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Vitiligo is an autoimmune disease in which depigmented skin results from destruction of 

skin melanocytes, with strong epidemiologic association with several other autoimmune 

diseases. In previous linkage and genome-wide association studies (GWAS1, GWAS2), 

we identified 27 vitiligo susceptibility loci in patients of European (EUR) ancestry. We 

carried out a third GWAS (GWAS3) of vitiligo in EUR subjects, with augmentation of 

GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three 

vitiligo GWAS, followed by an independent replication study. The combined analyses, 

with 4,680 vitiligo cases and 39,586 controls, identified 23 novel replicated loci, as well as 

7 new suggestive loci, most encoding immune regulators, apoptotic regulators, and 

melanocyte regulators, several of which are also associated with other autoimmune 

diseases. Functional analyses indicate a predominance of causal regulatory variation, in 

some cases corresponding to eQTL at these loci. Together, the identified genes provide 

a framework for vitiligo genetic architecture and pathobiology, highlight genetic 

relationships to other autoimmune diseases and melanoma, and offer potential targets 

for vitiligo treatment. 

 

Vitiligo is a complex autoimmune disease characterized by white patches of skin due to 

destruction of melanocytes in involved regions1. Vitiligo is epidemiologically associated with 

several other autoimmune diseases, both in vitiligo patients and their close relatives2. In 

previous genomewide linkage and association studies we identified 27 vitiligo susceptibility loci3-

6 in EUR subjects, principally encoding immunoregulatory proteins, many of which are also 

associated with other autoimmune diseases7. Several other vitiligo genes encode melanocyte 

components that regulate normal pigmentary variation8 and in some cases are major vitiligo 

autoimmune antigens, with an inverse association of variation at these loci with vitiligo versus 

malignant melanoma4,6.  
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 To detect additional vitiligo loci with lower odds ratios (ORs), as well as uncommon risk 

alleles with higher ORs, we carried out a third GWAS (GWAS3) of EUR subjects. We 

additionally augmented the number of population controls in our previous GWAS1 and GWAS2 

and performed genome-wide imputation of all three EUR vitiligo GWAS. After quality control 

procedures, the augmented GWAS1 included 1,381 cases and 14,518 controls, GWAS2 

included 413 cases and 5,209 controls, and GWAS3 included 1,059 cases and 17,678 controls, 

with genomic inflation factors 1.068, 1.059, and 1.013, respectively. We then carried out a fixed-

effects meta-analysis of the three GWAS datasets for 8,966,411 shared markers (Online 

Methods). Replication was undertaken using an additional 1,827 EUR vitiligo cases and 2,181 

controls.  

Twenty-three new loci achieved genome-wide significance (P < 5 x 10-8) for association 

with vitiligo and demonstrated subsequent replication (Table 1; Supplementary Fig. 1); 21 are 

completely novel (FASLG, PTPRC, PPP4R3B, BCL2L11, FARP2, UBE2E2, NRROS, PPP3CA, 

IRF4, SERPINB9, CPVL, NEK6, ARID5B, BAD, TTBK2, RAB5C, TNFRSF11A, IRF3-BCL2L12, 

ASIP, PTPN1, and IL1RAPL1), while two, CTLA4 and TICAM1, were suggestive in our previous 

studies. One previously significant locus, CLNK, was no longer significant (Supplementary 

Table 1). Another potential new locus, PVT1, exceeded genome-wide significance in the 

discovery meta-analysis (P = 7.74 x 10-9), but could not be successfully genotyped in the 

replication study and so remains uncertain. Two other loci, FLI1 and LOC101060498, exceeded 

genome-wide significance in the discovery meta-analysis (P = 3.76 x 10-8 and P = 3.60 x 10-11, 

respectively), but did not demonstrate replication. Seven additional novel loci achieved 

suggestive significance (P < 10-5) in the discovery meta-analysis (STAT4, PPARGC1B, c7orf72, 

PARP12, FADS2, CBFA2T3, and a chr17 locus in the vicinity of AFMID) and gave evidence of 

replication, but failed to achieve overall genome-wide significance (Supplementary Table 1). 

Genome-wide conditional and joint analysis9 provided evidence for multiple independent 
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association signals at six loci (LPP, MHC class I, MHC class II, TG-SLA, IL2RA, MC1R; 

Supplementary Table 2). 

 Together, the loci identified by meta-analyses of the three GWAS account for 

approximately 18% of vitiligo heritability (h2 ~ 0.75) (Table 1). The ORs for the 23 new 

confirmed loci were generally lower than those for loci detected previously6, 1.15 to 1.27, 

excepting CPVL (OR = 1.84), ASIP (OR = 1.64), and IL1RAPL1 (OR = 1.77), for which the 

associated alleles are uncommon (minor allele frequencies 0.03, 0.07, and 0.01, respectively) 

and thus were not detected in the previous GWAS due to power limitations. 

To screen for functional relationships among the confirmed vitiligo genes, we carried out 

pathway analysis using g:PROFILER10, PANTHER11, and STRING12. PANTHER and 

gPROFILER identified a significantly enriched network of BioGRID interactions, most significant 

for the GO categories immune response, immune system process, positive regulation of 

response to stimulus, positive regulation of biological process, and regulation of response to 

stimulus. STRING identified a large interaction network (Fig. 1), with obvious juxtaposition of 

proteins involved in immunoregulation, T-cell receptor repertoire, apoptosis, antigen processing 

and presentation, and melanocyte function. 

Considering the 23 newly confirmed vitiligo candidate genes, at least ten (CTLA4, 

TICAM1, PTPRC, FARP2, UBE2E2, NRROS, CPVL, ARID5B, PTPN1, TNFRSF11A, and 

perhaps also IL1RAPL1) play roles in immune regulation. Six (FASLG, BCL2L11, BCL2L12, 

SERPINB9, NEK6, BAD) are regulators of apoptosis, particularly involving immune cells. ASIP 

encodes a regulator of melanocyte gene expression, and IRF4 encodes a transcription factor for 

both immune cells and melanocytes. Four (PPP3CA, PPP4R3B, TTBK2, RAB5C) have 

functions that are not obviously relevant to vitiligo or autoimmunity, though PPP3CA may 

regulate FOXP3 via NFATC2 and is associated with canine lupus13.  

Strikingly, several vitiligo genes encode proteins that interact physically and functionally. 

BCL2L11 and BAD are binding partners that promote apoptosis14. CTLA4 is liganded by CD80 
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to inhibit T cell activation15. BCL2L12 binds to and neutralizes caspase 7 (CASP7)16. SERPINB9 

binds to and specifically inhibits granzyme B (GZMB)17. Eos (IKZF4) binds and is an obligatory 

co-repressor of FOXP3 in regulatory T cells18. Agouti signaling protein (ASIP) binds to the 

melanocortin-1 receptor (MC1R) to down-regulate production of brown-black eumelanin19. IRF4 

cooperates with MITF to activate transcription of TYR20. And the vitiligo-associated HLA-

A*02:01:01:01 subtype presents peptide antigens derived from several different melanocyte 

proteins, including tyrosinase (TYR), OCA2, and MC1R4,6,21. Together, these functional 

relationships among the identified vitiligo genes appear to highlight key pathways of vitiligo 

pathogenesis that are beginning to coalesce.  

An unexpected finding from vitiligo GWAS has been an inverse genetic relationship 

between vitiligo and malignant melanoma risk for genes that encode melanocyte structural and 

regulatory proteins. TYR, OCA2, and MC1R, encode functional components of the melanocyte 

and are key vitiligo autoantigens. IRF4 encodes a transcription factor for melanocytes as well as 

lymphoid, myeloid, and dendritic cells22, controlled by alternative tissue-specific enhancers23. 

ASIP and PPARGC1B encode paracrine regulators of melanocyte gene expression. All six of 

these loci play important roles in normal pigmentary variation8,24, and for all six the specific 

SNPs that are associated with vitiligo risk are also associated with melanoma protection, and 

vice-versa25,26. The inverse genetic relationship of susceptibility to vitiligo versus melanoma 

suggests that that vitiligo may represent dysregulated immune surveillance against 

melanoma27,28, consistent with the threefold reduction in melanoma incidence among vitiligo 

patients29,30.   

Vitiligo is epidemiologically associated with several other autoimmune diseases, 

including autoimmune thyroid disease, pernicious anemia, rheumatoid arthritis, adult-onset type 

1 diabetes, Addison’s disease, and lupus31,32. We searched the NHGRI-EBI GWAS Catalog 

(http://www.ebi.ac.uk/gwas/) and PubMed for the 48 genome-wide significant and 7 suggestive 

vitiligo susceptibility loci for associations with other autoimmune, inflammatory, and immune-

http://www.ebi.ac.uk/gwas/
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related disorders. As shown in Fig. 2, of the 23 novel genome-wide significant vitiligo loci, 

FASLG has been associated with celiac disease33 and Crohn’s disease34; PTPRC with 

ulcerative colitis35; BCL2L11 with primary sclerosing cholangitis36; CTLA4 with alopecia areata37, 

rheumatoid arthritis38, autoimmune thyroid disease39,40, and type 1 diabetes autoantibody 

production41; and ARID5B with systemic lupus erythematosus42. Of the seven suggestive loci, 

STAT4 has been associated with Behঈet’s disease43, Sjögren’s syndrome44, and lupus45; and 

c7orf72 with lupus46. These concordant associations for vitiligo and other autoimmune and 

inflammatory diseases add to those involving previously identified vitiligo susceptibility loci, 

which include RERE, PTPN22, IFIH1, CD80, LPP, BACH2, CCR6, SLA, IL2RA, CD44, a chr11q 

gene desert, IKZF4, SH2B3, UBASH3A, and C1QTNF64,6. 

A majority of loci associated with complex traits involve causal variants that are 

regulatory in nature47-51, often corresponding to apparent expression quantitative trait loci 

(eQTLs)51. For TYR21, GZMB52, and MC1R7, principal vitiligo risk derives from missense 

substitutions, whereas for OCA26 and the MHC class I53 and class II54 loci principal vitiligo risk is 

associated with causal variation in nearby transcriptional regulatory elements. Overall, at 52% of 

vitiligo loci, the most significant SNPs are within or near a transcriptional regulatory element 

predicted by ENCODE data55,56. At 16% of loci, the most significant SNPs are within an intron, 

another 16% are in intergenic regions without known regulatory significance, and only 16% are 

in coding regions, several resulting in missense substitutions. To assess the general functional 

categories of apparent causal variants for vitiligo, we applied the stratified LD score regression 

method50 to the GWAS meta-analysis summary statistics. As shown in Fig. 3, greatest 

enrichment of heritability was observed for markers in regulatory functional categories, with 

considerably less enrichment of markers in protein coding regions. 

We utilized two approaches to assess correspondence of vitiligo association signals with 

expression of genes in the vicinity. We used PrediXcan57 to predict expression of 11,553 genes 

in whole blood for each study subject, and then test association of expression of each gene with 
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vitiligo affection status. We used a Bayesian method to assess co-localization of cis eQTL 

signals in purified blood monocytes with the confirmed vitiligo association signals. The 

PrediXcan analysis found 83 genes with significant differential expression in vitiligo cases 

versus controls after Bonferroni correction (Supplementary Table 3); of these, 75 were located 

within 1 Mb of a confirmed vitiligo susceptibility locus, demonstrating highly significant 

enrichment compared to non-significant PrediXcan results (P < 0.00001). The eQTL analysis 

found that 10 of the confirmed vitiligo association signals showed significant or suggestive co-

localization with eQTL identified in purified monocytes (Supplementary Table 4). Of the 

confirmed vitiligo genes that could be tested using both methods, 6 were significant in both 

analyses (CASP7, HERC2-OCA2, TEF, TICAM1, RERE, RNASET2). For all of these except 

CASP7, the lead SNP was located within or very close to an ENCODE element likely to regulate 

gene expression.  

Like a jigsaw puzzle, the pieces of the vitiligo pathogenome are thus beginning to fit 

together, revealing a complex network of immunoregulatory proteins, apoptotic regulators, and 

melanocyte components that mediate both autoimmune targeting of melanocytes in vitiligo and 

susceptibility to melanoma. For vitiligo as for other complex diseases, there is enrichment of 

causal variation in regions that regulate gene expression. This may bode well for identifying 

potential therapeutic targets, as pharmacologic modulation of dysregulated biological pathways 

may prove more tractable than attempting to target proteins impacted by amino acid 

substitutions.  

 

URLs. 1000 Genomes Project, http://www.1000genomes.org/; 1000 Genomes Project data, 

http://www.sph.umich.edu/csg/abecasis/MACH/download/ 1000G-2010-08.html; NHGRI-EBI 

GWAS Catalog, http://www.ebi.ac.uk/gwas/; NIH Database of Genotypes and Phenotypes 

(dbGaP), http://www.ncbi.nlm.nih.gov/gap; Online Mendelian Inheritance in Man (OMIM), 

http://www.1000genomes.org/
http://www.sph.umich.edu/csg/abecasis/MACH/download/%201000G-2010-08.html
http://www.ebi.ac.uk/gwas/
http://www.ncbi.nlm.nih.gov/gap
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Figure 1 Bioinformatic functional interaction network analysis of proteins encoded by all 

confirmed and suggestive vitiligo candidate genes. Unsupervised functional interaction network 

analysis was carried out using STRING v1015, considering each of the corresponding proteins 

as a node and permitting a small number of second-order interactions. No first- or second-order 

edges were shared with other nodes by ARID5B, CCR6, CPVL, GPR137, IL1RAPL1, LPP, 

NEK6, RAB5C, RERE, TEF, TTBK2, and UBE2E2. Green, neighborhood; blue, databases; red, 

experimental evidence. Note that SMEK2 is an alternative name for PPP4R3B. 

 

Figure 2 Concordant associations for vitiligo and other autoimmune and inflammatory diseases. 

We searched the NHGRI-EBI GWAS Catalog (http://www.ebi.ac.uk/gwas/) and PubMed for 

associations of the 48 genome-wide significant and 7 suggestive vitiligo susceptibility loci with 

other autoimmune, inflammatory, and immune-related disorders (blue), and for association with 

normal human pigmentation variation (red). RA, rheumatoid arthritis; T1D, type 1 diabetes 

mellitus; AITD, autoimmune thyroid disease; SLE, systemic lupus erythematosus; IBD, 

inflammatory bowel disease; MS, multiple sclerosis; MG, myasthenia gravis; AI hepatitis, 

autoimmune hepatitis.  

 

Figure 3 Enrichment estimates for functional annotations. The combined CMH GWAS123 

summary statistics were analyzed using the stratified LD score regression method utilizing the 

full baseline model50. Regulatory, yellow; protein coding, blue; intron, green. Annotations are 

ordered by enrichment magnitude. Error bars represent jackknife standard error around the 

enrichment. For each category, percentage of the total markers in the category is in 

parentheses. Dashed line represents ratio of 1 (no enrichment). Asterisks indicate enrichment 

significant at P < 0.05 after Bonferroni correction for the 20 categories tested (the categories 

conserved, repressed, transcribed, and promoter flanking were removed as insufficiently 
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specific). CTCF, CCCTC-binding factor; DGF, digital genomic footprint; DHS, DNase 

hypersensitivity site; TFBS, transcription factor binding site; TSS, transcriptional start site; 5’ 

UTR, 5’ untranslated region. H3K4me1, H3K4me3, H3K9ac, and H3K27ac are regulatory 

chromatin marks55.  
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Supplementary Figure 1 Genome-wide meta-analysis results. The genome-wide distribution of 

–log10 P values from the Cochran-Mantel-Haenszel meta-analysis for 8,966,411 genotyped and 

imputed markers from GWAS1, GWAS2, and GWAS3 is shown across the chromosomes. The 

dotted line indicates the threshold for genome-wide significance (P < 5 x 10-8).  
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Table 1  Allelic associations at vitiligo susceptibility loci following GWAS meta-analysis and replication study 
 

     
 

GWAS123  meta-analysis 
 

GWAS3 replication study 
 GWAS123 &  GWAS3 replication 

study meta-analysis 
 

Chr. Variant 
Position 
(Build 37) Locus EA/OA 

 
P value 

Odds      
ratio 

 
P value 

Odds      
ratio 

 
P value 

Odds ratio   
(95% CI) 

 

1 rs301807 8484823 RERE A/G 
 

1.84 x 10-12 1.22 
 

4.09 x 10-04 1.17 
 

4.14 x 10-15 1.21 (1.15-1.27) 
 

1 rs6679677 114303808 PTPN22 A/C 
 

1.60 x 10-14 1.39 
 

6.90 x 10-06 1.37 
 

5.43 x 10-19 1.39 (1.29-1.49) 
 

1 rs78037977 172715702 FASLG G/A 
 

1.39 x 10-13 1.33 
 

8.95 x 10-05 1.29 
 

6.74 x 10-17 1.32 (1.24-1.41) 
 

1 rs16843742 198672299 PTPRC C/T 
 

8.84 x 10-09 0.82 
 

1.87 x 10-02 0.88 
 

1.02 x 10-09 0.83 (0.79-0.88) 
 

2 rs10200159 55845109 PPP4R3B C/T 
 

3.35 x 10-13 1.48 
 

3.70 x 10-07 1.55 
 

3.73 x 10-19 1.51 (1.38-1.66) 
 

2 rs4308124 112010486 BCL2L11 C/T 
 

4.99 x 10-08 1.17 
 

1.67 x 10-02 1.12 
 

3.96 x 10-09 1.15 (1.10-1.21) 
 

2 rs2111485 163110536 IFIH1 A/G 
 

2.69 x 10-22 0.75 
 

8.58 x 10-05 0.83 
 

6.40 x 10-25 0.77 (0.73-0.81) 
 

2 rs231725 204740675 CTLA4 A/G 
 

2.25 x 10-08 1.18 
 

1.57 x 10-03 1.16 
 

1.49 x 10-10 1.18 (1.12-1.24) 
 

2 rs41342147 242407588 FARP2 A/G 
 

8.03 x 10-07 0.80 
 

1.25 x 10-03 0.80 
 

3.70 x 10-09 0.80 (0.74-0.86) 
 

3 rs35161626 23512312 UBE2E2 I/D 
 

7.34 x 10-07 0.87 
 

1.09 x 10-02 0.89 
 

3.13 x 10-08 0.87 (0.83-0.92) 
 

3 rs34346645 71557945 FOXP1 A/C 
 

6.11 x 10-14 0.80 
 

4.23 x 10-06 0.81 
 

7.99 x 10-19 0.80 (0.76-0.84) 
 

3 rs148136154 119283468 CD80 C/T 
 

5.02 x 10-15 1.37 
 

1.74 x 10-02 1.17 
 

4.58 x 10-15 1.31 (1.22-1.40) 
 

3 rs13076312 188089254 LPP T/C 
 

3.58 x 10-22 1.32 
 

3.48 x 10-10 1.33 
 

1.61 x 10-30 1.32 (1.26-1.38) 
 

3 rs6583331 196347253 NRROS A/T 
 

1.39 x 10-07 0.86 
 

3.62 x 10-02 0.91 
 

2.53 x 10-08 0.87 (0.83-0.92) 
 

4 rs1031034 102223386 PPP3CA A/C 
 

4.78 x 10-06 0.86 
 

2.14 x 10-03 0.86 
 

3.43 x 10-08 0.86 (0.81-0.91) 
 

6 rs12203592 396321 IRF4 T/C 
 

1.03 x 10-09 0.77 
 

3.17 x 10-08 0.68 
 

8.86 x 10-16 0.75 (0.70-0.80) 
 

6 rs78521699 2908591 SERPINB9 G/A 
 

3.33 x 10-06 0.79 
 

2.27 x 10-03 0.80 
 

2.54 x 10-08 0.79 (0.73-0.86) 
 

6 rs60131261 29937335 HLA-A D/I 
 

2.63 x 10-48 1.53 
 

8.01 x 10-20 1.54 
 

1.56 x 10-66 1.54 (1.46-1.61) 
 

6 rs9271597 32591291 HLA-DRB1/DQA1 A/T 
 

3.15 x 10-89 1.77 
 

nd nd 
 

nd nd 
 

6 rs72928038 90976768 BACH2 A/G 
 

1.12 x 10-11 1.28 
 

2.04 x 10-04 1.25 
 

1.00 x 10-14 1.27 (1.19-1.35) 
 

               

6 rs2247314 167370230 
RNASET2-
FGFR1OP-CCR6 C/T 

 
1.97 x 10-13 0.79 

 
1.56 x 10-06 0.79 

 
1.72 x 10-18 0.79 (0.75-0.84) 

 

7 rs117744081 29132279 CPVL G/A 
 

3.74 x 10-22 1.95 
 

1.88 x 10-06 1.66 
 

8.72 x 10-26 1.84 (1.64-2.06) 
 

8 rs2687812 133931055 SLA A/T 
 

1.98 x 10-11 1.21 
 

1.69 x 10-03 1.15 
 

2.19 x 10-13 1.19 (1.14-1.25) 
 

9 rs10986311 127071493 NEK6 C/T 
 

5.45 x 10-07 1.16 
 

5.10 x 10-03 1.14 
 

1.01 x 10-08 1.15 (1.10-1.21) 
 

10 rs706779 6098824 IL2RA C/T 
 

1.30 x 10-24 0.74 
 

9.25 x 10-05 0.84 
 

7.20 x 10-27 0.77 (0.73-0.81) 
 

10 rs71508903 63779871 ARID5B T/C 
 

1.09 x 10-06 1.18 
 

1.52 x 10-03 1.19 
 

6.93 x 10-09 1.18 (1.12-1.25) 
 

10 rs12771452 115488331 CASP7 A/G 
 

9.16 x 10-08 0.83 
 

8.42 x 10-06 0.79 
 

4.43 x 10-12 0.82 (0.78-0.87) 
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11 rs1043101 35274829 CD44-SLC1A2 G/A 
 

2.08 x 10-13 1.24 
 

4.20 x 10-06 1.24 
 

5.26 x 10-18 1.23 (1.18-1.29) 
 

               

11 rs12421615 64021605 
PLCB3-BAD-
GPR137 A/G 

 
3.38 x 10-06 0.87 

 
3.78 x 10-03 0.87 

 
4.81 x 10-08 0.87 (0.83-0.91) 

 

11 rs1126809 89017961 TYR A/G 
 

7.13 x 10-32 0.67 
 

2.54 x 10-13 0.68 
 

1.16 x 10-43 0.67 (0.63-0.71) 
 

11 rs11021232 95320808 Gene desert C/T 
 

1.01 x 10-21 1.38 
 

3.81 x 10-04 1.22 
 

2.10 x 10-23 1.34 (1.26-1.41) 
 

12 rs2017445 56407072 IKZF4 A/G 
 

3.81 x 10-20 1.31 
 

1.22 x 10-12 1.40 
 

6.62 x 10-31 1.33 (1.27-1.40) 
 

12 rs10774624 111833788 SH2B3 A/G 
 

1.88 x 10-14 0.80 
 

1.52 x 10-10 0.75 
 

6.22 x 10-23 0.79 (0.75-0.83) 
 

13 rs35860234 43070206 TTBK2 G/T 
 

2.82 x 10-06 1.16 
 

3.45 x 10-04 1.20 
 

4.76 x 10-09 1.17 (1.11-1.23) 
 

14 rs8192917 25102160 GZMB C/T 
 

1.37 x 10-10 1.23 
 

1.23 x 10-06 1.29 
 

8.91 x 10-16 1.25 (1.18-1.32) 
 

15 rs1635168 28535266 OCA2-HERC2 A/C 
 

6.97 x 10-13 1.43 
 

7.45 x 10-03 1.25 
 

8.78 x 10-14 1.37 (1.26-1.49) 
 

16 rs4268748 90026512 MC1R C/T 
 

1.63 x 10-20 0.73 
 

8.23 x 10-15 0.66 
 

2.88 x 10-33 0.71 (0.67-0.75) 
 

17 rs11079035 40289012 RAB5C A/G 
 

3.20 x 10-06 1.18 
 

3.19 x 10-05 1.28 
 

6.77 x 10-10 1.21 (1.14-1.29) 
 

18 rs8083511 60028655 TNFRSF11A C/A 
 

9.42 x 10-10 1.24 
 

3.23 x 10-02 1.13 
 

2.81 x 10-10 1.21 (1.14-1.28) 
 

19 rs4807000 4831878 TICAM1 A/G 
 

1.58 x 10-09 1.19 
 

2.11 x 10-06 1.24 
 

1.94 x 10-14 1.21 (1.15-1.26) 
 

19 rs2304206 50168871 IRF3-BCL2L12 A/G 
 

6.45 x 10-09 0.82 
 

4.52 x 10-02 0.90 
 

2.36 x 10-09 0.84 (0.80-0.89) 
 

20 rs6059655 32665748 RALY-ASIP A/G 
 

3.58 x 10-13 0.63 
 

3.08 x 10-08 0.57 
 

1.04 x 10-19 0.61 (0.55-0.68) 
 

20 rs6012953 49123043 PTPN1 G/A 
 

1.18 x 10-07 1.16 
 

1.74 x 10-02 1.11 
 

9.47 x 10-09 1.15 (1.10-1.20) 
 

21 rs12482904 43851828 UBASH3A A/T 
 

5.74 x 10-29 1.43 
 

1.16 x 10-03 1.18 
 

5.84 x 10-29 1.35 (1.28-1.43) 
 

22 rs229527 37581485 C1QTNF6 A/C 
 

1.40 x 10-24 1.34 
 

1.15 x 10-07 1.27 
 

1.14 x 10-30 1.32 (1.26-1.38) 
 

22 rs9611565 41767486 ZC3H7B-TEF C/T 
 

1.99 x 10-12 0.78 
 

3.34 x 10-04 0.82 
 

3.13 x 10-15 0.79 (0.75-0.84) 
 

x rs73456411 29737404 IL1RAPL1 T/G 
 

1.57 x 10-07 1.72 
 

5.90 x 10-03 1.62 
 

7.34 x 10-10 1.77 (1.47-2.13) 
 

x rs5952553 49392721 CCDC22-FOXP3 C/T 
 

1.81 x 10-08 0.85 
 

3.48 x 10-02 0.92 
 

1.05 x 10-09 0.86 (0.82-0.90) 
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Figure 3  


