, S. Ghosh10

Extracted features input to Support

Vector Machine for discrimination

181 controls, 369

PD

96.1%

4. Discussion

The results obtained from this exercise show that an accurate CAD algorithm for DaTSCAN can be created with a

relatively simple algorithm based on eigenimages. Established methods were deliberately chosen for this study since

they are better understood and represent a lower risk for clinical adoption. Validation was carried out using a high-

quality, multi-centre, prospective patient database, providing strong evidence that eigenimage analysis could be an

effective tool for the clinic. The strength of CAD for automated diagnosis in DaTSCAN imaging is further enhanced

by results from other authors (see table 1), who have achieved accuracies of up to 98%.

Although conducted with different data, a previous test of the classification performance of human observers re-

ported an accuracy of 91% for DaTSCAN imaging13. The evidence from table 1 suggests that all CAD methods,

covering different levels of complexity, exceed this performance. Therefore, algorithm sophistication is not a barrier

to adoption in this case.

The results strongly suggest that CAD is likely to be sufficiently effective in this application to be suitable for

clinical translation. However, outside of software tools which simply quantify and display ratios of counts in different

image regions (e.g. Hermes BRASS, GE DaTQUANT), CAD is not yet used routinely by radiologists in DaTSCAN

imaging. This is despite recent audit data showing a disagreement between radiologists in test centres and a panel of

experts in 8% of cases14.

The relative mismatch between high accuracy figures in the literature, from a range of algorithms, and low clinical

CAD uptake suggests that other factors must have a significant impact on the route to translation. In this paper a

structured approach to understanding the wider issues around translation is proposed.

The consumers of CAD are mostly radiologists and clinical radiology departments. In the UK these consumers

are likely to be significantly influenced by NICE guidelines. Therefore, analysis and understanding of what NICE

evaluation requires may lead to further insights into the barriers to clinical adoption.

4.1. NICE evaluation processes

One of the key roles of NICE is to produce guidance for health and social care professionals in the UK and

further afield. New diagnostic technologies, such as CAD, can be alerted to NICE through the Technology Evaluation

Programme or the Diagnostic Assessment Programme. Both programmes are closely related, the major difference

being that the Technology Evaluation Programme is focused on technologies that achieve a similar clinical benefit at

reduced cost to the health system or more benefit at the same cost as current practice. The Diagnostic Assessment
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Table 2. Summary of the main requirements for NICE evaluation (and approval) along with an assessment of the implications for CAD software

development

Requirements for NICE evaluation Implications for CAD software
Regulation

Technology must be licensed for the intended

purpose. It is likely that software will need to be CE

marked (in Europe) in line with the requirements of

the Medical Devices Directive (MDD). This is likely

to require adherence to appropriate standards and

auditing by an external notified body.

Software must be created according to an appropri-

ate quality management system. For risk assessment

and validation purposes a detailed understanding of

how CAD components perform in different scenarios

is likely to be required.

Depending on the device classification, clinical investi-

gations are likely to be required to prove that the tech-

nology is safe and effective. This will require testing in

realistic clinical environments

Clinical impact

The evidence base detailing the clinical impact of the

technology must be available to enable an informed

decision about adoption. In particular a performance

comparison of the new technology as compared to stan-

dard of care is required. NICE places emphasis on high

quality research where bias is minimised. The evidence

must be of sufficient quantity and consistency to enable

a robust recommendation.

Proof of the diagnostic effectiveness of CAD, as com-

pared to standard care (i.e. visual analysis by radiol-

ogists), must be collated. Ideally, test results should

reference accurate gold-standard diagnoses and tests

should ideally be performed in realistic clinical scenar-

ios with randomly selected data. Small test datasets are

unlikely to be suitable.

Health economics

Evidence base of economic data in relation to the tech-

nology must be available. For the Technology Assess-

ment Programme economic analysis can be presented

using a cost-consequence methodology. Overall costs

to the NHS must be equal to or less than those of cur-

rent standard care. For the Diagnostic Assessment Pro-

gramme more in-depth economic analysis is required,

including cost effectiveness analysis. NICE does not

use specific thresholds but above £30,000 per Quality

Adjusted Life Year (QALY) gained a strong case for

support is required.

The impact of CAD in terms of direct costs and indirect

costs must be prepared. This may require economic

modelling. If costs can be shown to be less or equal to

those of standard care then NICEs decision will largely

fall on clinical evidence.

If overall costs are greater than that of standard care it

may be useful to perform cost effectiveness analysis,

generating evidence through the care pathway, to esti-

mate the likely cost per QALY gained (and ensure it

is less than £30,000). If cost effectiveness figures are

uncertain then NICEs decision will again fall on the

clinical evidence

Programme, on the other hand, is focused on the introduction of technology that is likely to result in an overall increase

in costs to the NHS. Table 2 shows a list of the common requirements of the two NICE evaluation programmes, based

on published guidance15,16, along with an assessment of the implications for the development of approved clinical

CAD software. Table 2 illustrates that there are a number of significant hurdles that must be navigated before NICE

approval is granted. Although this is not a pre-requirement for adoption within a local centre, without it wider adoption

is challenging, whilst the presence of approval is likely to dramatically improve uptake both in the UK and elsewhere.

Only a very small fraction of current CAD algorithms are likely to be able to meet requirements related to regula-

tory adherence and clinical and economic evidence. NICE approval is only granted if the research base demonstrates

that impact in terms of improved care or reduced costs is substantial. Given previous criticisms of CAD research,

particularly with regards to the relevance and significance of reported results5,3,17,18, and the general lack of economic

analysis, NICE approval is likely to be unrealistic for most CAD applications, including automated DaTSCAN anal-

ysis. Therefore, a greater research effort directed towards proving the safety, efficacy and cost effectiveness of CAD

may be required.

Unfortunately, overcoming regulatory hurdles and testing in clinic against the current standard of care (i.e. against

unaided radiologists) are likely to be expensive processes. This latter point indicates that one of the biggest blocks on
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clinical adoption of CAD may be related to finances, particularly if, as is often the case, CAD development is driven

by commercial organisations.

5. Conclusion

This study has shown that a relatively simple, well-established technology, eigenimage analysis, can perform well

when applied to the automated classification of DaTSCAN images. Accuracy figures were in line with results achieved

through more complex, highly optimised algorithms applied to the same database of images. Due to the simplicity

of DaTSCAN image appearances this task is one of the more straightforward problems in CAD research. However,

results do suggest that in at least some applications CAD technologies are ripe for clinical adoption.

As with radiological applications in general, the routine use of CAD for DaTSCAN analysis is very limited. It is

in this context that the requirements of NICE evaluation processes provide an insight as to which other factors may be

a barrier to clinical translation.

The NICE evaluation processes most relevant to CAD software require adherence to medical device regulations,

the generation of evidence comparing CAD with standard of care and economic evidence showing the impact on

healthcare systems costs. In most cases CAD algorithms fall short in all these categories. Therefore, although NICE

approval is an ambitious target, results do suggest that more research effort should be expended in generating evidence

that is of concern to intended consumers, rather than continually adapting and refining CAD technology.
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