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Abstract 

Continuous mechanical ventilation (MV) in housing can in theory secure recommended air 

change levels without depending on control by inhabitants or on uncontrolled air leaks. 

Numerous in-use issues related to continuous MV systems have, however, been identified 

through field studies. The gap between design intention and actual performance and use of 

continuous MV should be narrowed as far as possible to reduce energy use and increase the 

inhabitants' health. This paper proposes a process diagram linking the emergence of ventilation 

practises with factors related to both the occupant (tacit knowledge, learning and needs) and 

the dwelling (design and procurement). Steps of the process are identified where the 

performance gap in relation to the continuous mechanical ventilation may gradually build up and 

lead to ignoring mechanical ventilation in a domestic context, i.e. failing to secure the necessary 

maintenance or even permanently switching the system off. The diagram is based upon findings 

of previous studies as well as results of a one year-long in-depth Building Performance 

Evaluation of 40 households in two UK developments. 
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1. Introduction 
Energy efficient building models aim to reduce heat losses through over-ventilation and to 

improve insulation levels. Whole house mechanical ventilation with heat recovery (MVHR) is 

now expected for highly energy efficient dwellings built to higher regulatory standards (DCLG, 

2014 (1); DCLG, 2014 (2); NHBC, 2012). Research shows that in a maritime climate like the 

UK, once the embodied energy is included, the overall energy saving achieved with installing an 

MVHR system becomes marginal compared to natural ventilation systems (Hernandez & 

Kenny, 2010). Anticipated milder winters are also likely to further reduce the benefits of using 

heat recovery (Frank, 2005; Sassi, 2013). With the rapid normalisation of increased air tightness 

in new housing, discussion has moved towards health benefits for inhabitants in relation to 

using MV systems rather than natural ventilation systems (Howieson et al., 2003; Hasselaar, 

2008; Maier et al. 2009). 

Recently identified MV performance problems in relation to occupants include noise, poor 

access, lack of understanding of the system (e.g. thermal bypass switch, boost control) lack of 

maintenance, and users switching the system off due to these issues which can lead to a risk of 

under-ventilation (Balvers et al., 2012; Stevenson et al., 2013; Brown & Gorgolewski , 2015; 

Harvie Clark and Siddall, 2013; Derbez et al., 2014; Larsen et al., 2012). Understanding 

inhabitant’s attitudes and intended interaction with MV is therefore vital in relation to the EU 

ambition for achieving low to zero energy housing by 2020 (European Parliament, 2010). This 

paper proposes a process diagram based on agency and practice theory (Shatzki) which links 

non-human and human actors (Latour, 2005) that influence the emergence of the performance 

gap between design intentions and performance in reality. The diagram is informed by findings 

of previous studies as well as the results of a one year-long in-depth Building Performance 

Evaluation of 40 households in two UK low carbon housing developments (Case A and Case 

B). The following section of the paper describes the methodology used to evaluate the 

performance gap between intended and actual operation of continuous MV installed in two case 

study housing developments. It also introduces the two developments in the north of England. 

The analysis in the third section indicates the performance gap and identifies the factors 

responsible for its emergence. In the fourth section findings are discussed and a process 

diagram is developed which identifies and situates the interdependencies between inhabitants 

and their home environments in terms of ventilation practices. The final conclusion draws out 

key recommendations arising from the overall findings.  

 

2. Methodology 
A case study approach is used to analyse ventilation practices of households as this enables an 

in depth examination of multiple factor that inform an understanding of the relationship between 

MV systems and the experience of inhabitants where these systems have been installed 

(Flyvjberg, 2006, Yin, 2014). The details of the two housing development case studies in the UK 

are described in Table 1. The two case studies represent different typologies (small community 



 
 

led vs. large developer led), community types (intentional community vs. mostly anonymous) 

and demographics (all ages and family situations vs. mainly young working singles or couples). 

A wide variety of triangulated building performance evaluation (BPE) methods were used for 

this study (Table 2) based on the authors previous experience (Stevenson & Rijal, 2010, 

Stevenson et al, 2013) to identify ventilation practices of 105 households in the two case studies 

(Case A and Case B) in relation to design intentions, available means of control over ventilation, 

achieved satisfaction with control over ventilation and perception of the internal environment. 40 

of these households were covered in more depth to examine the development stage of these 

practices. This included continuous quantitative monitoring (24 July 2013 – 24 July 2014) to 

provide an objective physical performance baseline in relation to inhabitant’s subjective 

responses (Table 2). Action research included the provision of interim feedback reports to the 

inhabitants and informing them about any health risks observed together with discussion during 

meetings where the research findings were presented. This helped identify evolving ventilation 

practices as a result of the inhabitants’ increased understanding of MV due to their learning 

process. It also led to the recommissioning of the MVHR system in Case A in May 2014, when it 

was discovered that the settings were wrong. 

A Building Use Studies (BUS) survey (Leaman et al., 2010) carried out in Feb 2014 was 

extended by authors with questions focused on MV operation and ventilation practices. 

Monitoring of indoor air quality was limited to dry bulb temperature and RH measurements (I-

button sensors) taken every half an hour in three locations in each dwelling for a year. CO2 

monitoring (Telaire 7001 CO2 sensors connected to Hobo U12 data loggers) was performed in 

one living room area (equipped with trickle vents) for a year and in 4 bedrooms for 4 months. 

 
3. Analysis 
3.1 Physical issues with ventilation systems 

3.1.1 Dwelling - MV design intentions and performance 

Triangulating the audit of the design and commissioning documents, walk through, feedback 

from inhabitants, air flow rate measurements (performed in 3 Case A dwellings and 1 Case B 

dwelling) and noise level measurements (3 dwellings in Case A) (Figure 1) helped to 

understand the gap between designed and as built performance. In case A, the houses with 

triple glazed air-tight windows provided excellent acoustic insulation from outside background 

noise (Figure 2). Thus, the unduly noisy MVHR unit in the kitchen/dining area was of particular 

concern to the residents, as it was accentuated in comparison to the relative background 

silence. Design issues discovered in Case A related to the diffusers’ imperfect layout in 40% of 

the bedrooms. Poor commissioning left the system unbalanced and failing to deliver the 

regulated air changes which meant that the MVHR system had to be recommissioned in all 

dwellings. Also ceilings were taken down in all kitchen areas in order to insulate the external air 

supply ducts (Figure 3) and prevent condensate from dripping into the building fabric. The works 

caused major disruption for the occupants but all agreed to go through with the process in order 

to improve the MVHR performance and prevent fabric degradation.  



 
 

 
In both cases the intended user control of MV was restricted mainly to a manual boost switch 

equally poorly labelled in both developments (Figure 4). In order to allow safe access for 

cleaning the MVHR filters, the mains switch in Case Study A was in an exposed location. The 

MVHR unit control panel, intended mainly for commissioning and servicing purposes, was not 

readily available to the user. All inhabitants were aware of this panel but few attempted to use it 

believing it to be beyond their competence. Equally, in Case Study B, the main power switches 

for the MV fans were not intended to be used, and were ‘hidden’ in an inaccessible location high 

in the utility cupboard. Ironically, residents who eventually discovered the function of the 

switches actually found them useful for control purposes and complained about the poor 

access. 

Issues with flexible ducting were identified in both developments (Figure 5). 

3.2 Inhabitants – ventilation practices 

3.2.1 MV related tacit knowledge 

All inhabitants in both Case Studies came from either traditional houses or flats and all but one 

from houses without continuous MV. One inhabitant in Case A had MVHR installed in his 

previous house for environmental reasons. In the interview he perceived this prior experience 

as an advantage: ‘A lot of people think ‘Oh, you’ve got to open up the windows’. They can’t think 

of that [MVHR] as a source of fresh air. Whereas to me I just take it for granted.’ (Inhabitant A1) 

3.2.2 MV related learning  

All inhabitants in Case A were aware of having MVHR installed as a part of mutually accepted 

energy efficiency strategy whereas in Case B the developer led ventilation design did not 

include consulting the unknown future residents. In both developments all residents were given 

Home Users Guides where relevant continuous MV systems where mentioned, however without 

any maintenance instructions (like MVHR filters or MEV fan grill cleaning). 40% of households 

received a home handover tour in Case A while in Case B a similar procedure covered 90% of 

households – the remaining 10% renting from private landlords did not receive a handover tour 

of their rented apartment in the study sample. None of the interviewed Case B participants 

recalled any MEV system use or maintenance guidance from the tour. In Case A the handover 

was shadowed by the researcher. Advice from contractor during the tour instructed the 

inhabitants to keep the MVHR permanently on and to keep the windows closed to increase the 

system efficiency, which they duly did as moving-in coincided with a cold spell in April 2013. 

However inhabitants who were comfortable with lower temperatures and didn’t use the heating 

but suffered from noise or draughts from poorly adjusted air supply vents, started to temporarily 

switch the MVHR system off. Through the home visits and interviews it was established that in 

Case A noise affected 8 households, draught – one household, condensation leaking from the 

unit – three households. Interestingly, three households accepted the noise of the MVHR 

system. In six households, noise was regarded as most annoying in the evening when going to 

sleep. Technically skilled and inquisitive inhabitants discovered how to program low settings for 

the MVHR system for selected periods of the day, using the installation manual which was not 



 
 

intended for the inhabitants. In four dwellings, the inhabitants intrepidly programmed the MVHR 

low setting for two hours around bedtime which solved the MVHR noise problem when trying to 

go to sleep. In one household, the inhabitants remained unaware of the low settings option and 

simply switched the system off altogether (Baborska-Narozny et al., 2014). Noise caused by 

MVHR operation caused switching the MVHR off regardless of the season. All of this goes to 

show the wide variety of reactions, learning and new practices developed in response to the 

MVHR system in use and belies any notion of ‘optimum usage’. 

 

Case A inhabitants developed hybrid ventilation practices due to the availability of cross-

ventilation combined with their urge to switch off the MVHR when not needed. This urge was 

fuelled not only by some MVHR related comfort issues, as described above, but also by 

anxieties about MVHR related energy consumption, deepened by the inability to check this. 

90% of households opened their windows for ventilation as a result and the same number 

preferred to keep the windows open (often linked with switching the MVHR off) in favourable 

weather when at home. This strong desire to open windows ties in with findings from previous 

research (Healy, 2008; Yun et al. 2008; Frontczak et al., 2012; Parkinson & de Dear, 2015). 

These results illustrate the unintended consequences arising from poor MVHR system design in 

terms of energy consumption feedback. 

 
Worryingly, in Building Use Studies (BUS) survey, (n= 95) 20% of Case B inhabitants stated 

they did not have MV installed or did not know what the MV system was. Up to 30% of 

inhabitants lacked basic awareness of the MV system being switched on. This could be 

interpreted as a result of ‘ultra-quiet’ fans working unnoticed in the background. The identified 

lack of awareness of the exhaust fans coincides with a design intention to disguise them (Figure 

6). In the MEV fan manufacturer’s brochure the aesthetic cover tightly screwed to the grill is 

featured as: ‘Hide and seek: a stylish design and discreet front fascia [that] blends in with room 

décor’. However the drawback of the poor access and a lack of visibility of the fan may also 

explain why none of participants were aware of the critical need to clean it regularly. 4% of BUS 

respondents reported continuously malfunctioning fans from the point of moving in. A further 8% 

of inhabitants claimed they had never felt the need to use the MV system. These findings 

indicate that in Case B the learning process in over 40% of households never got to the stage of 

inhabitants trying to use MV as intended. 18% inhabitants admitted to only intermittent use of 

the MV system (which was designed to be left on continuously), mostly when showering. The 

reasons for switching the fans off included energy saving (40% responses), noise (30%) and 

heat loss (15%). An anxiety about energy consumption expressed by majority of inhabitants 

was misplaced in case of the MEV system compared to MVHR systems which generally use 

more energy. The MV fans specified in Case B only consumed ca. 2W as total power 

consumption, according to technical specification, whereas the MVHR system (Case A), as 

previous research suggests, consumes 20-80W in total (Larsen et al., 2012). Of the four Case B 

in-depth study participants who indicated running costs as the main reason for keeping their 



 
 

fans switched off, three of them changed their ventilation practices once they learnt about the 

actual energy consumption of the fans, as revealed by the researcher. There was no way for 

Case B inhabitants to reduce the noise of the MEV system unlike in Case Study A, with the 

noise from fans described as most disturbing when going to sleep, relaxing or having a bath. 

 

3.2.3 Ventilation practices 

Only 25% of households in Case A used MVHR continuously, as intended by designers. The 

significant variation in the seasonal use of the MVHR systems in Case A is due to over half of 

households switching MVHR off correlated with the opening of windows in warmer seasons 

(Figure 7). By contrast, in winter 95% households have the MVHR continuously on and 70% 

never open the windows. This indicates that 75% of Case A households developed hybrid 

ventilation practices relying on either MVHR or NV depending on the season. Diurnal variation 

of use of the MVHR system was motivated by noise issues and being able to open the windows 

opening meant that for many there was no need for a continuous MVHR operation. Window 

opening was explained by households as either a need to provide ‘fresh air’, audible connection 

with the outside (birds, leaves, social life), coping with excessive heat or simply through habit. 

 
In Case Study B less than 10% of households claimed to have all MV extract fans (kitchen, 

bathroom) operating continuously throughout the year, even though this is an essential design 

assumption. Worryingly, and unlike Case A, there was no direct correlation between MV 

operation (similar across the seasons) and windows opening (more windows open in summer). 

Window opening in the winter was similar in both developments. However, almost half of 

inhabitants in Case B never turned their MV system on (Figure 7) and almost half of households 

simply ignored the MV system and relied on natural ventilation switching between active 

(windows opening) or passive (air leaks).  

 
3.2.4 Carbon dioxide levels 

In Case A the carbon dioxide (CO2)(15% sample) monitoring results indicated excellent results 

(mean around 550ppm, never exceeding 1100ppm) in  living room area  of households that 

introduced energy efficient hybrid ventilation practices. However RH (100% sample) monitoring 

revealed that in 10% of dwellings, where switching MVHR off coincided with refraining from 

using heating this led to relative humidity (RH) mean monthly levels for autumn 2013 exceed 

75% that was well beyond regulatory limit of RH<65% in the heating season (ADF, 2010, Table 

A2). 

In Case B, the gradual discovery of the lack of seasonal correlation between windows opening 

and MV fans operation (Figure 7), coinciding with the unexpected lack of trickle vents in most 

apartments (caused by supply chain issue), indicated a potentially significant problem with 

maintaining adequate indoor air quality (IAQ), particularly in cooler seasons. In spring 2014 

additional CO2 sensors were installed in four dwellings in bedrooms to monitor this situation. 

The 20% sample drew on different ventilation practices (Table 3) established among the 



 
 

participants as identified through observation and notes from repeated home visits (8 visits per 

household) and later verified through interviews. Monitoring results confirmed the expected IAQ 

issues with CO2 level repeatedly exceeding 2500ppm in bedroom B1 (Figure 8) but also pointed 

towards practices that helped to mitigate the problems. One week from the CO2 monitoring 

period covering 8th April – 24th July 2014 was selected for further analysis. The CO2 

concentration consistently varied between the sample bedrooms (over twofold difference 

overnight) but followed the same diurnal pattern: there was an increased concentration when 

the bedroom was occupied i.e. between ca. 10pm-7am, which fell rapidly when the occupants 

opened the doors and windows and left the room. The worst IAQ scenario is represented by 

bedroom B1 where the windows and doors to an 13m2 bedroom were kept shut throughout the 

night and the extract fans were always off (on the first night only one person was there and last 

night the bedroom was unoccupied hence lower readings). Fresh air supply was through 

occasional windows opening during the day mainly in the adjacent living room and uncontrolled 

air leakages. The best readings in terms of CO2 levels were in bedroom B3. In this 1-bedroom 

apartment the fans were continuously on the windows never sealed because the two occupants 

liked cool temperatures and all the windows always had a trickle supply of air via a gap in 

window opening. Importantly, all the bedroom doors were left open throughout the night and this 

is the main factor distinguishing the relatively good B2 results from the worst B1 bedroom 

results (Table 3). Importantly, the CO2 concentration was lower in B2 than B1 despite the B2 

bedroom volumes per person being smaller than the volumes of B1 (Table 3). Interestingly 

despite the inhabitants of B1 complained about headaches in the morning they did not link them 

with poor IAQ in their bedroom, neither did they seek to improve it until the issue was explained 

to them as a part of research feedback. Occupants in B4 ventilated their bedroom in the night 

exactly as the B2 occupants but with a single occupant in the same size bedroom the CO2 

reading was lower as expected. This analysis indicates a vital contribution of ventilation related 

practices to over two-fold variation in CO2 levels achieved in dwellings with same ventilation 

design in one building.  

4. Discussion 
4.1 Performance gap factors in context 

The broad scope of this research has captured various factors that contribute to the gap 

between design intentions and actual in use performance in relation to the operation of 

continuous MV systems as identified in two developments. Case A had a participatory design 

process that included a conscious decision to have MVHR installed, whereas households in 

Case B had no choice in the ventilation system provided for them. The MV systems in both 

cases represent very different levels of complexity with the whole house balanced with heat 

recovery in Case Study A being technically more complex than the local extract fans in Case 

Study B. Interestingly the variation in the proportion of households covered with handover 

processes between the two case studies (A-40% vs. B-90%) did not determine the level of basic 

awareness that households had in relation to ventilation systems installed. Case A residents 

clearly knew that they had MVHR installed whereas 30% of households in Case B were 



 
 

unaware of having the MEV over a year into their occupancy. The fact that Case A occupants 

managed their own maintenance contributed to their ability to learn about their MVHR systems, 

where Case B residents did not have this advantage, with the housing development 

maintenance being contracted out. However, there were similarities identified among the 

‘performance gap factors’ between the two case studies relating to same stages in building 

delivery and occupant adoption of new ventilation practices (Table 4). 

The factors identified in Table 4 have led to significantly different results in terms of MV being 

included within the ventilation strategy and practices related to the various households. In Case 

A everyone knew they had MV and used it at some point and permanently in winter. 

Performance issues became apparent in some households and they were gradually tackled as 

far as it was possible at the time. Improvements and adjustments to performance to address the 

needs of the inhabitant happened despite the serious disturbance it caused and included 

exercising an additional control over the system intended by the designer only for servicing 

reasons rather than daily practice. Few inhabitants relied on the MV only and hybrid ventilation 

practice prevailed. In Case B, however, the MV was never tested by many inhabitants, with 

them being unaware of having it or not feeling the need for it. Initial home use learning proved to 

be inefficient. Performance issues were simply not experienced, because the MV system was 

always off in many cases. Among those households who did try to use the MV and experienced 

noise, the system was permanently switched off or used intermittently; only when an inhabitant 

saw the purpose of it. 

 
4.2 Emerging gap – process diagram 
An agency (Latour, 2005) process diagram was developed during the course of the research in 

order to identify the sequential stages in the housing lifecycle and linking factors that shape MV 

performance with the emergence of inhabitant practices (Reckwitz, 2002; Schatzki, 2010, 

Shove et al. 2012) related to ventilation (Figure 9). This lens is used here to examine multiple 

interdependencies with the identified non-human and human actors assigned to the two distinct 

processes relating to the dwelling and the inhabitant respectively. Both processes are distinctive 

with their own timeframes but some factors from the dwelling process influence the flow of the 

inhabitant process and vice versa. The process diagram organises these interdependencies in a 

sequence of stages (black circles) related to ventilation factors which either facilitate 

(progressive solid arrows) or hinder (returned dashed arrows) the operation of MV as designed 

(shown by the central rectangle). The return arrows highlight the emergence of the performance 

gap where subsequent factors are contingent upon precedent ones. Tackling only selected 

factors affecting ventilation, and/or tackling them in the wrong order, can lead to severe 

consequences, as identified in the case studies. Even if users, as human actors, are well 

prepared through a thorough learning process, this will not necessarily result in satisfaction if a 

desired level of MV control is not possible due to design faults.  

 

4.2.1 Housing Design Intentions  



 
 

Typically housing design intentions are shaped by the client’s expectations, setting goals, 

budget, designers’ experiences (Sinclair, 2013). However, the focus of this paper is on 

understanding how a given design intention (to secure good IAQ for a dwelling with continuous 

MV) influences the occupancy stage in terms of domestic ventilation practices. Factors that 

have strong impact on ventilation design include: air tightness, overheating risk and the volume 

of the dwelling, based on generic theoretical assumptions about the number of occupants and 

heating patterns in the home (CIBSE, 2011), specifications and performance targets  linked with 

assumptions about costs and savings achieved in relation to ventilation predictions. Future 

inhabitants need to understand these factors in order to understand the benefits of using MV 

continuously and to be able to interact with these systems effectively (Brown & Cole, 2009). The 

MV system specification also affects the degree of its resilience where a complex, emerging 

technology is often more risky than a simple well established one (Gorak, 1990). The MV 

specification also determines the capacity of inhabitants to be able to interact with the system 

and adjust it to their own needs as a form of ‘adaptive interactivity’ (Cole et al, 2008). The 

system design intention should be related to the level of control needed by the inhabitant and 

the design intention needs to be communicated to the inhabitant directly for them to understand 

it. The available feedback for inhabitants to understand how their MV is performing is often 

irreversibly determined at the design stage. Thus the outcome of the design stage determines 

the MV system capacity to deliver as designed performance, but only if it is used as intended.  

 
4.2 The experience of the inhabitant  

In both cases poor satisfaction with the achieved thermal comfort triggered the inhabitants’ 

search for ventilation scenarios that would either prevent heat loss or overheating, depending 

on current needs. This fits with the adaptive thermal comfort theory (Nicol et al., 2012). However 

it has been established here that such search is based on tacit knowledge and unless enriched 

by a deliberate learning process, the repertoire of behaviours tested may ignore MV altogether, 

even if MV might actually help to achieve occupant’s thermal goals (Case B). It has also been 

observed that high CO2 levels of 2500ppm did not prompt the inhabitants to seek improvement 

until they saw high readings on the CO2 sensors and the connection between their ventilation 

practices and IAQ was explained as a part of research feedback.  

In the UK, many inhabitants come from draughty homes with mainly natural ventilation 

associated tacit knowledge (Polyani, 1966) and subsequent intuitive behaviour based on 

accepting high levels of air leakage and actively opening windows. Culturally transforming this 

intuitive approach to ventilation involves the inhabitant understanding the need for continuous 

MV and gaining certainty that the new technology substitutes the old one in a beneficial way 

(Tormala, 2016). That process and its outcomes were evaluated in both Case study 

developments. A home handover process and home user’s guide can be used to help 

inhabitants understand MV (Carmona-Andreau et al, 2012) and environmental attitudes, self-

efficacy or social pressure can all play a role in triggering and enhancing learning intended to 

modify ventilation practices, according to the theory of planned behaviour (Ajzen, 1991; Oliver, 



 
 

2006). However the experience of MV systems may be both positive and negative based on 

actual observations (e.g. lack of internal condensation vs. noise) or expectations (e.g. indoor air 

quality or energy savings communicated by the designer vs. operational cost). It may also be 

impossible to satisfy inhabitant’s expectations if adequate metering and feedback systems are 

not in place (Darby, 2006). Because of this, how inhabitants interpret their experiences may well 

be based on their trust and assumptions about MV, rather than any feedback from the reality. 

How inhabitants judge their experience is a critical step in developing an inhabitant’s positive 

attitude (Fazio & Zanna, 1978) towards the need for continuous MV as a core ventilation 

strategy. Once this strong attitude is developed, inhabitants can make substantial efforts to 

reduce the impact of negative issues experienced or just accept them (Case A). The effort may 

include learning to use the controls provided or go as far as manually checking the as-built 

performance and matching it with the design intention. On the other hand if the need for MV is 

not accepted, any issue experienced simply leads to inhabitants switching the system off and 

system failures are ignored as was observed in Case B. Even if, the MV system is fully 

automated, the inhabitant still has to be convinced of the need for it to work, because inevitably 

maintenance is needed to sustain the desired performance and it is up to the inhabitant to make 

the effort to secure it. 

4. 2.3 Dwelling-inhabitant interdependencies 

Based on the above analysis, the ventilation practices adopted by an inhabitant can be placed 

within three categories: firstly, continuous MV and windows as auxiliary ventilation, as per MV 

design intentions secondly, switching between MV or natural ventilation (NV), partly addressing 

MV design intentions thirdly, using natural ventilation as in previous accommodation, ignoring 

MV design intentions altogether. The latter two options can still result in good indoor air quality 

through the provision of other forms of ventilation e.g. cross ventilation, suitable window 

locations and design of openings and their active deployment by an occupant. The constraints 

on natural ventilation can be site specific (external noise level and air quality) or related to 

inhabitant (e.g. occupancy patterns, perceived safety, pets). 

 
The nature of the interdependencies between inhabitants and their MV systems mean that 

where comfort issues are experienced or high energy consumption is identified and the MV 

operation is different than originally designed for, then it is the reality factors leading to this gap 

which need to be tackled. If, however despite the MV performance gap, the IAQ is good, energy 

consumption is within or below expectations and the inhabitant is satisfied, then it may well be 

that the design model or the assumptions behind it need to be challenged in the first instance 

(Delghust et al., 2015). This is the benefit of carrying out post-occupancy evaluation – to test the 

theoretical models and improve them. 

 

5. Conclusions 
This paper has sought to highlight a number of emergent issues arising out of the performance 

gap between design and build intentions compared to occupant practices arising in response to 



 
 

these and the way in which the intentions manifest themselves in people’s homes.  Tackling the 

gap between design intention and actual performance and operation of continuous MV in 

housing context is a ‘wicked’ problem (Rittel & Webber, 1973). Understanding the need to 

approach ventilation requirements in a certain order within the building lifecycle process is vital 

to achieve real impact. Hierarchical dependencies related to dwelling and inhabitant  are shown 

here and indicate that practices that are based on experiences from previous accommodation 

can be modified through learning and building understanding of the need to change one’s own 

ventilation strategy. Worryingly, without understanding and accepting the need for change, old 

ventilation practices can persist even when harmful mould appears in the home. Equally, 

securing a steady minimum air flow does not account for inhabitants having a strong desire for 

variation in air flow: ‘fresh air’ is traditionally associated with opening windows. Similarly, raising 

environmental awareness in households demands a more transparent and clearly justified 

explanation of energy consumption resulting from MV operation so that households have a 

better understanding of why they should change their practices or whether they need to 

complain about their MV systems not working well. Existing justifications for installing MV 

systems (Lowe, 2000) must be questioned when wider then assumed temperature comfort 

ranges are accepted by the inhabitants according to the results of this study. Two specific 

factors hampering occupant use of their MV as designed have emerged from this study: those 

specifically related to the industry and those related to the user transition period towards low 

energy buildings and the permanent adjustments that are required to the design of the system 

as a result of this transition during the initial year of occupancy. 

Successful interaction with mechanical ventilation in dwellings can be significantly increased if a 

learning process is well supported and the user’s varied expectations are met in terms of their 

having control over the MV system. For example an association of a noisy MV system with 

specific activities requiring silence was similar in both Cases. This finding points towards an 

important area for improvement relating to the continuous MV model supported by current UK 

building regulations. Modifying this current model by making allowances for interrupted 

ventilation strategies which nevertheless maintain IAQ would allow for a diurnal quiet period to 

aid sleeping and avoid noise ‘nuisance’ at this time. Additionally, a hybrid ventilation model 

(Turner and Walker, 2013; Sherman and Walker, 2011) that allows for seasonal modifications 

and MV ‘sleep mode’ when CO2 levels are below a certain threshold (eg. 500ppm). This would 

allow a more effective contribution from natural ventilation and help to minimise energy use 

related to the MV systems themselves. These findings significantly challenge existing MV 

design assumptions.  

 
Acknowledgements 
This work was supported by EU funding through Marie Curie IEF (BuPESA No. PIEF-GA-2012-

329258). 

  
References 



 
 

Ajzen I (1991) The Theory of Planned Behavior. Organization Behaviour and Human Decision 

Process 50: 179-211. 

Baborska-Narozny M, Stevenson F and Chatterton P (2014) A Social Learning Tool – barriers 

and opportunities for collective occupant learning in low carbon housing, Energy Procedia 

62: 492–501. 

Baborska-Narozny M, Stevenson F and Chatterton P (2015) Temperature in housing: 

stratification and contextual factors, ICE Engineering Sustainability. DOI: 
10.1680/ensu.14.00054 

Balvers J, Bogers R, Jongeneel R et al. (2012) Mechanical ventilation in recently built Dutch 

homes: technical shortcomings, possibilities for improvement, perceived indoor environment 

and health effects, Architectural Science Review 55(1): 4-14. 

Brown C and Gorgolewski M (2015) Understanding the role of inhabitants in innovative 

mechanical ventilation strategies. Building Research & Information 43(2): 210-221. 

Brown Z and Cole RJ (2009) Influence of occupants' knowledge on comfort expectations and 

behaviour. Building Research & Information 37(3): 227-245. 

Carmona-Andreu I, Stevenson F and Hancock M (2012) Low Carbon Housing: Understanding 

Occupant Guidance and Training, Proceedings of 4th International Conference on 

Sustainability in Energy and Buildings (SEB 2012), Stockholm 

CIBSE KS17 Indoor Air Quality and Ventilation, 2011, CIBSE. http://www.cibse.org 

Cole RJ, Robinson J, Brown Z and O'shea M (2008) Re-contextualizing the notion of comfort, 

Building Research & Information 36(4): 323-336. 

Darby S (2006) The effectiveness of feedback on energy consumption; A review for DEFRA on 

metering, billing and direct displays. Environmental Change Institute, University of Oxford. 

Available at: http://www.usclcorp.com/news/DEFRA-report-with-appendix.pdf 

Delghust M, Roelens W, Tanghe T et al. (2105) Regulatory energy calculations versus real 

energy use in high-performance houses, Building Research & Information 43(6): 675-690. 
DCLG. (2014) Government response to the Environmental Audit Committee Report: Code for 

Sustainable Homes and the Housing Standards Review. Available at: 

www.gov.uk/government/publications 

DCLG. (2014) Code for Sustainable Homes Technical Guide, Code Addendum. Available at: 

www.gov.uk/government/publications 

Derbez M, Berthineau B, Cochet V et al. (2014) Indoor air quality and comfort in seven newly 

built, energy-efficient houses in France, Building and Environment 72: 173-187. 

European Parliament (2010) Directive 2010/31/EU of the European Parliament and of the 

Council of 19 May 2010 on the energy performance of buildings (recast), Official Journal of 

the European Union 53:13, http://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=OJ:L:2010:153:TOC 

Fazio R.H, Zanna M.P (1978) On the predictive validity of attitudes: The roles of direct 

experience and confidence, Journal of Personality 46(2): 228–243. 



 
 

Flyvjberg B (2006). Five misunderstandings about case-study research. Quality Inquiry 12: 219–
245.  
Frank T (2005) Climate change impact on building heating and cooling energy demand in 

Switzerland. Energy & Buildings 37: 1175-1185. 

Frontczak M, Andersen RV and Wargocki P (2012) Questionnaire survey on factors influencing 

comfort with indoor environmental quality in Danish housing, Building and Environment 50: 

56-64. 

Gething B, Pucket K (2013) Design for climate change, London, RIBA Publishing. 

Gorak, S (1990) Robust Technologies. Batiment International, Building Research and Practice 

18(3): 162-168. 

Harvie-Clark J and Siddall M (2014) Problems in residential design for ventilation and noise – 

Part 1. Green Building Spring 2014: 49-51. 

Harvie-Clark J and Siddall M (2014) Problems in residential design for ventilation and noise – 

Part 2. Green Building Summer 2014: 52-56. 

Hasselaar E (2008) Health risk associated with passive houses: An exploration. In: Proceedings 

of the 11th International Conference on indoor air quality and climate, Copenhagen, 

Denmark. http://repository.tudelft.nl/view/ir/uuid:88fd72b2-f7ab-45ea-a403-ce367801cf3f/ 

Healy S (2008) Air conditioning and the ‘homogenization’ of people and the built environment, 

Building Research & Information 36(4): 312-322. 

Hernandez P and Kenny P (2010) Integrating occupant preference and life cycle energy 

evaluation: a simplified method. Buildings Research & Information 38(6): 625-637. 

Howieson SG, Lawson A, McSharry C et al. (2003) Domestic ventilation rates, indoor humidity 

and dust mite allergens: are our homes causing the asthma pandemic? Building Services 

Engineering Research and Technology 24(3): 137-147. 

Larsen TS, Jensen RL and Daniels O (2012) The Comfort Houses: Measurements And Analysis 

Of The Indoor Environment And Energy Consumption In 8 Passive Houses 2008-2011, 

Aalborg: Department of Civil Engineering, Aalborg University; (DCE Technical Reports; 

No.145). http://forskningsbasen.deff.dk/Share.external?sp=S6316263b-ab10-4c58-a899-

f97cdcbc179f&sp=Saau 

Latour B (2005), Reassembling the Social: An Introduction to Actor-Network-Theory, Oxford 

University Press. 

Leaman A, Stevenson F and Bordass A (2010) Building evaluation: practice and principles. 

Building Research and Information 38(5): 564–577. 

Lowe RJ (2000) Ventilation strategy, energy use and CO2 emissions in dwellings – a theoretical 

approach. Building Services, Engineering, Research & Technology 21(3): 179-186. 

Maier T, Krzaczek M and Teichman J (2009) Comparison of physical performances of the 

ventilation systems in low-energy residential houses. Energy and Buildings 41: 337–353. 

NHBC (2012) Indoor air quality in highly energy efficient homes – a review. NHBC Foundation. 

NHBC (2013) Assessment of MVHR systems and air quality in zero carbon homes. NHBC 

Foundation. 



 
 

Nicol F, Humphreys M, Roaf S (2012) Adaptive Thermal Comfort; principles and practice, Oxon, 

Routledge. 

Oliver P (2006) Built to meet needs: cultural issues in vernacular architecture, London, 

Architectural Press, Elsevier. 

Polanyi M (1966) The Tacit Dimension, University of Chicago Press: Chicago, 4. 

Reckwitz A (2002) Toward a Theory of Social Practices: A Development in Culturalist 

Theorizing. European Journal of Social Theory 5(2): 243-263. 

Rittel HWJ and Webber MM (1973) Dilemmas in a general theory of planning, Policy Sciences 

4: 155-169. 

Sassi P (2013) A natural ventilation alternative to the Passivhaus standard for a mild maritime 

climate. Buildings 3: 61-78. 

Schatzki T (2010) Materiality and Social Life. Nature and Culture 5: 123-149. 

Sherman MH and Walker I (2011) Meeting residential ventilation standards through dynamic 

control of ventilation systems, LBNL. 

Shove E, Pantzar M and Watson M (2012) The dynamic of social practice, London, Sage 

Publication Ltd. 

Sinclair, D. (ed.) (2013) Plan of Work 2013. Overview. RIBA, London. www.ribaplanof work.com 

Stevenson F, Fewson K, Johnson D et al. (2013) Lancaster Co-housing Project Part 8: Post-

Occupation Building Performance Evaluation. Green Building 23(1): 24-35. 

Stevenson F and Baborska-Narozny M. Technical and social redundancy for Low Carbon 

Living, Proceedings of International Conference Architecture and Resilience on a Human 

Scale. Sheffield, UK; 10-12 September 2015. 

Stevenson F and Rijal HB (2010) Developing occupancy feedback from a prototype to improve 

housing production, Building Research and Information, (38) 5:.549-563. 

Stevenson F, Carmona- Andreu I and Hancock M (2013) The usability of control interfaces in 

low-carbon housing, Architectural Science Review (56)1: 70-82. 

DOI:10.1080/00038628.2012.746934 

Tormala The role of certainty (and uncertainty) in attitudes and persuasion, Current Opinion in 

Psychology, 10: 6-11. 

Turner WJN and Walker IS (2013) Using a ventilation controller to optimize residential passive 

ventilation for energy and indoor air quality, Building and Environment 70: 20-30. 

Yoshino H, Murakami S et al. (2004) Survey on minimum ventilation rate of residential buildings 

in fifteen countries. Proceedings of the 25th AIVC Conference-Ventilation and retrofitting, 

Prague: 227-238. 

Yun Y, Steemers K and Baker N (2008) Natural ventilation in practice: linking facade design, 

thermal performance, occupant perception and control. Building Research & Information 

36(6): 608-624. 

Yin R.K (2014) Case study research : design and methods, Los Angeles: SAGE, Fifth edition.  



 
 

 
Figure 1. MVHR frequency contribution in three Case A dwellings.  

 

 

 
Figure 2. MVHR related noise level against background noise in a 3-bedroom Case A house. 
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Figure 3 Ceiling taken down to insulate MVHR ducting (Case A) 

 
Figure 4a Case A MVHR Boost switch 



 
 

 
Figure 4b Poor manual boost button labelling (a) triggers bespoke solutions to the problem (b) 

(Case A) 

 



 
 

 
Figure 5 Too long, bent flexible ducting linking exhaust fan with the main duct (Case B) 

 
Figure 6 Decorative cover disguising MEV fan (Case B). 



 
 

Figure 7 Seasonal variation in operation of MV and window opening (BUS survey) 
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Figure 8 Spring weekly CO2 concentration in four Case B bedrooms. 

 

 
Figure 9 Processing Diagram. Dwelling and user related factors hampering intended continuous 
MV operation in airtight dwelling.  
  



 
 

Table 1 Case study characteristics.  

Case study Case study A (20 participants – 100%) Case study B (18-20 participants – ca. 10% sample of 
occupied units) 

Completion 2013 2011 

Size + ownership type 

Maintenance 

Mutually owned 20 units: 8 houses 
(3&4 bed), 12 flats (1&2 bed) 
Self-managed development 

234 units: 1&2 bedroom Owned/shared 
ownership/rented 

Large housing management company 

Dwelling types New build terrace, semi-detached 
houses, apartments – cross-ventilation 

Refurbishment 1950’s  apartment block: single aspect 
(east or west facing) 

No. of floors Houses:2; Apartment block:3 10  

Air permeability Designed: q50=4-5 m3/hr.m2 

As-built: q50=1.42-4.3 m3/hr.m2 

Designed: q50=7 m3/hr.m2 

As-built: q50=4.29-5.33m3/hr.m2 (4 cert.) 

Energy gas and electricity + renewables on site electricity 

Ventilation MVHR: unit Vent Axia Sentinel Kinetic  MEV: fans - Greenwood Unity CV100 

Energy standards Code for Sustainable Homes Level 4 2006 UK Bld. Reg. (retrofit) + Eco Homes Very Good 

In-depth case study sample 100% households 10% of occupied households  

 

Table 2 Critical factors and BPE methods used in evaluation strategy for the 40 dwellings.  

MV Ventilation related factors  BPE Research Methods 

Dwelling  

Environmental design goals   

Ventilation in design and procurement process 

Supply chain/workmanship issues 

Interview with design team 

Environmental ratings achieved – SAP check 

Fabric and ventilation systems as designed/as built: 

MV design, specification, installation and 
commissioning, air tightness, overheating risk 

NV: opening’s design – cross ventilation, site related 
window opening constraints 

Scope of intended user control over MV, MV  

Construction audit – on site against design documents 

Commissioning check, SAP check, airtightness certificates, walk 
through + photographic survey 

Usability survey  

Air flow: compliance with building regulations 

inhabitant’s complaints vs. issues identified 

MV air flow check (5 dwellings) + shadowing MVHR 
recommissioning  

Noise: MVHR operation against background noise MVHR acoustic check (3 dwellings) 

IAQ average + issues: overheating, increased RH levels, 
CO2 above 1000ppm 

Temp., RH  monitoring and CO2 (4 dwellings for a year + 5 dwellings 
for 4 moths) monitoring 

Robust link of energy consumption and ventilation 
practices adopted 

Gas & electricity meter readings 

Inhabitant  

Previous accommodation (experience with air tight 
homes & continuous MV) 

Extended BUS survey (n=105), interview 

Initial awareness of ventilation system installed 
Engagement in design/ procurement 

Interview with residents, design team & client 

Accuracy and coherence of information given 

Perceived usefulness of this stage 

Engagement in ventilation related learning 

Shadowing of the introduction of occupants to their home (Case study 
A only) + evaluation of home user guide (HUG) & manuals, Interview 

Usability survey 

Perception of control over MV and individual comfort 
range (satisfaction against  temp. monitoring) 

Extended BUS survey (n=105), Interview 

Understanding & skills to interact with MV controls Usability survey 

Prevailing occupancy patterns (windows opening) Interview & repeated home visits every 7-8 weeks 

Ventilation practices: continuous MV with auxiliary NV, 
hybrid or only MV, behavioral change observed 

Walk through, home visits every 8-9 weeks 

Extended BUS survey (n=105), Interview, Temp, RH and CO2 



 
 

monitoring 

Table 3. Case B bedrooms - CO2 monitoring results overnight 27th/28th April 2014. 

Case study bedroom B1 B2 B3 B4 
Avg. CO2 overnight 

[ppm] 2290 1972 1027 1790 
 [%] (B3=100%) 223% 192% 100% 174% 

No of residents per 
bedroom 2 2 2 1 

Volume/person 
[m3] 13.0 10.1 14.2 20.2 

[%] (B3=100%) 92% 71% 100% 142% 
MEV operation off on during the day on 24/7 off 
Bedroom doors 

overnight closed open open open 

windows 
Closed/ occasional 

airing during the day – 
10cm gap 

Closed/ airing in the 
morning – balcony 

doors open 
Open 10cm gap 24/7 Closed/ airing during 

the day – 10cm gap 

No of 
bedrooms/dwelling 2 2 1 2 

 

Table 4. MV Performance Gap factors identified – their origin and impact  

MV Performance Gap factor Determined by… Impact on… 
Intended scope of daily user control over MV limited to a 
manual boost button – poorly labelled 

Design/specification Occupancy 

Automated control linked to increased RH level Design Occupancy 

Ducting issues, lack of trickle vents (Case B), poor MVHR 
system balance (Case A) 

Procurement 
Commissioning 

Occupancy 

Lack of previous experience with air tight dwellings and 
continuous MV 

Previous accommodation Handover stage 
Occupancy 

Energy use/operation cost of MV not clear to all but one 
inhabitant across the two Cases 

Design (feedback available) 
Handover (feedback explained) 
Occupancy (occupant not focused) 

Occupancy 

Noise issues experienced in some dwellings, disturbing in 
particular when going to sleep 
 

Design 
Procurement 
Occupancy (grill/filter cleaning) 

Occupancy 

Occupants anxious about energy use Design (lack of feedback on energy 
consumption) 
Handover (information) 
Occupancy (lack of focus to find relevant 
information –Case B) 

Occupancy 

 

 
 


