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1. NEAIMD  simulation step 

All AIMD simulations are performed using the DFT method implemented in VASP [1, 2]. The 

Perdew-Burke-Ernzerhof parameterization of the generalized gradient approximation (GGA) is 

used for the exchange-correlated functional [3], and the projector-augmented wave method is 

applied to model the core electrons [4, 5]. For the energy cut-off, we use the default value in the 

pseudopotential file. We first relax the system with the NpT-ensemble (constant number of 

particles, pressure, and temperature) at room temperature to obtain the lattice constants of the 

metals at a finite temperature. We then apply the resulting lattice constants to construct the initial 

structures for subsequent NEAIMD simulations. 

The NEAIMD simulations are performed using a modified version of the VASP code [6] with the 

NVE ensemble (constant volume and no thermostat). We apply a fixed boundary condition along 

the direction of the heat flux and periodic boundary conditions in the two lateral directions 

(perpendicular to the direction of the heat flux) of the simulation model (see Fig. 1(c) in the main 

article). To avoid self-interaction between periodic images of the simulation cell, in the direction 

of the heat flux, we add a vacuum layer with a thickness exceeding 5 Å on the external sides of 

the fixed atom layers. The total distance between the periodic images of the simulation model 

exceeds 10 Å   in real space. The layers next to the fixed layers are the heat-source and heat-sink. 

A constant atomic heat flux is imposed by applying the Müller-Plathe algorithm [7]. The coldest 

atom in the hot region and the hottest atom in the cold region are selected, and their kinetic 

energies (atomic velocities) are exchanged every 50 fs with a 1-fs time step. This operation 

induces a steady heat-energy-flux in the system and a corresponding temperature gradient (∇T) 

after running for a sufficiently long time. The energy-exchange time interval is used to control the 

temperature gradient’s magnitude. The linear portion of the temperature gradient lies between the 

heat baths. By linear fitting the statistically averaged temperatures of each atom layer, we obtain 

∇T, which is used to calculate the final electronic thermal conductivity (𝜅!") and phonon thermal 

conductivity (𝜅!!).   

For Li, Al and Cu, the size of simulation model is 2 × 2 × 8 conventional cells (16 atom layers 

along the heat flux direction). For Be and Mg, the size of the simulation model is 2 × 4 × 8 

primitive cells (16 atom layers along the heat flux direction). To study size effects, we examine 

models with a length of 24 atom layers for each metal, i.e.,  2 × 2 × 12 conventional cells for Li, 

Al and Cu and 2 × 4 × 12 primitive cells for Be and Mg. For Al, we also investigate the size 

effect of the cross-section using a model with 4 × 4 × 8 conventional cells. All the simulation 

temperatures are approximately 300 K. The basic information for all NEAIMD simulations is 

presented in Table 1. Additionally, a short movie of the NEAIMD of Cu is given to show the real 

simulation process. 
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Table 1: Details of NEAIMD simulation of metals 

System System 

length 

(Å) 

Cross-

sectional 

area 

(𝑺, Å𝟐) 

Atom 

number  

Total 

simulation 

time (t, ps) 

Average 

temperature 

(T, K)  

ID of 

simulation 

cases 

 

 

 

Li 

 

 

 

38.9160 

 

 

 

74.7983 

 

 

 

128 

 

 

 

100 

288.20 Li-1 

293.08 Li-2 

303.64 Li-3 

305.35 Li-4 

313.87 Li-5 

316.28 Li-6 

 

Be 

45.8631  

 

36.0108 

192 70.503 278.02 Be-1 

 

31.7520 

 

128 

92.206 285.00 Be-2 

95.996 296.17 Be-3 

95.320 311.22 Be-4 

95.907 313.46 Be-5 

 

 

Mg 

 

47.2410  

 

70.2266 

128 64.906 290.95 Mg-1 

65.178 297.74 Mg-2 

68.2388 196 53.513 302.19 Mg-3 

 

47.2410 

 

128 

64.520 307.87 Mg-4 

63.368 311.41 Mg-5 

 

 

 

Al 

 

 

52.5067  

 

 

65.2525 

192 51.958 284.48 Al-1 

 

 

36.3510 

 

 

128 

76.497 286.14 Al-2 

75.340 299.46 Al-3 

77.251 306.84 Al-4 

71.534 310.39 Al-5 

73.971 318.31 Al-6 

 

 

Cu 

47.0096  

 

52.3134 

196 13.424 285.31 Cu-1 

 

32.5440 

 

128 

22.280 293.86 Cu-2 

22.787 298.49 Cu-3 

22.719 310.91 Cu-4 

 

 

2. PSD and the autocorrelation function 

 

The power spectrum 𝑆! 𝑓  of a time series 𝑥 𝑡  describes the distribution of the frequency 

components composing that signal. According to Fourier analysis, any physical signal can be 

decomposed into a number of discrete frequencies or a continuous spectrum of frequencies. The 

statistical average of a certain signal or signal type (including noise), analysed regarding its 

frequency content, is called its spectrum [8, 9].  

The autocorrelation function of a real stationary signal 𝑥 𝑡  is defined as 

   𝑅!(𝜏) = 𝐸[𝑥(𝑡)𝑥(𝑡 + 𝜏)],   (1) 

 

where 𝐸[∙] is the expected value operator. The Fourier transform of 𝑅!(𝜏) is called the PSD 

𝑆! 𝑓  [8, 9] 
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𝑆! 𝑓 = 𝑅!(𝜏)𝑒

!!!"#$
𝑑𝜏

!

!!
. (2) 

 

Given any two frequencies 𝑓! and 𝑓!, the quantity  

 

 
𝑆!(𝑓)𝑑𝑓

!!

!!

 (3) 

 

represents the portion of the average signal power contained in the signal frequencies from 𝑓! to 

𝑓!, where 𝑆! is a spectral density. 

 

Here, to demonstrate the relationship between lattice vibration (i.e., thermal motion of the ion 

cores) and EPO at the ion cores, we consider the following four physical signals:   

 

1) The displacement of the ion cores 𝐷!"# 𝑡 . We extract the position of each ion core from the 

AIMD run at each time step from the VASP output file. Here, we are particularly interested in 

the z component, i.e., that along the direction of the heat flux. By applying the PSD technique, 

we obtain the spectral density of atomic displacement (S! ), which gives information 

regarding atomic vibrations in real space. 

2) The velocity of the ion cores 𝑉!"# 𝑡 . We modified the VASP code to output the 

instantaneous velocity of each ion core at every AIMD time step. Analogous to 𝐷!"# 𝑡 , here, 

we take the z component for 𝑉!"# 𝑡 . By applying the PSD technique we obtain the spectral 

density of atomic velocity (S!).  S! is conventionally known as the vibrational density of 

states (VDOS) and provides information regarding the oscillation velocity of the atoms.   

3) The EP displacement at the ion cores 𝑈!"#(𝑡). We extract the EP value at each ion core at 

every AIMD time step from the VASP output file. By applying the PSD technique, we obtain 

the spectral density of EP displacement (S! ). Based on its definition, S!  reflects the 

behaviour of EPO at the ion core in real space. 

4) The VEPO at the ion cores ∆𝑈!"#(𝑡). We define ∆𝑈!"#(𝑡) as the difference between 𝑈!"#(𝑡) 

at time step 𝑡 + 1 and 𝑡. By applying the PSD technique, we obtain the spectral density of 

VEPO (𝑆∆!). Similar to S! (VDOS), 𝑆∆! provides information about the rate of the EP value 

change at the ion core. 

 

The EP expression used in VASP is defined as 

 

 𝑈 = 𝑈(𝑟) ∙ 𝜌!"#! ∙ ( 𝑟 − 𝑅 )𝑑!𝑟, (4) 

 

where the test charge 𝜌!"#! is norm 1. From this formula, we can see that the EP 𝑈 is a function of 

ion position 𝑅. Thus, the EPO at the ion core is induced by the lattice vibrations, i.e., the thermal 

motion of the ion cores. Therefore, in principle, S! and S! should have some correlation, similar 

to  S! and 𝑆∆!.  

 

To prove our conjecture, for a selected model of Al, we performed an additional 10-ps 

equilibrium AIMD simulation with the NVE ensemble. The results are shown in Fig. 2(a, b) in the 

main text. Clearly, the distributions of S! and S! and of S! and 𝑆∆! are very similar, and the 

locations of the peaks, with respect to frequency, are in exact agreement. These results strongly 

support our conjecture. Similarly, the same quantities were determined via a 100-ps NEAIMD 
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simulation of Al (Fig. 2(c, d)), which revealed a strong correlation between the lattice vibration 

and the EPO at the ion cores. However, we also note that for some specific frequencies (3.5~5.0 

THz), the peaks of the spectral density from the lattice vibration and EPO in Figs. 2(c, d) are not 

exactly the same. We suspect that this phenomenon may be attributable to the heat flux applied in 

NEAIMD. Nevertheless, comparing the PSD results confirms that the relationship between lattice 

vibration and EPO holds.   

 

 

 

3. Evidence for the EPO from lattice vibrations providing the thermal kinetic 

energy to thermally excited electrons  

 

We first give a detailed derivation of the total energy expression for a free electron system at 

T > 0  K. 

 

From the Sommerfeld expansion [10], if the function Q(E) is continuously differentiable on 

(−∞,+∞), Q(0) = 0, and lim!→! 𝑒
!!"𝑄 𝐸 = 0 (here, α is a positive and constant number) 

when 𝑘!𝑇 ≪ 𝐸!, then 

 

 I = 𝑓 𝐸 𝑄! 𝐸 𝑑𝐸 ≈ 𝑄 𝐸! +
!
!

!
(𝑘!𝑇)

!𝑄′′(𝐸!)
!

!
, (5) 

 

where 𝑓 𝐸  is the Fermi-Dirac distribution function, 𝐸! is the Fermi energy, 𝑘! is the Boltzmann 

constant and 𝑇 is the system temperature. 

 

When T > 0  K, the total energy of the free electron system 𝑈!"! can be written as 

 

 
𝑈!"! =    𝐸𝑓 𝐸 𝑁 𝐸 𝑑𝐸  

!

!

 

 

 

 
= 𝐸𝑁(𝐸)𝑑𝐸

!!

!

+
𝜋
!

6
(𝑘!𝑇)

!
𝑑

𝑑𝐸
[𝐸𝑁(𝐸)]!! 

 

 

= 𝐸𝑁 𝐸 𝑑𝐸 + 𝐸𝑁 𝐸 𝑑𝐸 +
𝜋
!

6
(𝑘!𝑇)

!
∙
3

2
(
1

2𝜋!

2𝑚!

ℏ!

!

!

∙ 𝐸)
!!

!
!

!

!
!

!

!

 

 

 
≈ 𝐸! + 𝐸!

!
𝑁 𝐸!

!
𝐸! − 𝐸!

!
+

!
!

!
(𝑘!𝑇)

!
𝑁(𝐸!

!).  

	
  

∵   𝐸! = 𝐸!
!
1 −

!
!

!"

!!!

!
!

!

!

 and N 𝐸!
!
=

!!

!!
!

!
 

 

∴ 𝑈!"! = 𝐸𝑁 𝐸 𝑑𝐸 + 𝑁 𝐸!
!

−
𝜋
!

12
(𝑘!𝑇)

!
+

!
!

!

!

𝜋
!

4
(𝑘!𝑇)

!
𝑁(𝐸!

!) 

 

 

 

 

 
= 𝐸𝑁 𝐸 𝑑𝐸 +

𝜋
!

6
𝑘!𝑇

!
𝑁 𝐸!

!

!
!

!

!

 
 

 
= 𝐸! +

!
!

!
∙ 𝑁

(!!!)
!

!
!

!
. (6) 
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The first term (𝐸!) on the right-hand side of Equation (6) is the total energy of the free electron 

system at 0  K, whereas the second term is the thermally excited energy (𝐸!) of the system 

obtained from the outside environment when T > 0  K. Here, 𝑁  is the total number of free 

electrons, and 𝐸!
! is the Fermi energy at 0  K. Because the Fermi energy changes very little with 

temperature, here, we take 𝐸! at room temperature as 𝐸!
! [11]. 

 

In Fig. 2(f) of the main text, we demonstrate that the local vibrational EP field, which originates 

from the EPO, causes the collective vibration of free electrons in the momentum space and 

provides additional thermal kinetic energy to the thermally excited electrons near the Fermi 

surface. To confirm this, we perform two additional equilibrium AIMD simulations: Al (100 ps at 

329.40 K) and Li (100 ps at 283.97 K). Both use a supercell of 2 × 2 × 2 conventional cells (32 

atoms in total) and periodic boundary conditions in all three dimensions. 

 

We define the total energy provided by EPO as 

 

 𝐸!"# = 2 ∙ 𝑈!   ∙ 𝑛!(𝑒)! , (7) 

   

where 𝑈! is the average effective amplitude of EPO at the ion core 𝑖. Because the simulations here 

are equilibrium AIMD, the 𝑈! of different atoms can be taken as having the same value (over a 

long time average, the temperature of each ion core can be assumed to be the same). 𝑛!(𝑒) is the 

number of free electrons per atom (for Al, 𝑛!(𝑒)=3; for Li, 𝑛! 𝑒 = 1). Then,  

 

 𝐸!"# = 2 ∙ 𝑈!  𝑛!(𝑒)! = 2 ∙ 𝑈!"# 𝑛! 𝑒 = 2 ∙ 𝑈!"# ∙ 𝑁! , (8) 

 

where 𝑁 is the total number of free electrons in the system and 𝑈!"# is the average effective 

amplitude of EPO from equilibrium AIMD 

 

 
𝑈!"# =

!

!!

!

!!"#$!

(𝑈!(𝑡!) − 𝑈!)
!

!!"#$!

!!

!!

!!!
, (9) 

 

where 𝑁! is the total number of atoms in the simulation cell, 𝑛!"#$! is the total simulation steps, 

𝑈!(𝑡!) is the EP value of atom 𝑗 in the cell at time step 𝑡!, and 𝑈! is the average EP value of atom 

𝑗. 𝑈!"# is calculated using the RMS method [12]. 𝐸! and 𝐸!"# for Al and Li are compared in 

Table 2. 

 

Table 2: Comparison of 𝐸! and E!"# for Al and Li from equilibrium AIMD simulations near room 

temperature 

System Temperature 

(K) 

Total 

number 

of free 

electrons  

Fermi 

energy 

(eV) 

Average 

effective 

amplitude 

of EPO 

(𝟏𝟎!𝟓V) 

Thermally 

excited 

energy 𝑼𝑻 

(𝟏𝟎!𝟐𝟏J) 

Total 

energy 

provided by 

EPO 𝑬𝑬𝑷𝑶 

(𝟏𝟎!𝟐𝟏J) 

Li 283.97 32 4.72 15.5152 1.6049 1.5909 

Al 329.40 96 11.63 8.9964 2.6293 2.7674 
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From the results in Table 2, the following relationship is clear 

 

 𝐸! ≈ 𝐸!"#. (10) 

 

This result supports our conjecture that EPO causes the collective vibration of free electrons in 

momentum space and provides the thermal kinetic energy of the thermally excited electrons.  

 

 

 

4. Heat flux via free electrons 𝐽!" 

4.1 Results of the EPO in space 

 

As shown in Figs. 2(g, h) of the main text, higher temperatures can increase the strength and 

speed of spatial EPO. Figs. 2(i, j) in the main text confirm this. From Fig. 2(i), we also have 

 

 ∆𝑈! 𝑡!

!!"

!!!
≅ 0. (11) 

 

Therefore, no net local electric field occurs over the simulation. In other words, no net electric 

current exists in metals during the heat-transfer process, in good agreement with our common 

sense arguments. We also note that both the negative and positive parts of ∆𝑈! 𝑡!

!!"

!!!
 exhibit 

perfect linear behaviours with time, as shown in Fig. 2(i). We apply the RMS method to calculate 

the average effective amplitude of EPO (𝑈!"#) 

 

 
𝑈!"#(𝑙) =

!

!!"

!

!!"#$!

(𝑈!(𝑡!) − 𝑈!)
!

!!"#$!

!!!

!!"

!!!
, 

 

(12) 

where 𝑙 is the index of the atom layers, 𝑁!" is the total number of atoms per layer, 𝑛!"#$! is the 

total number of simulation steps, 𝑈!(𝑡!) is the EP displacement of ion core 𝑗 at  𝑖  fs, and 𝑈! is the 

average value of 𝑈!(𝑡!) for atom 𝑗 in layer 𝑙. 𝑈!"#(𝑙) represents the intensity of the local EPO.  

Thus, the energy provided by EPO in each layer 𝐸!"#(𝑙) can be written as 

 

 𝐸!"#(𝑙) = 2 ∙ 𝑈!"#(𝑙) ∙ 𝑛 𝑒 ∙ 𝑒 (13) 

 

 

4.2 The distribution of thermally excited electrons’ thermal kinetic energy along the heat 

flux direction and the non-linear effect analysis 

 

We have proven that the energy from EPO provides the kinetic energy of thermally excited 

electrons. Therefore, we can treat 𝐸!"#  as the thermal kinetic energy of thermally excited 

electrons. Combining Eqs. (12) and (13), we present the distribution of the effective amplitude of 

EPO in space rather than that of the thermal kinetic energy of thermally excited electrons, in Fig. 

S1. 
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Fig. S1: Effective amplitudes of the EPO along the direction of the heat flux in different metals (all 

systems are approximately 300 K). Via linear fitting, we can obtain  
!!!"#(!)

!!!

, which is used to calculate 

electronic heat flux. 

 

Fig. S1 shows that in metals, higher temperatures increase the strength of EPO. We also note that 

a non-linear phenomenon of  𝑈!"# 𝑙  occurs in some metals, such as Al, Be. This phenomenon 

will cause significant errors in the final electronic thermal conductivity (𝜅!").  

 

To elucidate the reason for this non-linear phenomenon, we plot the temperature profiles of 

different metals in Fig. S2. The degrees of the non-linear temperature distributions of Be and Al 

are larger than those of Li, Cu, and Mg at approximately 300 K. The non-linear temperature 

distribution may be responsible for the non-linear distribution of 𝑈!"# 𝑙 .  
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Fig. S2: Temperature profiles from NEAIMD simulations of different metals (all systems are at 

approximately 300 K). The dashed line is the linear fit of the temperature profile, i.e., the temperature 

gradient (∇𝑇). 
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We also attempt to reduce the non-linear effect by increasing the model size. Specifically, we 

vary the sizes of the Be and Al models. Fig. S3 presents the non-linear effects of different Be 

lengths at approximately 300 K. Fig. S4 shows the non-linear effects of different cross-sections 

and lengths of Al at approximately 300 K. Based on these results, the simulation size indeed 

affects the non-linear EPO phenomenon in metals, and the non-linear effects of EPO along the 

heat flux direction can be reduced by increasing the simulation size. However, we could not 

completely eliminate the non-linear effects by increasing the simulation size. The mechanism 

underlying this non-linear phenomenon warrants further study.   

 
 

 
Fig. S3: Distributions of the effective EPO amplitude for different lengths of Be (all systems are at 

approximately 300 K). 
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Fig. S4: Distributions of the effective EPO amplitude for different cross-sections and lengths of Al (all 

systems are at approximately 300 K). 

 

4.3 Definition of 𝐽!" 

 

First, we calculate the average effective EPO amplitude 𝑈!"#(𝑙) and effective EPO energy 

𝐸!"#(𝑙). Then, we can obtain the total effective energy provided by EPO during simulation time 𝑡 

as  

 

 𝐸!"# 𝑙, 𝑡 = 2 ∙ 𝑈!"# 𝑙 ∙ 𝑛 𝑒 ∙ 𝑒 ∙ 𝑛!"#$!, (14) 

	
  

where 𝑛!"#$! is the total number of time steps during the simulation time 𝑡. When the system 

reaches a quasi-equilibrium state, we can infer that the thermal energy of thermally excited 

electrons is exchanged between two adjacent atom layers.  As illustrated in Fig. S5, we take half 

of the difference of the thermal kinetic energy exchange between the two layers as 𝐽!" (because of 

the isotropy of the free electron model)  

 

 

𝐽!" = −
1

2

𝑛 𝑒 ∙ 𝑒

𝑆 ∙ 𝑡

𝜕 2 ∙ 𝑈!"# 𝑙 ∙ 𝑛!"#$!

𝜕𝑁!

 

= −
𝑛 𝑒 ∙ 𝑒 ∙ 𝑛!"#$!

𝑆 ∙ 𝑡

𝜕𝑈!"# 𝑙

𝜕𝑁!

 

  

 

, (15) 
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where 𝑆 is the cross-sectional area, 𝑛(𝑒) is the number of free electrons per atom layer, 𝑒 is the 

unit charge of a single electron, and 
!!!"# !

!!!

 is the gradient of the average effective EPO 

amplitude value by linear fitting of 𝑈!"# 𝑙  with respect to the index number of atom layers (𝑁!), 

as shown in Fig. S1. 

 

 
Fig. S5: Schematic of the exchange of thermal excited electrons’ thermal energy between two adjacent 

atom layers. 𝐸! and 𝐸! are the thermal energies carried by thermally excited electrons in layer1 and 

layer2, respectively. 

 

 

 

5. Calculation of thermal conductivity κ of metals from NEAIMD 

5.1 Electronic thermal conductivity (𝜅!")  

 

From Fourier's Law of heat conduction, the electronic thermal conductivity (𝜅!") can be written as 

 

 

 
𝜅!" = −𝐽!"/∇𝑇. (16) 

 

Combining Equation (16) with Equation (15), we have 

 

 

𝜅!" =
!(!)∙!∙!!"#$!

!∙!∙∇!

!!!"# !

!!!

. (17) 

 

Based on Eq. (17), we calculate the 𝜅!" of five metals: Li, Be, Mg, Al, and Cu around room 

temperature. We run multiple NEAIMD simulations for each system with different T to examine 

the temperature dependent thermal conductivity of metals. All the simulation results are reported 

in Table 3. 
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5.2 Phonon thermal conductivity (𝜅!!) 

 

As we employ the Müller-Plathe algorithm to establish a stable temperature gradient along the 

heat transfer direction, we can also obtain the atomic kinetic energy flux 𝐽!!. We calculated the 

phonon thermal conductivity (𝜅!!) simultaneously from Fourier's Law: 

 

 𝜅!! = −𝐽!!/∇𝑇. (18) 

 

The results are also reported in Table 3. By summing 𝜅!" and 𝜅!!, we obtain the total 𝜅 of metals 

from parameter free NEAIMD simulations. 

Table 3: Electronic thermal conductivity  𝜅!" and phonon thermal conductivity  𝜅!! from NEAIMD. 

System Case 

ID 

Average 

temp. 

(T, K)  

Temperature 

gradient 𝜵𝑻  

(K/Å) 

Electronic 

thermal 

conductivity

  𝜿𝒆𝒍 (W/mK) 

Phonon 

thermal 

conductivity

  𝜿𝒑𝒉 

(W/mK) 

Total 

thermal 

conductivity

  𝜿 (W/mK) 

 

 

 

Li 

Li-1 288.20 -7.2117 82.1294 2.7502 84.8796 

Li-2 293.08 -7.6875 81.0457 2.6219 83.6676 

Li-3 303.64 -7.7978 79.9341 2.6386 82.5727 

Li-4 305.35 -7.9970 78.4404 2.5930 81.0334 

Li-5 313.87 -8.1606 77.3224 2.6050 79.9274 

Li-6 316.28 -8.2397 76.7194 2.5927 79.3121 

 

Be 

Be-1 278.02 -2.2042 220.9939 25.0928 246.0867 

Be-2 285.00 -2.9479 216.3805 21.0501 237.4306 

Be-3 296.17 -3.3623 196.5404 18.8916 215.4320 

Be-4 311.22 -3.8448 174.4980 16.9305 191.4285 

Be-5 313.46 -3.6524 164.2614 18.5753 182.8367 

 

 

Mg 

 

Mg-1 290.95 -4.8223 166.4749 2.1260 168.6009 

Mg-2 297.74 -4.2645 148.2052 2.4020 150.6072 

Mg-3 302.19 -3.6466 140.7474 2.3877 143.1351 

Mg-4 307.87 -5.8340 140.4684 1.7672 142.2356 

Mg-5 311.41 -5.1873 142.9120 2.0244 144.9364 

 

 

 

Al 

 

 

Al-1 284.48 -3.0485 232.7718 5.7530 238.5248 

Al-2 286.14 -4.9667 231.2791 4.5353 235.8144 

Al-3 299.46 -4.9448 223.9373 4.6760 228.6133 

Al-4 306.84 -5.2123 223.6268 4.6600 228.2868 

Al-5 310.39 -5.3456 220.0350 4.3882 224.4232 

Al-6 318.31 -5.5119 209.5108 4.3312 213.8420 

 

 

Cu 

Cu-1 285.31 -7.2400 438.9252 2.0393 440.9645 

Cu-2 293.86 -9.6536 399.0878 1.8816 400.9694 

Cu-3 298.49 -8.7284 391.4515 2.1829 393.6344 

Cu-4 310.91 -9.9209 374.4141 1.9523 376.3664 
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5.3 Size effects of lattice thermal conductivity 𝜅!! from NEAIMD 

 

It is well known that, in lattice dynamics each vibrational mode (phonon) has a specific wave-

length. In view of this, finite size effects are inevitable in non-equilibrium molecular dynamics 

(NEMD) simulations of lattice thermal conductivity of most systems, where phonons are 

truncated due to the limited model length [13].  

 

Due to the computational limitation of the AIMD, here we perform classical NEMD simulations 

of Cu at 300 K with different simulation cell length along the direction of heat transfer using the 

LAMMPS [14] package. The Cu-Cu interatomic interactions are described by the embedded-

atom-method (EAM) potential [15]. In Fig. S6, we can see the strong finite size effect of 𝜅!!. The 

length of our NEAIMD model of Cu is 8 unit cells and our NEAIMD result of 𝜅!! is about 2.18 

W/mK around 300 K, which is similar to the classical NEMD results (3.84 W/mK) in Fig. S6.  

 
Fig. S6: Size effect of lattice thermal conductivity of Cu from non-equilibrium molecular dynamics 

simulation around 300 K. 

 

 

To compare 𝜅!! results from different calculation methods, we first calculate 𝜅!!  of different 

metals, at around 300 K, from classical equilibrium molecular dynamics (EMD) simulations, 

using the Green-Kubo method [13], as implemented in the LAMMPS package. The EAM 

potential parameters for Al [16], Cu [15], Be [17], Mg [18] and Li [19] are used to describe the 

interatomic interactions in the EMD simulations. The results are shown in Fig. S7. 

 

Second, we calculate 𝜅!! of metals at 300 K by solving the phonon Boltzmann transport equation 

(BTE), with force constants extracted from first-principles calculations. The phonon BTE model 

does not suffer from finite size effects. We employ the first-principle software package VASP 

[1,2] to calculate the second-order (harmonic) and third-order (anharmonic) force constants based 

on the finite displacement difference method [20, 21], and then use the ShengBTE package [21] 

to obtain 𝜅!! by iteratively solving the BTE of phonons. The convergences of 𝜅!! with respect to 

the k-grid size (𝑁×𝑁×𝑁) in our calculations are fully examined and the parameter 𝑁 = 20 is 

taken to evaluate the converged 𝜅!!. The convergences of 𝜅!! with respect to the force cut-off 

distance are also examined and we took the distance of the fifth-order adjacent neighbor atoms as 

the force cut-off. The energy of plane-wave cutoff is adopted with the value of 1.5 times of the 

default value in VASP pseudo-potential files.  
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Fig. S7: Size effect of lattice thermal conductivity of metals from equilibrium molecular dynamics 

simulation around 300 K. 

 

 

Finally, we compare 𝜅!! from NEAIMD, classical EMD and phonon BTE method in Table 4. It 

can be seen that our NEAIMD simulations underestimate 𝜅!! of Li, Al, Mg, and Cu. The effect is 

particularly significant for Cu. However, for Be, 𝜅!! from NEAIMD is a little bit higher than the 

results from classical EMD and phonon BTE method. 

 

We also examined the relationship between simulation size and non-linear effect for 𝜅!" from 

NEAIMD. The results can be found in Table 1 and Table 3. Unlike 𝜅!!, from our NEAIMD 

simulations results, we do not observe a clear size effect for 𝜅!". 

 

Table 4. Comparison of lattice thermal conductivity 𝜅!! (at approximately 300 K) calculated by NEAIMD, 

classical EMD and phonon BTE method. 

System Li Be Mg  Al Cu 

NEAIMD 𝜿𝒑𝒉(𝐖/𝐦𝐊) 2.6386 18.8917 2.4021 4.6760 2.1829 

Classical EMD 𝜿𝒑𝒉(𝐖/𝐦𝐊) 4.3013 17.8805 5.4244 12.5067 13.2420 

BTE 𝜿𝒑𝒉(𝐖/𝐦𝐊) 3.2080 15.2697 8.3925 6.3789 20.4131 
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6. Analysis of propagation of errors 

 

From the knowledge of the statistical average propagation of errors [22], we know that, when a 

variable is defined as 𝑋 =
!

!
, the square of the error in 𝑋 can be expressed as  

 

𝜎!
!
= 𝜎!

!

!
= 𝜎!

!
𝜕𝑋

𝜕𝑢 !

!

+ 𝜎!
!
𝜕𝑋

𝜕𝑣 !

!

=
𝜎!
!

𝑣!
+
𝜎!
!
𝑢
!

𝑣!
 

⇒
!!

!

!

!

=

!!

!

!

!

!

=
!!

!

!

+
!!

!

!

. 

 

 

 

 

 (19) 

 

 

From Equations (17) and (19), we know that the error in 𝜅!" mainly originates from ∇𝑇 and 
!!!"# !

!!!

. As the ∇𝑇 calculation is based on the statistical time average of temperature of each 

single atom layer, the temperature fluctuation (∆𝑇)! = 𝑘!𝑇
!/𝐶! [23] of each layer is large due to 

the small number of atoms in the layer. Thus, the conventional error estimate for ∇𝑇 is quite large. 

However, from Fig. S2 we find that the NEAIMD always yields a stable temperature profile after 

sufficient simulation time, and so we have reason enough to assume the linear fitting error as the 

error in ∇𝑇.  

 

At the same time, we notice that the non-linear phenomenon of  
!!!"# !

!!!

 , which was discussed in 

Sec. 4.2, leads to a relatively large error in 𝜅!". We calculate the error in 𝜅!" (Table 5) from 

Equation (19). From Table 5 we can see that the 𝜅!"  of Be and Al have relatively large 

uncertainties, because of the large error in  
!!!"#(!)

!!!

. 

 

Table 5. Error bar of electrical thermal conductivity  𝜅!" of metals around 300 K. 

System Li Be Mg  Al Cu 

Temperature (K) 303.64 296.17 297.74 299.46 298.49 

Error bar of linear fitting 𝛁𝑻	
   4.06% 10.36% 2.86% 8.57% 4.74% 

Error bar of linear fitting  
𝝏𝑼𝑬𝑷𝑶 𝒍

𝝏𝑵𝒍

	
  

 

7.15% 

 

27.04% 

 

15.88% 

 

28.61% 

 

7.19% 

Total error bar of 𝜿𝒆𝒍 

(W/mK) 

 

6.79 

 

62.38 

 

24.30 

 

67.90 

 

33.88 

Total error bar of 𝜿𝒆𝒍 

(percentage) 

 

8.22% 

 

28.96% 

 

16.13% 

 

29.86% 

 

 8.61% 

 

 

 

7. Comparing our results with conventional BTE method and experimental data 

 

In order to examine our theory and evaluate the results of our method, we compare our simulation 

results of some common metals with experimental measurements and the results from the 

traditional BTE framework. 
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In Sec. 5.3, we calculated the lattice thermal conductivity, 𝜅!!, of metals with the BTE method 

based on first-principle calculations. From the free electron model and BTE theory, we can 

estimate the electronic thermal conductivity 𝜅!" as [11] 

 

 
𝜅!" =

!
!
!!!

!
!!!"

!!
, (20) 

 

where 𝑛 is the concentration of free electrons, 𝑚 is the electron mass, 𝑘! is Boltzmann constant, 

T is system temperature, and 𝜏!"  is the collision time of free electrons. The value of 
!!"

!!"

 is 

calculated using the BoltzTraP package [24] to solve BTE for electrons based on the electronic 

band structures, which are calculated by VASP. As in usual practice, we take 𝜏!" = 1×10
!!"

  s 

[24, 25], allowing us to obtain 𝜅!" from the conventional BTE framework. 

 

Finally, we get the total thermal conductivity of metals (𝜅) by summing up the lattice thermal 

conductivity (𝜅!!) and electronic thermal conductivity (𝜅!"). The results of 𝜅!!, 𝜅!", and 𝜅 from 

different methods along with the experimental measurement data are reported in Table 6. The 

comparison clearly shows that our method is much better at predicting the thermal conductivity of 

metals than the conventional BTE method. 

 

Table 6. Comparison of 𝜅!!, 𝜅!", and 𝜅 of simulated metals among our NEAIMD method, conventional 

BTE method, and experiments at 300 K. 

System NEAIMD 

𝜿𝒆𝒍 

(𝐖/𝐦𝐊) 

BTE 𝜿𝒆𝒍 

(𝐖/𝐦𝐊) 

NEAIMD 

𝜿𝒑𝒉 

(W/mK) 

BTE 𝜿𝒑𝒉 

(𝐖/𝐦𝐊) 

NEAIMD 

total  𝜿 

(𝐖/𝐦𝐊) 

BTE 

total  𝜿 

(𝐖/𝐦𝐊) 

Exp. 𝜿 

(𝐖/𝐦𝐊) 

Li 79.9341 70.3525 2.6386 3.2080 82.5727 73.5605 84.8 

Be 196.5404 48.1385 18.8917 15.2697 215.4321 63.4082 200 

Mg 148.2052 105.4915 2.4021 8.3925 150.6073 113.8840 156 

Al 223.9373 221.5790 4.6760 6.3789 228.6133 227.9579 237 

Cu 391.4515 136.0173 2.1829 20.4131 393.6344 156.4304 401 

	
  

	
  

	
  

8. The exponential autocorrelation time of velocity of EPO at ion core 

 

In calculation of the spectral density of electrostatic potential oscillating velocity (𝑆∆!) in Sec. 2, 

after calculating the autocorrelation function of velocity of EPO at ion core ∆𝑈!"#(𝑡), we 

performed an exponential decay fitting of the autocorrelation function with the formula  

 

 𝑦 = 𝐴exp(−𝑡/𝜏!"#), (21) 

 

where 𝜏!"# is called the exponential autocorrelation time. It is surprising to find that 𝜏!"# is 

approximately on the same order of magnitude as the collision time of free electrons (𝜏!" =

1×10
!!"

  s). We examined all cases of metals and present the data of  𝜏!"# in Table 7. The order 

of magnitude of our results (~10!!"  s) agrees very well with the common theoretical value [24-

26]. We anticipate that there must be some physical mechanisms behind this phenomenon.   
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Table 7. Exponential autocorrelation time 𝜏!"# of velocity of EPO at ion core (300 K) 

System Li Be Mg  Al Cu 

Temperature (K) 302.32 300.67 299.22 299.89 300.72 

𝝉𝒆𝒙𝒑 (×𝟏𝟎!𝟏𝟒𝒔) 1.258 0.584 1.617 1.282 1.431 

 

 

 

9. Advantages, limitations, challenges, and future work of this method 

9.1 Advantages  

 

1) Our NEAIMD-EPO method provides a direct and clear procedure for simulating the thermal 

transport behavior of free electrons from an atomistic point of view. It will be very 

advantageous for investigations of very-large-scale integration (VLSI), of relevance to the 

semiconductor industry. 

2) The NEAIMD-EPO method naturally but implicitly includes the complicated interactions 

between electrons and electron-phonon coupling. 

3) The NEAIMD-EPO approach is a new method which can calculate electronic thermal 

conductivity without artificial manipulation and input parameters. 

4) The NEAIMD-EPO framework also provides the physical picture of how the thermal energy 

is carried by thermally excited electrons and how this energy is transported in metals. 

 

9.2 Challenges 

 

1) The nonlinear phenomenon of the effective amplitude of EPO along the heat flux direction in 

some metals still needs further study. 

2) A coherent understanding why the exponential autocorrelation time of velocity of EPO at ion 

cores has the same order of magnitude as the collision time of free electrons is still missing.  

 

9.3 Limitations 

 

1) As our NEAIMD-EPO framework is built on the free electron gas model, so far, this method 

is limited to simulation of pure metals. 

2) So far, this method cannot be directly used to simulate thermal transport of metals at low 

temperatures. 

3) As this method is realized in the ab initio molecular dynamics simulation, the simulation 

results will depend on the pseudopotential used. 

4) The computation costs for the NEAIMD simulations are much higher than that of normal 

density functional theory (DFT) simulations. 

 

9.4 Future work 

 

With the theory and computational capacity improving, the NEAIMD-EPO method shows the 

potential in investigating alloys, semiconductors, metal/non-metal interfaces, and even directly 

simulating nano-devices in the future. It will be promising in theoretical study of the 

nanotechnology. 
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