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SI-1: Derivation of the Eq. 3

Here we show that the difference between ܿᇱ (ܿᇱ , ܿᇱ ) and ܿ (ܿ, ܿ) can be approached by ,ߩߨʹ where ߩ
is the radius of the sample plot. The figure shows a geometric model of arena (a) and range including

gap (b) of the �real� shapes of the arena and range in Fig. 1. The notation and meaning of the lines (bold,

thin, dashed) follows the capture of the Fig. 1. Dotted lines delimit the arcs that serve as the corners of

the arena, gap and range. These lines are perpendicular to the respective lines that serves as the linear

parts of the edges; therefore only changes in the arcs lengths contribute to the differences between ܿᇱ
and ܿ. The length of each arc is given by �߮ ή �ݍ where ߮ is an angle of the arc (in radians) and ݍ is the arc
radius. Each arc that makes a corner is thus shorter by ߮ ή ݍ െ ߮ ή ݍ) െ ߩ ʹΤ ሻ ൌ ߮ ή ߩ ʹΤ or longer by߮ ή ݍ)  ߩ ʹΤ ሻെ߮ ή ݍ ൌ ߮ ή ߩ ʹΤ . The change in the corner length is therefore independent from its

radius, which vary between the corners. For the convex corners (߮ଵǥ߮ସ), the change is positive, and
for concave corners (߮ହ) is the change negative. Because the shape is given by a closed limit (its limit

delimits a finite area) the sum across all corners makes the whole circle and thus ൫σ߮ െ σ߮൯ ή ߩ ʹΤ ߨʹ= ή ߩ ʹΤ ൌ ߨ ή ,ߩ where the first and second summations run across the convex and concave corners,

respectively. The same applies for the range and gaps. In sake of simplicity, we did not put symbols ߮ for

angles into (b) and ݍ for diameters into (a,b).
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SI-2: Derivation of FAE

FAE is estimated as the moon shaped filled area

(a) in our approach. Dashed circles show the

effective arena (radius ܴ) and the effective
range (radius .(ݎ ܴ is the virtual radius of the

range and ݀ is distance of the range centre from

the edge of the arena. The angles ߱ଵିଶ delimit

the respective parts of the circular approaches to

the arena and range. The figure b shows the

computation of FAE. FAE be computed as the part

of the range that is delimited by ߱ଵ minus the

part of the arena that is delimited by the angle߱ଶ plus the two triangles that are taken from the

arena. The three light grey areas in (b)

correspond to the three additive terms in the Eq.

10.

ଵܲ = ଵଶܴଶ ή ߱ଵ where cosఠభଶ =
௨ where u originates as the solution of the equation ோିௗା௨ோ =

௪ோିௗ which
is a simple consequence of similarity between the triangles with shared angle ߱ଵ 2Τ and edgesݓ andܴ. The value of ݓ is given by the solution of system of two equations: (i) ଶݓ  ଶݒ = (ܴ െ ݀)ଶ, and (ii)
(ܴ െݓ)ଶ  ଶݒ ൌ .ଶݎ These equations are Pythagoras theorems for the particular triangles.

ଶܲ = ଵଶ ଶݎ ή ߱ଶ where cosఠమଶ =
௪ோିௗ.

ଷܲ ൌ ݒ ή ܴ where v is the solution of the above equations (e.g., ଶݒ ൌ ଶݎ െ (ܴ െݓ)ଶ).
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FAE (Eq. 10) is made then by solving the above equations and summing ଵܲ െ ଶܲ + ଷܲ.
The above computation of FAE has its limits. If the effective range (small circle) is too small to intersect

the edge of effective arena (the big circle), than there is no moon shaped area and FAE=0. On the other

hand, if the ݎ + ߩ is so large that the circle with this radius encompass the effective range, there is also

no moon shaped FAE and FAE is made by the circle with radius ݎ + ߩ minus the effective arena.

In the first case, the condition is given by inequality ݎ < ܴ െ (ܴ െ ݀) (see Fig. SI-2a), which can be
expanded as ݎ + ߩ < ݀ െ .ߩ It follows ߩ < (݀ െ (ݎ 2Τ , which is ߪ < ߪ = ߨ (݀ െ ଶ(ݎ 4Τ in terms of

range and sample areas. The ߪ is the finest scale at which the Finite Area Effect occurs.
In the second case, the condition is given by inequality ݎ > ܴ െ ݀ + ܴ (see Fig. SI-2a), which can be

expanded as ݎ + ߩ > 2ܴ െ ݀ െ .ߩ It follows ߩ > (2ܴ െ ݀ െ (ݎ 2Τ , which isߪ > ௦௧ߪ = ߨ (2ܴ െ ݎ െ ݀)ଶ 4Τ in terms of range and sample areas. The ௦௧ߪ is the area of saturation
(Šizling and Storch 2004), i.e., the scale at which the Finite Area Effect saturates.

In more technical language, FAE(ߪ) = 0, where ߪ  ;ߪ FAE(ߪ) = ଵܲ െ ଶܲ + ଷܲ (Eq. 10)
where ߪ  ߪ  ;௦௧ߪ and FAE(ߪ) = ,ଶݎ൫ߨ െ ܴଶ൯ = ܽ െ ܣ + 2൫ξܽ െ ξܣ൯ξߪ where ௦௧ߪ  .ߪ
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SI-3: Slope (derivative) of rescaled SAR

݈݁ܵ = డ୪୬ௌכ(ఙכ)డ୪୬ఙכ =
ଵௌכ(ఙכ) డௌכ(ఙכ)డఙכ ௗכௗఙכ = ఙכௌכ(ఙכ) డௌכ(ఙכ)డఙכ . It follows the Eq. 27 where

ଵܭ = డᇲ (ఙכ)డఙכ ଶ.ହכߪ െ ଵ.ହߪଵᇱܥ + ଵᇱܥ) െ ଶᇱܥ 2Τ ሻכߪ + ൫ܥଶᇱ െ FAE௧௧ᇱ .ହכߪ൯(כߪ) + ଷᇱܥ ,
ଶܭ ൌ െξܣ ቀడᇲ (ఙכ)డఙכ ଶכߪ െ כߙଵᇱܥ െ మᇲଶ ,.ହቁכߪ ଷܭ ൌ െܥଵᇱכߪଵ.ହ െ כߪଶᇱܥ + (FAE௧௧ᇱ െ(כߪ) ,.ହכߪ(ଷᇱܥ andܭସ = ξܣ ቀܥଵᇱכߪ + .ହכߪଶᇱܥ + ଷᇱܥ െ FAE௧௧ᇱ .ቁ(כߪ)
The coefficients ଵିଷᇱܥ are standardized coefficients ଵିଷܥ (Eqs. 18-20) devided by ,ܣ i.e., ଵᇱܥ = ଵܥ Τܣ ଶᇱܥ; = ଶܥ ൫ܣξ തܽ൯Τ ; and ଷᇱܥ = ଷܥ ܣ) ή തܽሻΤ .

When we fitted the Eq. 27 to the data extracted from Storch et al. (2012) and Lazarina et al.

(2013), we assumed an independency of the coefficients ଵିସܭ and FAE from .כߪ This assumption was

more appropriate for small scales and small extents than for large scales and large extents. The reason is

that the SARs were roughly linear in double logarithmic plot at small scales. The coefficients therefore

did not change considerably. The actual variation of the coefficients ଵିସܭ and FAE along the כߪ - axis
produces the variation of observed points (diamonds) around the model (bold line) in Fig 3ab.


