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Towards cognitively plausible data science in language research 

 

 

Abstract 

Over the past 10 years, Cognitive Linguistics has taken a Quantitative Turn. 

Yet, concerns have been raised that this preoccupation with quantification and 

modelling may not bring us any closer to understanding how language works. 

We show that this objection is unfounded, especially if we rely on modelling 

techniques based on biologically and psychologically plausible learning 

algorithms. These make it possible to take a quantitative approach, while 

generating and testing specific hypotheses that will advance our understanding 

of how knowledge of language emerges from exposure to usage. 
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1. Introduction 

 

Within cognitive linguistics the number of publications relying on empirical data 

collections and statistical data modelling has increased spectacularly over the 

two last decades (c.f., Ellis & Larsen-Freeman, 2006; Gries & Divjak, 2010; 

Zeschel, 2008). The field now abounds with studies that use statistical 

classification models to analyse either textual corpus data or behavioural 

experimental data. The most advanced corpus-based studies rely on a range 

of statistical analyses, most often regression-based, to model data that has 

been annotated for a multitude of linguistically relevant parameters (i.e., 

linguistic abstractions). The goal of these studies is to determine which 

parameters might be predictive for the form in focus. Think of, for example, the 

well-known constructional alternation studies by Bresnan, Cueni, Nikitina and 

Baayen (2007). 

The fact that this approach does not implement the cognitive 

commitment (Lakoff, 1990) on a number of points, relating to different stages 

of the analysis process, has not yet attracted much attention in the literature 

(but see Divjak, 2015). We discuss the implications of the way in which the data 

is annotated, prepared for statistical analysis and, finally, modelled, on the 

cognitive reality of the resulting linguistic analysis. 

First, datasets are typically annotated for various higher-level 

abstractions (i.e., morpho-syntactic, syntactic, semantic, and discourse-related 

features) that are believed to be helpful in revealing systematicity in language. 

These features are, however, often difficult to define and to annotate with high 

levels of agreement between human annotators. But even if that would not be 

the case, research has shown that abstract labels do not necessarily yield 

better modelling results than the actual words used in the sentences (Theijssen, 

ten Bosch, Boves, Cranen, & van Halteren, 2013). 

Second, regression models are characterized by a quirk that seems 

incompatible with a fundamental property of language: recurring information or 

redundancy. To manage the uncertainty (i.e., entropy) inherent to 

communication, language encodes bits of information recurrently. Regression, 

however, requires explanatory predictors not to be collinear, and therefore, 

redundancy needs to be removed from predictors prior to modelling. This 

equals removing information that is part and parcel of the system we are trying 

to learn about statistically. 

Third, although regression models have produced classification results 

that have received support from behavioural studies (for an overview of this 

relatively recent trend in linguistics see Klavan & Divjak, 2016), the algorithms 

these models rely on are not based on learning mechanisms but maximize 

likelihood using optimization techniques. Whether humans do or do not exhibit 

(near-)optimal behaviour remains a matter of debate (see Kahneman & 

Tversky, 1984).1 What is undisputable, however, is that human (and animal) 

learning unfolds gradually over time, and that the order of exposition matters 

																																																								
1	Bowers & Davis, 2012 critique the Bayesian approach in psychology and neuroscience that 

embodies the hypothesis of near-optimal behaviour in humans; see Griffiths, Chater, Norris, & 

Pouget, 2012 for a response to these critiques.	
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greatly. Regression-based statistical learning was not designed to take this core 

aspect of learning into account. 

If we want empirical evidence to accrue and alter the way in which we 

think about language we should consider modelling techniques that implement 

principles of human behaviour, and of learning in particular. Such models have 

been used to model language data within traditions that are close in spirit to 

Cognitive Linguistics. Examples include Parallel-Distributed Processing or 

Connectionist Modelling (PDP: Plaut & Gonnerman, 2000; Rumelhart & 

McClelland, 1986; Seidenberg & Gonnerman, 2000), Analogical Modelling (AM: 

Skousen, 1989), Memory-based Learning (TiMBL: Daelemans & Van den 

Bosch, 2005), and more recently Naive Discriminative Learning (NDL: Baayen, 

Milin, Filipović Đurđević, Hendrix, & Marelli, 2011). The performance of several 

of these models has been compared (see Eddington, 2000 for a connectionist, 

an analogical and a memory-based model on the English past tense; Theijssen 

et al., 2013 compared logistic regression, Bayesian networks and Memory-

based learning in predicting the English dative alternation; Baayen, 2011 

compared NDL with TiMBL, Logistic Mixed-Effects Regression, Classification 

Trees & Random Forests, and Support Vector Machines – SVM, on the English 

dative alternation; Baayen, Endresen, Janda, Makarova, & Nesset, 2013 

compared the same set of techniques on four different morphological 

alternations in Russian). Important for the current paper is the finding that the 

classification accuracy of NDL was outperformed only by SVM. 

 

In the following sections we reflect on the cognitive commitment at the stage of 

data annotation, preparation and modelling and explore the possibility of using 

biologically and psychologically motivated modelling as a tool for designing 

behavioural experiments and as a guide to an in-depth discussion of the 

findings. The NDL approach, which will serve not only as a computational model 

but also as a theoretical framework, enables us to consider the impact of 

introducing radically usage-based patterns and associated cognitively plausible 

abstractions into linguistics proper. 

 

 

2. Learning Theory 

 

Usage-based linguistics is predicated upon the premise that the knowledge of 

language emerges from exposure to usage. With our linguistic abilities believed 

to be rooted in general cognitive abilities, this leaves a prominent role to be 

played by learning. Vigorously exiled from the linguistic landscape by 

Chomsky’s (1959) criticism of Skinner’s “Verbal Behavior” (1957), Learning 

Theory is still to make a full come-back onto the linguistic scene.2 

Within psycholinguistics, a simple principle of learning, formally 

expressed in the Rescorla and Wagner rule (1972), has been attracting 

attention. This error-driven learning mechanism governs success in adaptation 

to an environment by iteratively correcting erroneous predictions for upcoming 

																																																								
2 	See MacCorquodale, 1970; Andresen, 1991; Virués-Ortega, 2005 for a discussion of 

Chomsky’s misinterpretation of some of Skinner’s crucial arguments.	
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events. In a nutshell, the Rescorla-Wagner rule defines how a system (an 

animal, human or a computer device) learns from its own errors in order to 

adapt to the task at hand. 

Core components in this learning system are input cues and their weight 

in predicting learning outcomes. These weights are repeatedly updated as 

experience accumulates. Over time, some cues become discriminative (i.e., 

predictive) for an outcome, while many become irrelevant. The system is 

parsimonious in the sense that, for each outcome, only a handful of cues 

develop strong positive or negative connection weights to outcomes. If a given 

cue is consistently present when an outcome is present, their connection is 

strengthened. However, if a given cue is repeatedly present when the outcome 

is absent, the weight on the connection between them is weakened. This 

dynamic ensures minimal error in prediction given all prior experience. As the 

number of available cues increases, the amount by which the weight on its 

connection to an outcome can increase is affected. The more cues are present, 

the smaller the increase and the greater the decrease in weights will be. This 

reflects the competition between cues. The strengthening of weights reflects 

learning, and the weakening of links captures unlearning (for details see 

Baayen et al., 2011; Milin, Feldman, Ramscar, Hendrix, & Baayen, subm.). 

The Rescorla-Wagner model was conceived to account for a range of 

learning phenomena that are also valuable for understanding life-long language 

learning. The blocking phenomenon (Kamin, 1969), for example, explains why 

an association between a cue and an outcome (the conditioned and 

unconditioned stimuli in traditional learning theory terminology) is impaired if 

that same outcome had already been paired with another cue: the second cue 

will not facilitate prediction of the outcome and for that reason the cue will be 

ignored. Blocking has been used to explain L2 acquisition (Ellis, 2006a), as well 

as phenomena of early language acquisition such as overgeneralization of 

irregular plurals (Ramscar & Yarlett, 2007) and difficulties in acquiring 

grammatical gender in L2 (Arnon & Ramscar, 2012). 

The Rescorla-Wagner equations provide various parameters for 

differentiating the salience of cues and outcomes. There are parameters which 

specify the salience of an input cue i (αi), and parameters for the maximum 

learnability of an outcome j (λj). Furthermore, the importance or strength of 

correct (β1) vs. incorrect (β2) predictions can be weighted differentially. 

Although in a typical simulation run these parameters are set to their default 

values, they allow for a principled account of various learning “peculiarities” 

(see Ghirlanda, 2005 for how a simple error-driven learning model, formally 

equivalent to the Rescorla-Wagner model, can account for a range of intricate 

learning phenomena). For example, in a series of experiments and modelling 

studies (Jordanov, Nešković, & Milin, 2015; Nešković, Jordanov, & Milin, 2015) 

it was shown that a change in the salience of a crucial learning cue could 

explain an unexpected pattern of results in a variant of the object naming task, 

designed to demonstrate the highlighting effect in learning. The effect itself 

distinguishes early vs. late learning, and perfect vs. imperfect learning cues 

(i.e., those that predict one and only one or more possible outcomes), and 

shows a prediction preference for early-learned imperfect cues and late-learned 
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perfect cues. Highlighting was also used to explain the cognate effect in L1/L2 

lexical processing (Anđel, Radanović, Feldman, & Milin, 2015). 

In recent years, support has been accumulating for error-driven learning 

as an explanatory model accounting for a wide range of language phenomena 

(Ellis, 2006a, 2006b, 2012; Ramscar & Yarlett, 2007; Ramscar, Yarlett, Dye, 

Denny, & Thorpe, 2010; Ramscar & Dye, 2011; Dye, Milin, Futrell, & Ramscar, 

2016). Naive Discrimination Learning (Baayen et al., 2011) provides a 

computational framework for error-driven discrimination of potentially very large 

numbers of outcomes given potentially also large numbers of cues. 

Computations scale up and can be run on large data sets, including corpora 

with billions of words. 

As for any computational model, the representations chosen for cues 

and outcomes are crucial for the model's performance (c.f., Gallistel, 2008). 

Models for lexical processing typically made use of large numbers of simple 

cues, such as letter pairs or letter triplets, but cues can also be words, acoustic 

features, or constructional properties. Likewise, outcomes can range from 

lexical and grammatical features to idioms and constructions. Different 

networks can be combined, as in the study of Milin, Divjak and Baayen (subm.) 

which modelled both bottom-up orthographic learning and top-down semantic 

learning in sentence reading. NDL has proven successful in modelling the 

processing of a wide range of language phenomena from inflections to phrasal 

effects (Baayen et al., 2011), and in explaining the effects of priming and form 

neighbourhood (Milin et al., subm.), as well as frequency and age-of-acquisition 

(Baayen, Milin, & Ramscar, 2016). 

Note, however, that NDL should not be mistaken for a classifier: it was 

not designed to compete with the state-of-the-art machine learning 

classification techniques (despite the fact that it achieves comparable results, 

as shown by Baayen, 2011 and Baayen et al., 2013). Instead of relying on 

optimization algorithms to maximize prediction accuracy, NDL is conceived to 

mimic human learning, including the restrictions on memory and learning that 

set human learning apart from machine learning. NDL, which could be viewed 

as a method for doing incremental regression (for discussion see Evert & 

Arppe, 2015), offers the advantages of being exquisitely sensitive to the order 

of learning events, while at the same time allowing researchers to consider 

many collinear predictors simultaneously. 

 

 

3. Comprehension of “easy” and “difficult” plural nouns in Serbian: 

 A lexical decision experiment 

 

As our case study, we will present a TiMBL model (Daelemans & Van den 

Bosch, 2005) which produces novel inflected word forms in Serbian, relying on 

similar (i.e., neighbouring) word forms. TiMBL has been used to model 

allomorphy in the Serbian instrumental singular (Milin, Keuleers, & Filipović 

Đurđević, 2011) and outperformed Analogical Modelling (Skousen, 1989) in 

handling allomorphy in the Croatian instrumental singular and genitive plural 

(Lečić, 2016). It also showed good performance in producing a range of Serbian 

inflected word forms from their lemmata (Dimitrijević, 2015). 
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Training. TiMBL was trained on a sample of 89,024 different word tokens 

(pronouns and open-class content words), retrieved from the manually 

lemmatized and morpho-syntactically annotated Frequency dictionary of 

contemporary Serbian (Kostić, 1999).3 Coded exemplars, the building blocks of 

the learning memory, contain three types of information: (1) the syllabic 

structure of the lemma; (2) a morpho-syntactic tag; (3) a class label with the 

inflectional suffix (e.g., “-ih”). Table 1 shows two coded exemplars using a 

syllable-based alignment method in which components are right-aligned. (1) 

represents the four last syllables of the given lemma, each consisting of onset, 

nucleus and coda. Lemmata consisting of fewer than four syllables (like the two 

presented in Table 1) would have the leftmost positions marked with “=”, 

signalling the non-availability of an element. Similarly, (3) is right-aligned from 

0 to 9, with the suffix attached at the end; the numbers flag alternations by 

position. This coding scheme has proven to work well for TiMBL (see Keuleers 

& Daelemans, 2007). 

 
Table 1. Lemma, word form and exemplar structure. 

Lemma Word form 
Exemplar coding 

(1) (2) (3) 

polagan polaganiha =, =, =, p, o, =, l, a, =, g, a, n 201221 9876543210ih 

poseban posebnihb = ,=, =, p, o, =, s, e, =, b, a, n 201221 987654320ih 
a slow; b special 

 

The algorithm was trained on coded exemplars available in the memory 

and tested for the production of novel (i.e., unseen) forms, given its k-nearest 

neighbours. Details of this procedure are provided in Appendix A. Lemma and 

word form were always excluded from training and evaluation. The overall 

success rate of the TiMBL simulation was 89%. This is a conservative estimate, 

obtained by counting as errors all grammatically acceptable alternate forms 

such as doublets (“vukovi” – “vuci”), dialectal variants (ekavica: “mleko” – 

ijekavica: “mlijeko”) etc. 

 

Stimuli. Experimental items were selected from all masculine nouns for which 

a nominative plural was produced in the TiMBL simulation run. They were split 

into two groups of correct (“easy”) and incorrect (“difficult”) productions, and the 

items in these groups were matched in number for nominative plural formation. 

Frequency counts (retrieved from Kostić, 1999) were entered as a covariate in 

the statistical model. The final list of items consisted of 60 “easy” and 60 

“difficult” nouns. Wuggy (Keuleers & Brysbaert, 2010) generated 120 

pseudowords, matching the words from the list in length and phonotactics. 

 

																																																								
3 	The algorithm was trained using the k-nearest neighbours method, with modified value 

difference as similarity metric (MVDM: Cost & Salzberg, 1993), and k set to 7 as default 

neighbourhood size. An element’s importance was determined with the information gain ratio 

(Quinlan, 2014). For further technical details we refer to Dimitrijević (2015).	
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Participants. 39 students (31 females) from The University of Banja Luka 

(Bosnia and Herzegovina) participated in the experiment in partial fulfilment of 

the course requirements. All were native speakers of Serbian with normal or 

normal-to-corrected vision and no known reading or speech disorders. 

 

Procedure. The experiment began with 8 practice trials, followed by 240 

experimental trials, randomized for each participant. Standard experimental 

procedures for administering a lexical decision task were adhered to. 13.72% 

of the data had to be removed from further analyses, leaving N = 4,048 

datapoints. 

 

Results. We made use of Generalized Additive Mixed Modelling (GAMM: 

Wood, 2006), as implemented in the mgcv package for R Statistical 

Environment (Wood, 2011; R CoreTeam, 2014). 

A GAMM showed significant random effects of participants and items 

(respectively: F = 48.763, p < 0.0001; F = 6.719, p < 0.0001). The main 

experimental factor – word difficulty (“easy” vs. “difficult”) as derived from TiMBL 

– made a significant contribution (t = 2.584, p = 0.0098), and entered into 

interactions with both form frequency and lemma frequency. Interestingly, while 

form frequency is significant for the “easy” words (F = 4.565, p < 0.0327), lemma 

frequency is predictive in case of the “difficult” words (F = 27.276, p < 0.0001). 

Both interactions are presented in Figure 1. Participants experience more 

difficulties recognizing those items that the TiMBL model found difficult to 

produce. 
 

 

Figure 1. Lemma frequency by word difficulty (left panel) and form 

frequency by word difficulty (right panel) interaction. Confidence intervals 

are presented only for the significant effect of interactions. 

 

Strikingly, TiMBL’s inflectional class probabilities turn out to be predictive 

in production and comprehension, i.e., for lexical decision latencies. The 

question, however, remains whether we are justified to conclude, based on the 

convergence between the model’s predictions and subjects’ responses, that the 

way in which TiMBL learns from data mimics the way humans learn? Memory-
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based learning offers an attractive framework for the exemplar-based modelling 

of language and language processing, and the TiMBL implementation provides 

researchers with a powerful toolkit for detecting which properties of exemplars 

guide prediction (see, e.g., Krott, Baayen, & Schreuder, 2001). However, the 

very techniques that facilitate these predictions (e.g., information gain weights 

or modified value differences) stem from probability theory and are based on 

conditional probabilities that assume, contrary to fact (see Kamin, 1969; 

Ramscar & Yarlett, 2007; Ellis, 2006a), that blocking should not occur. Whereas 

in some fields or for some applications one may not want to work with 

algorithms that are subject to blocking, respecting blocking is an important 

desideratum for the reverse engineering of human language processing. From 

this perspective, it is interesting that in evolutionary biology, the Rescorla-

Wagner learning rule has been found to be superior in cross-generational 

performance than more advanced classifiers (c.f., Trimmer, McNamara, 

Houston, & Marshall, 2012). 

In our analysis of reaction times for decisions regarding the lexicality of 

Serbian plural nouns, we observed that predictions about a word's plural form, 

generated by memory-based learning, explain some of the variance in reaction 

times. In the next section, we introduce some measures obtained through naive 

discriminative learning that extend our understanding of the variance observed 

in the reaction times. 

 

 

4. Taking a Naive Discrimination Learning perspective 

 

NDL was trained on a 300 million word Serbian subtitle corpus (Tiedemann, 

2012). Subtitle corpora are easy to obtain, and constitute a particular register 

in which short, frequent, easy, and emotional words are over-used compared 

to spontaneous conversational speech and written registers (Baayen, Milin, & 

Ramscar, 2016). This constellation of properties yields frequency counts that 

have been found to be particularly well-suited for predicting reaction times in 

visual lexical decision tasks. Simple letter triplets (i.e., trigraphs) serve as 

orthographic input cues, while space-separated letter sequences – actual word 

forms in our present implementation – are learning outcomes. As laid out in 

Milin et al. (subm.), these word forms are referred to as lexomes, and are 

conceptualized as pointers that give access to locations in high-dimensional 

semantic co-occurrence space, where meaning is not fixed and encapsulated 

but distributed and dynamic and construed as the message unfolds.4 Table 2 

presents examples of the input and output representations used. 

 
Table 2. Input cues and learning outcomes for the NDL model. 

Form based input cues Outcome Lemma 

#po, pol, ola, lag, aga, gan, ani, nih, ih# polaganih polagana 

#po, pos, ose, seb, ebn, bni, nih, ih# posebnih posebanb 
a slow; b special 

																																																								
4
 Compare with Beard’s (1977; 1981) separation hypothesis, and Aronoff’s (1994) definition of 

a lexeme. 
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The model was trained on each of the 300 million words, one after the 

other, adjusting the weights from the cues to all outcomes using the Rescorla-

Wagner learning rule. Training results in a cues-by-outcomes matrix. This 

matrix specifies, for any given cue and outcome pair, how well the cue supports 

the outcome. Given a word's input cues (#po, pol, ola, lag, aga, gan, ani, nih, 

and ih#), the sum of the connection weights from these cues to the outcome 

polaganih defines the outcome's activation. For understanding lexicality 

decisions, two "Grapheme-to-Lexome" (G2L) measures were found to be 

particularly important: 

 

1.! Diversity. The G2L-Diversity is the sum of the absolute values of the 

activations of all possible outcomes, given a set of input cues. Input cues 

that activate many different outcomes give rise to a highly diverse 

activation vector, which in turn indicates a high degree of uncertainty 

about the intended outcome. 

2.! G2L-Prior. The G2L-Prior is the sum of the absolute values of the 

weights on the connections from all cues to a given outcome. This 

measure, which is independent of the actual cues encountered in the 

input, reflects the prior availability of an outcome, its entrenchment in the 

learning network. 

 

We ran two sets of statistical models using GAMMs (Wood, 2006), one 

in which the NDL measures were used to explain the TiMBL generated 

probabilities for the produced inflected forms (Section 4.1), and one in which 

they were used to explain the RT latencies from the lexical decision experiment 

directly (Section 4.2). The two learning-based measures were rank-transformed 

to facilitate statistical modelling. 

 

 

4.1. Explaining TiMBL probabilities with discrimination learning measures 

 

The GAMM model fitted to the TiMBL probabilities indicated that TiMBL 

probability increases linearly with G2L-Diversity (F = 6.869, p = 0.0099), as 

illustrated in Figure 2. With this single predictor the model accounts for 5.5% of 

explained deviance on N = 120 word items. 

G2L-Diversity captures the dispersion of lexomes that are co-activated 

by the input cues (trigraphs). Lexomes that are irrelevant will have activations 

close to zero, and will not contribute to the diversity. Simply, letter triplets that 

are shared by many lexomes will boost their co-activation, which will be 

captured by higher values of G2L-Diversity. Thus, G2L-Diversity is an indirect 

measure of the number of near-neighbours of a given word form. For TiMBL to 

predict a plural with accuracy, it is important to have many exemplars that are 
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near-neighbours. Having more such neighbours allows TiMBL to make more 

precise predictions about the most likely shape of the word’s plural form.5 

 
Figure 2. The effect of word-form G2L-Diversity fitted to the TiMBL 

generated probabilities. 

 

However, a state of affairs that is optimal for the selection of a plural form 

in language production may be disadvantageous in language comprehension. 

Specifically, the co-activation of the many potential plural forms together with 

the intended plural form creates uncertainty, and this has been found to give 

rise to elongated reaction times in the visual lexical decision task. We will 

explore this in the next section. 

 

 

4.2. Modelling lexicality decisions with discrimination learning measures 

 

We fitted a GAMM to the visual lexical decision latencies with as predictors 

Word Difficulty, G2L-Diversity and G2L-Prior. The GAMM included random 

intercepts for participants and for items (F = 45.908, p < 0.0001; F = 6.077, p < 

0.0001, respectively), as well as a main effect of word difficulty (“easy” vs. 

“difficult”: t = 2.616, p = 0.0089). The predictor “word difficulty” was included 

because this two-level factor played a crucial role in the design of the 

experiment (reported in Section 3).6 As illustrated in Figure 3, a greater G2L-

Prior or stronger entrenchment in the learning network afforded shorter reaction 

times (F = 51.221, p < 0.0001), whereas, as predicted, a greater G2L-Diversity 

																																																								
5	When NDL is used as a classifier, and a network is trained to predict the most likely plural 

form from letter trigraphs alone, an accuracy rate of nearly 72% is achieved. By adding the 

morpho-syntactic information that was made available to TiMBL the accuracy of the NDL 

predictions increases to 84%, which approaches the 89% accuracy of TiMBL. See, however, 

our discouragement regarding using NDL for classification problems in Section 3.	
6	Strictly speaking, it is possible that NDL is (dis)advantaged because the dichotomy that 

characterizes the TiMBL results may conflict with the predictions that NDL would make. For 

example, items characterized by high values of activation diversity would be less probable (see 

Figure 2).	
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(F = 20.356, p < 0.0001) or co-activation of many possible plurals together with 

the intended plural gave rise to longer reaction times due to the increased 

uncertainty that comes with co-activation. Both NDL measures reported here 

as significant have been found to show a similar trend in previous studies 

involving lexical decision latencies (Baayen, Milin, & Ramscar, 2016; Milin et 

al., subm.). 

 

 

Figure 3. Smooths in the generalized additive model fitted to the lexical 

decision data, using discrimination-based predictors. Left panel: G2L-Prior, 

right panel: G2L-Diversity. 

 

The GAM model with learning-based predictors (G2L-Prior and G2L-

Diversity) fits the lexical decision times better, and achieves this better fit with 

fewer parameters, than the model reported in Section 3, which made use of 

form and lemma frequency as predictors in interaction with Word Difficulty (ML: 

278.40 vs. 289.20; AIC: 337.32 vs. 347.04, number of parameters: 8 vs. 12; 

see Appendix B for details). This finding illustrates the importance of taking into 

account the simple but foundational principles of error-driven learning, as 

formalized in the Rescorla-Wagner rule. 

In sum, the GAM models presented in Sections 4.1 and 4.2 reveal that 

TiMBL and NDL rely on different learning principles to account for the 

behavioural response data. TiMBL assigns higher probabilities to forms 

belonging to lemmas with letter trigraphs that yield more diverse activations. 

Those trigraphs belong to a rich exemplar space in the memory on which TiMBL 

bases its predictions. Given this, it would be expected that higher probabilities 

would result in shorter response latencies, yet NDL’s G2L-Diversity was in fact 

positively correlated with RTs, indicating inhibition, i.e. slower recognition. 

Recall, however, that TiMBL probabilities are intended to capture the 

likelihood of a form’s occurrence in production. Under such circumstances, 

dense neighbourhoods might be desirable, and NDL diversity captures this 

trend indirectly. Conversely, in comprehension and in particular when making 

lexicality judgments, the diversity of trigraphs may well be hurtful as our results 

demonstrate (see also Baayen, Milin, & Ramscar, 2016; Milin et al., subm.). 
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5. Conclusion 

 

In this position statement, we set out to demonstrate that the recent trend in 

usage-based linguistics to turn towards quantification and modelling does not 

divert attention from what really matters. Quite the contrary: reliance on 

cognitively plausible algorithms, in particular those based on principles of 

animal and human learning, advances understanding of how knowledge of 

language emerges from exposure to usage. 

We have illustrated how a learning model with straightforward letter 

triplets as cues and word forms as outcomes generates predictors that 

outperform classical frequency measures. We note here that it is far from 

straightforward to generate predictions for lexicality decision times from 

memory-based learning. Information gain weighting or the modified value 

difference metric might be used to derive sets of nearest neighbours, but effect 

sizes of neighbourhood density measures in visual lexical decision are tiny (see 

Baayen, Milin, & Ramscar, 2016). More important is that memory-based 

learning assumes that exemplars are available in memory and can be 

straightforwardly accessed and compared, whereas naive discriminative 

learning addresses precisely the question of how the brain might access lexical 

information, and does this without making use of data structures from 

information science such as hash tables, linked lists, letter trees or information 

gain trees. Naive discriminative learning not only provides a step forward to 

answering this fundamental question, but, importantly, also shows that when 

this fundamental question is addressed, many phenomena reported in the 

processing literature receive simple yet powerful explanations (see, e.g., 

Baayen et al., 2011). 

NDL resolves the two further concerns that we raised at the outset. 

Regression analysis works best and is best interpretable when predictors are 

orthogonal. In language, however, many predictors are highly correlated. For 

instance, frequent words tend to be polysemous, short, with high-frequency 

letter pairs, from dense neighbourhoods, and with high-frequency neighbours. 

Since the Rescorla-Wagner learning rule is applied locally, at the level of 

individual learning events, collinearity as a technical issue does not arise. 

Whenever predictors conspire, their joint effect will be absorbed by the learner. 

This error-driven learning approach makes it possible to gauge the impact of 

truly usage-based patterns and associated cognitively plausible abstractions. 

Second, although the Rescorla-Wagner rule can be viewed as 

incremental regression (c.f., Widrow & Hoff, 1960), what sets it apart from 

standard regression is its sensitivity to order in learning. This sensitivity to order 

allows it to capture the effect of blocking (Kamin, 1969; Rescorla & Wagner, 

1972), and to formulate precise predictions about the consequences of order 

for human learning (Ramscar et al., 2010; Arnon & Ramscar, 2012; Ellis, 

2006a). 

Last but not least, we have also shown how the discrimination measures 

that are derived from NDL’s activation matrix, constructed on the basis of 

iterative learning, can be used to interpret the outcomes of other computational 
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algorithms, in this case MBL (as implemented in TiMBL). The excellent 

performance of NDL raises hope that we may have access to a “computational 

model that explains how grammar emerges from usage” (Baayen et al., 2013, 

p. 288). An approach couched in learning is ideally suited for testing the 

emergentist perspective on language knowledge that lies at the core of 

Cognitive Linguistic Theory.  

The Naive Discrimination Learning framework provides valuable 

solutions to concerns that have been voiced in Cognitive Linguistic circles 

(Divjak, 2015) and are discussed further in this Special Issue (see in particular 

the contributions by Blumentahl-Dramé and Dąbrowska): it allows linguists to 

systematically explore the effect of different types of input to the system on the 

resulting representation and to model spoken or written language in a way that 

respects principles of human learning, while yielding predictions that are 

realistic and can be tested experimentally. 

Taken together, these points provide a strong argument for adopting 

discrimination learning as an encompassing explanatory and computational 

framework that also allows empirical evidence to accrue and alter the way in 

which we think about language, during acquisition and in representation.  
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APPENDIX A: A worked TiMBL example 

 

For the example of “polagan”, TiMBL’s task would be to produce the form 

“polaganih” given “polagan”, relying on the set of closest neighbours as follows: 

 
=, =, =, p, o, =, l, a, =, g, a, n, 201221, ? 

 
=, =, =, p, o, =, s, e, =, b, a, n, 201221, 987654320ih 

=, =, =, p, o, =, m, e, =, š, a, n, 201221, 9876543210ih 

=, =, =, =, o, =, t, e, =, r, a, n, 201221, 9876543210ih 

=, =, =, i, =, z, l, a, =, g, a, n, 201221, 9876543210ih 

=, =, p, r, i, =, k, a, =, z, a, n, 201221, 9876543210ih 

=, =, =, =, o, =, p, a, =, s, a, n, 201221, 987654320ih 

=, =, =, n, e, =, d, a, =, v, a, n, 201221, 987654320ih 

 

In this particular example, the most probable inflectional class is 9876543210ih, 

containing 4 out of 7 exemplars (p = 0.57). The novel form will thus be 

“polaganih”. Conversely, would the other class be the selected candidate (i.e. 

987654320ih, with support of p = 0.43), TiMBL would produce the erroneous 

form “polagnih”. 
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APPENDIX B: Generalized additive mixed model specifications 

 

B.1. Generalized additive mixed model fitted to the lexical decision latencies for 

Serbian nominative masculine plural nouns, using lexical-distributional 

predictors. Reported are parametric coefficients (Part A) and non-linear terms 

(Part B) with effective degrees of freedom (edf), reference degrees of freedom 

(Ref.df), F and p values. (AIC = 347.04, -ML = 289.2, Adjusted R-sq. = 0.43) 

 

A. Parametric coefficients Estimate Std. Error t value p-value 

Intercept -1.405 0.031 -45.326 < 0.001 

Word difficulty: easy -0.055 0.021 -2.584 0.010 

B. Smooth terms edf Ref.df F-value p-value 

s(LemmaFreq, W.diff: hard) 1.000 1.000 27.276 < 0.001 

s(LemmaFreq, W.diff: easy) 1.000 1.000 0.819 0.366 

s(WordFreq, W.diff: hard) 1.000 1.000 0.758 0.384 

s(WordFreq, W.diff: easy) 1.000 1.000 4.565 0.033 

s(Participant) 37.210 38.000 48.763 < 0.001 

s(Item) 88.670 103.000 6.719 < 0.001 

 

 

 

B.2. Generalized additive mixed model fitted to the lexical decision latencies for 

Serbian nominative masculine plural nouns, using discrimination learning 

predictors. Reported are parametric coefficients (Part A) and non-linear terms 

(Part B) with effective degrees of freedom (edf), reference degrees of freedom 

(Ref.df), F and p values. (AIC = 337.32, -ML = 278.4, Adjusted R-sq. = 0.43) 

 

A. Parametric coefficients Estimate Std. Error t value p-value 

Intercept -1.406 0.031 -45.408 < 0.001 

Word difficulty: easy -0.056 0.021 -2.616 0.009 

B. Smooth terms edf Ref.df F-value p-value 

s(G2L-Diversity) 1.000 1.000 20.356 < 0.001 

s(G2L-Prior) 1.000 1.000 51.221 < 0.001 

s(Participant) 37.160 38.000 45.908 < 0.001 

s(Item) 85.350 100.000 6.077 < 0.001 

 

 

 

 


