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ABSTRACT. In recent years, there has been a dramatic increase in the use of data that
are collected over time and hence models with a temporal component, leading to dynamic
models, have received increasing attention. The proposed approach uses a general frame-
work which permits many special cases to be considered. Put simply, for each time a
parametric observation model is defined with a conditional auto-regressive type model
defined relating the parameters at one time to previous parameter values, this is called
the evolution equation. Simulation results will be presented investigating estimator prop-
erties considering a temporally changing regression problem with results demonstrating
improved estimation. The technique will also be applied to a real dataset examining the
changing relationship between ambient temperature and electricity consumption in the
UK. The fitted model can then be used to predict future demand based on easily obtained
temperature forecast information.

1. Introduction

Statistical modelling is being used in an ever increasing range of applications from
molecular human biology to the search for exoplanets. These new areas typically pro-
vide richer datasets which need correspondingly more complex and specialized statistical
techniques to be created. One exemplary situation is in economics and finance were “big
data” problems arise due to high-frequency sampling and to the linking of data collected
from diverse sources. The term dynamic indicates that temporal change occurs in a pro-
cess as it evolves over time. It has been claimed that “process modelling is the single
technology that has had the biggest impact on business in the last decade”, and hence it
is clearly a valuable and important area of statistical research. Dynamic model analysis
is based on groups of models which can be define as a sequence changing over time and
allows the detailed properties of the process to be studies using a rigorous framework. As
with all models, a dynamic model is a simplified representation of reality but it aims to
capture the salient features of the temporal behaviour of the process. In particular, the
aim in the dynamic model is to explain as much of the relationship between the variables
which are observed over time as possible. It is usual to use standard statistical models
for each time point, but to also describe changes in model parameters through Markov or
auto-regressive type processes as discrete time approximations to differential equations.

Dynamic models, sometimes called state space models, date back to the Kalman filter
[13] but were first used in time series analysis in [11], then further modelling was studied
in [12], [19] and [10]. Good reviews can also be found in, for example, [14], [17] and [26].
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2 ROBERT G. AYKROYD AND NADA ALFAER

The linear dynamic model was extended to the nonlinear case in [27]. Popular examples
of dynamic approaches involve ARCH [6] and GARCH models which use autoregressive
processes to describe changing variance and general correlation structures in time series.
For a general review of the family of ARCH models see [7].

Many applications of dynamic modelling exist, for example in finance applications it
is not possible to perform a designed experiment with replication but instead the data can
be observed only from repeated observations as the system is evolving and hence there
is no choice other than using a dynamic model to analyse the data. For an application
to financial mathematics see [5]. In biology, dynamic models have been used to look at
how the behaviour of different species, which share a common habitat, changes through
time. For further examples in biology see, for example, [3] and [28], and for examples in
geophysics see [1] and [4].

Here we adopt a statistical approach with a Bayesian perspective giving careful atten-
tion to the general approach, but also showing useful specific examples. Key theoretical
results, using the general linear dynamic model, are derived, for two novel sequential ap-
proaches. The first of these used conditional updating with estimation for the current time
based on the estimates at the previous time, whereas the second performs simultaneous
estimation for the current and several previous times. The results presented allow readers
to apply the same techniques, not just on the examples given here, but also for their own
specific linear model and hence can have widespread impact. The theory is investigated
through simulation and illustrated using a real data example. In particular, this paper
is structured as follows. Section 2 provides background to dynamic modelling and de-
tails of the proposed linear dynamic model approach focusing on general linear dynamic
problems. Section 3 presents simulation studies to investigate estimation properties. The
methods are then applied to real data in Section 4. The final summary and conclusions
are presented in Section 5.

2. Dynamic modelling and parameter estimation

2.1. General definitions. Consider a dynamic process with a relationship between data
and model parameters where the parameters change through time, and even where the
relationship itself might vary with time. For background information see, for example,
[10], [12] and [19]. Suppose there are T times and that these occur at distinct times
T = {tk : k = 1, . . . , T}. Further suppose that a dataset of nk measurements, yk =
{yik : i = 1, . . . , nk}, is recorded at time tk, k = 1, . . . , T , which depends on a parameter
vector θk = {θjk : j = 1, . . . , p} through a known function Fk(·) and random noise
εk = {εik : i = 1, . . . , nk}, that is

yk = Fk(θk) + εk, k = 1, . . . , T, (2.1)

which is known as the observation equation. The second equation is the evolution equa-
tion which can be written as

θk = Gk(θk−1, . . . ,θ1) + νk, k = 2, . . . , T (2.2)

where G(·) is a known function and νk = {νjk : j = 1, . . . , p} is random noise. Al-
though this general case allows greater flexibility, it is usual to assume only a first-order
dependency in which caseGk(θk−1, . . . ,θ1) ≡ Gk(θk−1). Of course in the most general
setting there is a very wide choice of error model, and even the errors do not need to be
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SEQUENTIAL MODELS FOR TIME-EVOLVING REGRESSION PROBLEMS 3

additive. Perhaps the most flexible is to introduce a generalized dynamic model incorpo-
rating a link function, µ(·), leading to the definition µ(E[yk]) = Fk(θk). The most usual
assumption, however, is that the errors are additive and well described by a multivari-
ate normal distribution, with a possible further assumption of independent variables with
identical distributions. Background to regression modelling can be found in, for example,
[8], [18], [21] and [25].

Now to move to a specific setting, consider the linear model with Gaussian distributed
errors which is defined by observation equation

yk = Fk θk + εk, εk ∼ Nnk
(0,Σε), (2.3)

where Fk = {Fijk, i = 1, . . . , nk, j = 1, . . . , p} is an nk×p design matrix of explanatory
variables, θk is, as above, a p-dimensional vector of regression parameters, and εk is a
Gaussian random vector with mean zero and known covariance matrix Σε. The second
equation, the linear evolution equation, is given by

θk = Gk θk−1 + νk, νk ∼ Np(0,Σν), (2.4)

where Gk = {Gjj′k, j = 1, . . . , p, j′ = 1, . . . , p} is a p × p evolution matrix and νk is
a Gaussian random vector with mean zero and known covariance matrix Σν . In the case
where Gk is the identity matrix and νk is identically zero at each time point then, this
becomes a non-dynamic model.

In the terminology of state-space models, for a discrete time process, yk is the output
vector, Fk is the output matrix, θk is the state vector, and Gk is the state, system or
transition matrix. Further, especially in financial applications, the distribution of the errors
νk is known as the shock distribution and the covariance matrix defines a volatility matrix.
If Fk and Gk do not depend on time, then the process is said to be time-invariant.

In the dynamic linear model the yk are independent given θk, and then yk depends
only on θk. Further, the sequence θk, k = 1, . . . , T forms a first-order p-dimensional
vector auto-regressive process, that is a Markov chain random walk. Under these assump-
tions the model can be written as

yk | θk ∼ Nnk
(Fk θk, σ

2Ink
), k = 1, . . . , T (2.5)

and
θk | θk−1 ∼ Np(Gk θk−1, τ2Ip), k = 2, . . . , T. (2.6)

These equations describe the general and specific system which is a dynamic model.

2.2. Step-wise conditional parameter estimation. When the observation and evolution
equations are written in the forms of equations (2.5) and (2.6), the hierarchical structure is
more evident and hence these can be usefully thought of, in a Bayesian setting, as defining
likelihood and prior respectively. For a general introduction to Bayesian methods see, for
example, [15] and for a more in-depth and theoretical perspective see [2]. That is with
likelihood, `(θk) ≡ f(yk|θk) defined by the density function

f(yk|θk) =
1

(2πσ2)
nk/2

exp

{
− 1

2σ2
(yk − Fkθk)T (yk − Fkθk)

}
, (2.7)

and prior distribution, π(θk|θk−1), defined by the density function

π(θk|θk−1) =
1

(2πτ2)
p/2

exp

{
− 1

2τ2
(θk −Gkθk−1)T (θk −Gkθk−1)

}
. (2.8)
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4 ROBERT G. AYKROYD AND NADA ALFAER

In the Bayesian approach the likelihood and the prior are combined into the posterior
distribution, π(θk|yk,θk−1), with density function defined, through Bayes’s theorem by

π(θk|yk,θk−1) =
f(yk|θk)π(θk|θk−1)

f(yk)

∝ exp

{
− 1

2σ2
(yk − Fkθk)T (yk − Fkθk) (2.9)

− 1

2τ2
(θk −Gkθk−1)T (θk −Gkθk−1)

}
.

Estimation and inference is then based on this distribution which balances evidence from
data with information from temporal constraints.

For the estimation of θk, consider finding the maximum a posterior (MAP) estimate
by differentiation the log-posterior distribution

log π(θk|yk,θk−1) = − 1

2σ2
(yk − Fkθk)T (yk − Fkθk) (2.10)

− 1

2τ2
(θk −Gkθk−1)T (θk −Gkθk−1) + C,

where C contains the accumulated constant terms, to give

d

dθk
log π(θk|yk,θk−1) =

1

σ2
FTk (yk − Fkθk)− 1

τ2
(θk −Gkθk−1) (2.11)

and setting to zero. Hence the MAP estimate, θ̂k of θk, is the given by

θ̂k =
(
FTk Fk + κIp

)−1 (
FTk yk + κGkθk−1

)
(2.12)

where κ = σ2/τ2. Then the posterior expectation and covariance of θ̂k can be shown to
be

E(θ̂k) =
(
FTk Fk + κIp

)−1 (
FTk Fkθk + κGkθk−1

)
(2.13)

and
var(θ̂k) = σ2(FTk Fk + κIp)

−TFTk Fk(FTk Fk + κIp)
−1. (2.14)

Further, the Hessian matrix is given by

d2

dθ2k
log π(θk|yk,θk−1) = − 1

σ2

(
FTk Fk + κIp

)
(2.15)

and hence an asymptotic approximation to the posterior covariance matrix

var(θ̂k) = σ2
(
FTk Fk + κIp

)−1
. (2.16)

As special estimation cases note that as κ → 0, that is as τ → ∞, these become
θ̂k =

(
FTk Fk

)−1
FTk yk which is the usual regression estimate, and hence E(θ̂k) = θk,

var(θ̂k) = σ2(FTk Fk)−1. Then, similarly, as κ → ∞, that is as τ → 0, the estimate be-
comes θ̂k = Gkθk−1, which is simple the projection of the previous parameter estimates
forward to the new time. In particular, this is non-random and hence E(θ̂k) = Gkθk−1
and var(θ̂k) = 0. This estimation has only considered a single time for given value at the
previous time. This is illustrated in Figure 1 and in Table 1.

In practice, these given values are in fact also estimates and hence have an attached
uncertainty. If a sequence of step-wise estimates are calculated, then these accumulated
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SEQUENTIAL MODELS FOR TIME-EVOLVING REGRESSION PROBLEMS 5

Time k = 1 k = 2 · · · k = T

Estimation θ̂1|y1 θ̂2|θ̂1,y2 θ̂T |θ̂T−1,yT
TABLE 1. Conditional structure of step-wise conditional estimation.

uncertainties could be substantial. Although it might be possible to derive expressions for
the total uncertainty it is beyond the scope of this paper.

θ1

y1

θ2

y2

· · · θk−1

yk−1

θk

yk

· · · θT−1

yT−1

θT

yT

(A) Independent parameter estimation ignoring dynamic component, where the grey area shows
that each parameter is estimated using the corresponding single dataset.

θ1

y1

θ2

y2

· · · θk−1

yk−1

θk

yk

· · · θT−1

yT−1

θT

yT

(B) Full parameter estimation with joint dynamic component, where the grey area shows that all
parameters are estimated using all datasets.

θ̂1

y1

θ2

y2

· · · θ̂k−1

yk−1

θk

yk

· · · θ̂T−1

yT−1

θT

yT

(C) Conditional parameter estimation with step-wise dynamic component, where the grey area
shows that a single parameter is estimated using the corresponding single dataset and the previ-
ous parameter estimate.

FIGURE 1. Directed graphs showing the hierarchical relationships be-
tween model parameters and datasets for (A) independent estimation,
(B) joint estimation and (C) conditional estimation.
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6 ROBERT G. AYKROYD AND NADA ALFAER

2.3. Joint modelling. The aim is now to estimate all parameters up to and including a
particular time, k = K, with 1 ≤ K ≤ T , using all available data. Let the complete set
of parameters be labelled θ = {θ1, . . . ,θK}, and the available data y = {y1, . . . ,yK}.
Also, for ease of notation, define two extra partial parameter vectors θ−1 = {θ2, . . . ,θK}
which has the parameters from the first time removed, and θ−K = {θ1, . . . ,θK−1}which
has the parameters from the K-th time removed.

Now the likelihood, `(θ) ≡ f(y|θ) is defined by

f(y|θ) =
1

(2πσ2)
N/2

exp

{
− 1

2σ2
(y − Fθ)T (y − Fθ)

}
, (2.17)

where N = n1 + · · · + nK , and F is a block diagonal matrix formed from F1, . . . , FK .
Similarly, a block matrix G−K is formed from G1, . . . , GK−1. These two matrices can
be written as

F =


F1 0 . . . 0
0 F2 . . . 0
...

...
. . .

...
0 0 . . . FK

 , and G−K =


G1 0 . . . 0
0 G2 . . . 0
...

...
. . .

...
0 0 . . . GK−1

 . (2.18)

Next the prior distribution, π(θ), defined by the density function

π(θ) =
1

(2πτ2)
P/2

exp

{
− 1

2τ2
(θ−1 −G−Kθ−K)T (θ−1 −G−Kθ−K)

}
, (2.19)

where P = (K − 1)× p. In the Bayesian approach these are combined into the posterior
distribution, π(θ|y), with density function defined by

π(θ|y) = f(y|θ)π(θ)
/
f(y)

∝ exp

{
− 1

2σ2
(y − Fθ)T (y − Fθ) (2.20)

− 1

2τ2
(θ−1 −G−Kθ−K)T (θ−1 −G−Kθ−K)

}
.

Again, this distribution is the basis for estimation and inference.
For the estimation of θ, consider finding the maximum a posterior (MAP) estimate by

differentiation the log-posterior distribution

log π(θ|y) = − 1

2σ2
(y−Fθ)T (y−Fθ)− 1

2τ2
(θ−1−G−Kθ−K)T (θ−1−G−Kθ−K)+C,

(2.21)
where C is again a constant term. This time, however, greater care must be used as not all
parameters appear in the prior component in the same way. Instead three cases must be
considered leading to the following derivatives

d

dθ1
log π(θ|y) =

1

σ2
FT1 (y1 − F1θ1)− 1

τ2
GT1 (θ2 −G1θ1), (2.22)

for the parameters from the first time, then

d

dθk
log π(θ|y) =

1

σ2
FTk (yk − Fkθk)− 1

τ2

[
1
−Gk

]T [
θk −Gk−1θk−1
θk+1 −Gkθk

]
, (2.23)

6
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SEQUENTIAL MODELS FOR TIME-EVOLVING REGRESSION PROBLEMS 7

for the parameters from each time, 2 ≤ k ≤ K − 1. Then, for the parameters from the
final time

d

dθK
log π(θ|y) =

1

σ2
FTK(yK − FKθK)− 1

τ2
1Tp (θK −GK−1θK−1). (2.24)

Similarly, there are three parts to the MAP estimate, θ̂ of θ, given by

θ̂1 =
(
FT1 F1 − κGT1G1

)−1 (
FT1 y1 + κGT1 θ2

)
, (2.25)

for the parameters from the first time, then

θ̂k =
(
FTk Fk + κIp

)−1 (
FTk yk + κGTk−1θk−1

)
, 2 ≤ k ≤ K − 1, (2.26)

then, for the parameters from the final time

θ̂K =
(
FTKFK + κIp

)−1 (
FTKyK + κGK−1θK−1

)
. (2.27)

For ease of solution, these equations can be formed into a linear system

A θ̂ = FTy, (2.28)

where the p× p matrix A is given by



FT
1 F1+κG

T
1 G1 −κGT

1 0 0 . . . 0

−κG2 FT
2 F2 + κ(GT

2 G2 + Ip) −κGT
2 0 . . . 0

...
...

...
...

...
...

0 . . . 0 −κGK−2 FT
K−2FK−2 + κ (GT

K−2GK−2 + Ip) −κGT
K−2

0 . . . 0 0 −κGK−1 FT
KFK + κIp


,

(2.29)
and hence the estimates are given by

θ̂ = A−1 FTy. (2.30)

Then, for completeness, the expectation and the covariance are given by

E(θ̂) = A−1 FTFθ and var(θ̂) = σ2A−1 FTFA−T . (2.31)

The above estimation considers data from all previous times simultaneously and esti-
mates all corresponding parameters. This is illustrated in Figure 1 and in Table 2.

Time k = 1 k = 2 · · · k = K

Estimation θ̂1|y1 θ̂1, θ̂2|y1,y2 θ̂1, · · · , θ̂K |y1, · · · ,yK
TABLE 2. Conditional structure of simultaneous joint estimation

7
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8 ROBERT G. AYKROYD AND NADA ALFAER

3. Estimator properties through simulation

3.1. Dynamic linear models. The purpose of this section is to demonstrate the perfor-
mance of step-wise conditional and simultaneous joint estimation of parameters in dy-
namic linear model. In particular, consider the dynamic simple linear regression model,
see [14], [17] and [19], which is fully defined by the observation equation, describing the
data yk, with nk = n for all k = 1, . . . , T , in terms of explanatory variables xk, given by

yk = αk + βkxk + εk, k = 1, . . . , T, (3.1)

where αk and βk are the regression parameters and εk ∼ Nn(0, σ2In) . Hence, θk =
[αt, βk]T and Ft = [1,xk]. The second equation, the evolution equation, describes the
change in αk and βk over time, and here is given by[

αk
βk

]
=

[
1 0
0 1

] [
αk−1
βk−1

]
+

[
uk
vk

]
, k = 2, . . . , T, (3.2)

where uk and vk are independent Gaussian random variables with zero mean and standard
deviation τ . Here the evolution matrix G defined in equation (3.2) is the identity matrix.

The simulation experiment considers fixed sample size n = 10 and T = 10 times.
In the observation equation the error standard deviation is set at σ = 10, which gives
substantial variation around the line, and in the evolution equation τ = 2, which produces
moderate changes across the times. To start the parameter evolution initial information
α0 = 15 and β0 = 25 is used. Further, a set of M = 1000 replicates are considered to
allow a reliable comparison of the different modelling approaches.

In this experiment interest is in estimating αk and βk over time. The procedure is to
consider the usual linear regression to estimate the parameters individually, called inde-
pendent estimation, and then sequentially using the simultaneous joint estimation and the
step-wise conditional estimation. First in the individual estimation, represented in Figure
1(A), for each time point the parameters are estimate by fitting the usual linear regression
model. This means that there is a single set of parameters estimates for each time. Second,
for the simultaneous joint estimation, which is shown diagrammatically in Figure1(B) and
in Table 2, the procedure starts at time k = 1 by simply estimating α1 and β1 from y1

as with the independent estimation. Then, at time k = 2, when new data are available,
all data so far available are used to estimate α2 and β2 and also to re-estimate α1 and β1.
For the remaining time points we repeat the process using all available data to estimate or
re-estimate all corresponding parameters. Finally, for the last time point, k = T , all the
data is used to re-estimate all the parameters from k = 1 up to k = T − 1 and estimate
the final set of parameters at k = T . Third, the step-wise conditional estimation, which
is shown diagrammatically in Figure1(C) and Table 1, is applied. The procedure is again
to start at time k = 1 to estimate α1 and β1 using data y1. Then, at time k = 2 the
parameters α2 and β2 are estimated using the just calculated estimates α̂1 and β̂1, along
with data y2. At the other time points the procedure is repeated to estimate αk and βk
given α̂k−1 and β̂k−1, along with data yk.

3.2. Output summary. The simulation experiment has produced M = 1000 replicate
results with parameter estimates Θ̂ = (θ̂jm, j = 1, . . . , T,m = 1, . . . ,M) where each
estimate is made-up of the intercept and the slope of the linear regression, that is θ̂jm =

(α̂jm, β̂jm). All calculations were performed in R [20] using standard functions to allow

8
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SEQUENTIAL MODELS FOR TIME-EVOLVING REGRESSION PROBLEMS 9

clearer understanding of the model structure – the corresponding code is available from
the authors.

To summarise the results two output measures will be considered, the MSE and the
bias which, for α̂j , are defined as

MSE(α̂j) =
1

M

M∑
m=1

(α̂jm − αjm)2 and Bias(α̂j) =
1

M

M∑
m=1

(α̂jm − αjm),

(3.3)
with corresponding definitions for β̂j . Similarly, an average MSE and average bias com-
bining the values over all times can be defined as

AMSE(α̂) =
1

T

∑
j

MSE(α̂j) and ABias(α̂) =
1

T

∑
j

Bias(α̂j), (3.4)

with corresponding definitions for β̂.

3.3. Numerical results. To start the investigation, values of τ were picked and the corre-
sponding average MSE and the average bias of α̂ and β̂ calculated. Figure 2 illustrates the
performance of the joint estimation process at the final time, that is with the simultaneous
estimation of all parameters, α1, . . . , αT and β1, . . . , βT from all the data y1, . . . ,yT .
Notice that in these figures the scale in (A) is 10 times that in (B), that is the average MSE
for α̂ is much greater than that for β̂. Also, the scales for average bias cover a very narrow
range and hence each estimator is essentially unbiased.
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FIGURE 2. Assessing the influence of τ on estimation using simulta-
neous joint estimation, with (A) MSE of α̂, (B) MSE of β̂, (C) bias of α̂
and (D) bias of β̂.

We can see from Figure 2(A) and (B) how the MSE for both parameters initially de-
creases as τ increases, reaching a minimum MSE at τ = 2, and then increases again
towards the value corresponding to the independent estimation – which is shown as the
horizontal dotted line. Hence, the MSE for all τ values is, almost always, lower than the
MSE for the individual estimation. Looking now at the bias shown in Figure 2(C) and
(D). There is no substantial change in the average bias, though it very gradually moves
towards zero as τ increases. The limiting value, corresponding to independent estimation,
is zero to 2 decimal places in each case. Hence, the estimators for all values of τ can be
considered to be unbiased. Overall, it can be said that for very high values of τ , there is

9
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10 ROBERT G. AYKROYD AND NADA ALFAER

no clear advantage of using the joint estimation, but for small and moderate values there
is a clear advantage. In particular, the minimum in the average MSE occurs at the value
of τ used in the simulation, and in the remainder of the study this is the case.
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FIGURE 3. The MSE for the joint estimation of α with (A) MSE of α̂1,
(B) MSE of α̂2, (C) MSE of α̂4 and (D) MSE of α̂6.

Consider now the effect of using the joint estimation sequentially. That is at time K,
for 2 ≤ K ≤ T , the data so far collected, y1, . . . ,yK , are used to estimation all of the
corresponding parameters, θ1, . . . ,θK . Clearly, this can be repeated at each time with
the amount of available data and the number of parameters steadily growing. Figures 3
and 4 show the MSE of α̂k and β̂k, respectively, for k = 1, 2, 4, 6. In each panel the
red cross represents the MSE from the individual independent estimation and the black
line with dots shows the MSE from the simultaneous joint estimation. Note that it is not
possible to estimate a parameter until the corresponding data has been collected. It is clear
from the figures that MSE for the joint estimation decreases over time and in both cases
there is a big jumping from the independent estimation to the first joint estimate, this is
certainly due to the use of the previous information at each time point. For the later times,
as more and more data is available there is only a small further decrease in MSE. Hence,
this suggests that there is a great advantage in performing joint estimation with three or
four previous times, but the further gain may not be worthwhile. This latter point, is most
important if we imagine that the model assumptions may not be true in all examples and
limiting the number of previous times will limit any biassing due to unexpected abrupt
changes in the parameters.

Figures 5 and 6 show the bias of α̂k and β̂k, respectively, again for k = 1, 2, 4, 6
estimated sequentially. In all cases the bias when using joint estimation is less than for
independent estimation, but there is only a small change as more data is used to estimate
the larger number of parameters. Also, all bias values are very small and hence it can
be concluded that estimation is essentially unbiased and conclusions can be based on the
MSE pattern.

The final part of the investigation is to look at step-wise conditional estimation. In
this case at each time k, for 2 ≤ k ≤ T , the estimation involves the previous estimate
θ̂k−1 and current data yk, to estimate one set of parameters θk. Figure 7 shows the MSE
and bias for all times. Note that at the first time point the only estimation possible is
independent estimation and hence all methods perform equally. In all panels, the circles
represent the independent estimation and the crosses represent the step-wise conditional
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FIGURE 4. The MSE for the joint estimation of β with (A) MSE of β̂1,
(B) MSE of β̂2, (C) MSE of β̂4 and (D) MSE of β̂6.

estimation. For the MSE, panels (A) and (B), the conditional estimates gradually reduces
while the independent randomly varies around a constant level. The reduction is, however,
not as dramatic as in the joint estimation. This shows the positive reinforcement of basing
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FIGURE 5. The bias for the joint estimation of α with (A) bias of α̂1,
(B) bias of α̂2, (C) bias of α̂4 and (D) bias of α̂6.
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FIGURE 6. The bias for the joint estimation of β with (A) bias of β̂1,
(B) bias of β̂2, (C) bias of β̂4 and (D) bias of β̂6.
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current estimation on a good previous estimate. For the estimator bias, there is no clear
pattern, but all values are small and hence compatible with being unbiased.
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FIGURE 7. A comparison of step-wise conditional estimation (crosses)
and independent estimation (circles), with (A) MSE of α̂, (B) MSE of β̂,
(C) bias of α̂ and (D) bias of β̂.

4. Modelling temperature related electricity demand

There are many potential applications of dynamic modelling as almost every relation-
ship will have a potentially hidden dependency on time. One such application is the use of
temperature values to predict future electricity demand. Several approaches incorporate
climatic variables, see for example [23], but most use time series based approaches, see
for example [22] and [24]. In contrast to these approaches, the proposed method mod-
els the underlying dependency of demand on temperature. However, rather than treating
successive years as replicate information, the relationship is allowed to vary. There are
many mechanisms which will cause the relationship to change, such as socio-economic
factors, but which would be very difficult to model in any useful fashion. Instead the use
of dynamic models allows the changing relationship to be studied and provides a natural
framework for prediction.

Only recently has detailed electricity demand data been made avaialble to the public
with one such source, [9], giving the instantaneous demand at 5 minute intervals since
mid-2011. This is a very large, and ever growing, dataset containing more than half a mil-
lion records with total demand broken-down into different energy sources, for example
coal, nuclear, gas and renewable. From these figures the total monthly demand is calcu-
lated and then presented as an hourly average. The temperature data, obtained from the
UK Meteorological Office website [16] is part of a much bigger record of daily tempera-
tures dating back to 1772. In particular, the Central England Temperature readings from
the Met Office Hadley Centre were used and the median monthly temperature was calcu-
lated as a representative value for the whole month over the period 2012-2015. Figure 8
shows the temperature-demand relationship over the four years being considered. There
is clear similarity in these graphs, but equally they are not identical, and hence an analysis
based on dynamic modelling is appropriate.

First, individual linear regression is used to produce independent parameter estimates,
see Table 3 and the dotted line in Figures 8, with a pooled estimate of variance used to give
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FIGURE 8. Temperature-related electricity demand based on 12
monthly values for the years, (A) 2012, (B) 2013, (C) 2014 and (D)
2015. Temperature is the monthly median Central England Tempera-
ture and electricity demand is total UK demand. The solid line is the
jointly fitted model with the separate fits shows as dotted lines.

2012 2013 2014 2015
α̂ 541.61 518.46 502.16 507.37
β̂ -10.09 -8.36 -7.74 -10.28

TABLE 3. Electricity demand analysis: parameter estimates using in-
dependent estimation.

an estimate of the standard deviation in the observational equation, leading to σ̂ = 22.45.
From the results it can be seen that there is a small increase in the temperature values and
a corresponding decrease in electricity demand. This has produced a general decrease in
linear regression intercept, but a decrease and then increase in the slope parameter.

Second, the simultaneous joint estimation procedure was applied for a range of evo-
lution equation parameter values. The smallest value which did not substantially effect
the residual sum of squares was selected, giving τ̂ = 20. The corresponding parameter
estimates are given in Table 4 and corresponding fitted regression equations as solid lines
in Figure 8. It is important to note that moderate changes in τ have little effect on the re-
sulting parameter estimates and hence the approach is robust. Although the changes have
only been small, non-the-less they have the potential of making valuable impact. Further,
this example has illustrated the dynamic modelling framework and show that it can be
successfully applied to real data problems.

2012 2013 2014 2015
α̂ 532.14 519.55 509.42 508.23
β̂ -9.25 -8.45 -8.32 -10.35

TABLE 4. Electricity demand analysis: parameter estimates using the
dynamic model with τ = 20.
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5. Conclusions

This paper has presented the fundamentals of dynamic modelling for the general case
and taken a step-by-step approach to deriving the estimation equations for the Gaussian
linear model. This has considered both a simultaneous joint model and a step-wise con-
ditional approach. It is hoped that this will provide a starting point for other researchers
and those looking to perform a similar analysis on their own data. Basic properties were
derived for completeness, and which could be the basis of hypothesis testing or the con-
struction of confidence intervals.

A simulation study was performed to assess the performance of the modelling frame-
work on the specific example of linear regression. This was easy to perform and showed
good results. In particular, the mean squared error is substantially lower for dynamic
models compared to independent estimation. It was shown that after about four previous
times have been included there is little further gain. It was also shown that the smallest
MSE was achieve when the same value was used in the analysis as was used to simulate
the data. However, a smaller value was nearly as good in this simulation. It is worth
noting, however, that to retain some robustness to abrupt temporal changes, it is better not
to go beyond 3 or 4 previous times and not to use too small a value of τ as bias could be
introduced. In a brief study of the step-wise conditional estimation, again an improvement
in MSE was seen, but this was not as dramatic as with the simultaneous joint estimation.
Further, there is a danger in that a bad estimate at one time will lead to poor estimation at
the next, and later times. Of course the joint estimation can be adapted to only consider
the most resent 3 or 4 previous times, as a kind of running windowing method.

The electricity demand example was considered to demonstrate the approach on real
data. Two separate data sources were combined and manipulated before a dynamic linear
regression model was examined. The procedure worked well, with error parameters es-
timated as part of the procedure, as well as the regression parameters. This dataset only
covered a few years and so only produced four times meaning that there was limited scope
for comment on the use of many time points. Although there was only slight change in the
parameters, and this was not consistent, the framework is clear. Short-term predictions
can be based on the final fitted linear observation equation, and those for future years
would use parameters obtained by projecting into the future using the fitted evolution
model, that is θ̂pT+1 = GT θ̂T + νT and then ŷpT+1 = FT+1θ̂

p
T+1. Repeating the steps

for different errors νK will then produce a distribution of future predictions.
Although the generally sequential approach proposed is fully defined in Section 2,

there is infinite scope for variations. Hence, clearly, it is of interest to see how the methods
will perform in other applications. There are many uses where the assumed Gaussian
distribution error model is not appropriate. Hence following the same derivation but for
binomial and Poisson discrete distributions, gamma as a skew continuous distribution or
Student-t to give a heavier tailed distribution will provide future work. The approach also
allows richly-structured and high-dimensional problems to be considered within a unified
framework. Similarly, there is still many questions to be addressed for the linear dynamic
model considered here. For example, the structure need not be time-invariant, nor does it
need to involve independent or heteroskedastic errors – linking back to ARCH/GARCH
models. All these would be worthy areas for future research.
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Dynamic modelling has a great potential impact for many real world applications
where data are collected from evolving processes, such as in biology, economics, en-
vironmental science and engineering. The approach is valid for any situation were the
relationship between input and output can change with time. As with the majority of sta-
tistical analyses, the linear model has the ability to capture most phenomenon using the
recorded variables or transformations of the original variables, hence the study of linear
dynamic models will cover most commonly encountered situations. Dynamic modelling
should become a regular topic in undergraduate courses as much as standard linear re-
gression is now and might become commonplace in the toolkit of applied statisticians.
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