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Abstract 

28 mm Metal-on-Metal (MoM) and Metal-on-Ceramic (MoC) Total Hip Replacements were 

articulated to 1 million cycles under both Standard Gait and Microseparation conditions. 

The hip simulator was fully instrumented with a three-electrode electrochemical cell to 

facilitate monitoring of corrosive degradation. The estimated volume loss from corrosion at 

the bearing surface was seen to increase by nearly an order of magnitude for both devices, 

representing as much as 17 % of total degradation. Anodic current transients also displayed 

near order of magnitude increases in the peak current for both bearing couples. An adverse 

loading scenario could cause as much as an order of magnitude increase in the metallic ions 

released into the joint capsule as well as an increased volume of wear debris. 

Keywords: Total Hip Replacement, Tribocorrosion, Hard-on-Hard, Metal Ion Release 

 

1. Introduction 

The use of Metal-on-Metal (MoM) total hip replacements (THRs) has taken a rapid 

downturn in recent years following higher than acceptable failure rates [1]. Initially 
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promised as a low-wear option, the poor performance has largely been attributed to soft 

tissue reactions caused by metallic debris and ions released into the joint [2]. Traditionally 

joint replacement devices are benchmarked against other designs using laboratory 

simulators, in order to ascertain a rate of material loss during articulation through 

gravimetric assessment [3]. This wear rate does not necessarily capture all the relevant 

information regarding the prediction of in-vivo performance. Initial simulator studies for 

Metal-on-Metal devices displayed much lower wear rates compared to the ƐŽ ĐĂůůĞĚ ͚ŐŽůĚ 

ƐƚĂŶĚĂƌĚ͛ MĞƚĂů-on-Polymer (MoP) bearings [4ʹ7]. Analysis of the wear debris produced in 

simulators also seemed to suggest MoM bearings would be less likely to cause wear induced 

osteolysis and aseptic loosening [8]; both of which are main causes for revision in MoP 

THRs. These initially promising results from simulator studies lead to MoM devices being 

targeted as a longer-term solution for younger and more active patients. These results did 

not translate to good in-vivo performance for all patients however.  

More recent studies have begun to explore the use of electrochemical analysis of 

prostheses during hip simulation [9ʹ13]. Most metallic biomaterials form a passive oxide 

film spontaneously in air which protects the alloy from corrosive degradation [14]. 

Articulation of a metal surface can damage this film and expose the bulk alloy to the 

electrolyte, accelerating both mechanical and chemical material loss [15]. Our recent work 

has shown that the degradation of MoM Total Hip Replacements (THRs) is a complex mix of 

mechanical and corrosive phenomena [11,12,16]. First proposed by Watson et al. [15] in 

relation to a sliding tribological contact, the total material loss was shown to be able to be 

expressed as pure wear (W0), pure corrosion (C0) and their synergistic effects (S). The 

synergies can be further broken down to corrosion-enhanced wear (dWc) and wear-

enhanced corrosion (dCw), as shown in Equation 1. 
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T = W0 + C0 + S                (1) 

S = dWc + dCw       

By utilising a three-electrode electrochemical cell integrated into a hip simulator, shifts in 

the Open Circuit Potential (OCP) of the THR can provide qualitative information on reactions 

taking place at the articulating surface [10]. Linear Polarisation Resistance (LPR) 

measurements have also facilitated measurement of the corrosion current of the device 

which enables, through FaradaǇ͛Ɛ LĂǁ͕ ƚŚĞ ŵĂƚĞƌŝĂů ůŽƐƐ ĚƵĞ ƚŽ ĞůĞĐƚƌŽĐŚĞŵŝĐĂů ĐŽƌƌŽƐŝŽŶ ƚŽ 

be quantified [12,13,17]. This is a direct measure of the current produced resulting from 

metal ion release at the implant surface. The current increases as more extensive 

metal/metal contact occurs. Hesketh et al. [13] reported a reduction of current for 36mm 

diameter Metal-on-Metal bearings during the commonly recognised bedding-in phase. This 

may also be attributed to the formation of a proteinaceous tribofilm on the surface [18,19]. 

An increased focus on the articulation interface has revealed the importance of these 

tribochemical reaction layers which form on the metal surface as a result of protein 

interaction with the surface during sliding [20,21]. The ability to assess how a device with a 

metal surface will perform in-vivo needs a greater understanding of the interaction between 

the tribology and electrochemistry. Electrochemical instrumentation can therefore provide 

valuable insight into the degradation at the tribological interfaces of joint replacements. 

Such methods provide a quantitative in-situ and in-real time assessment of corrosive 

material loss. 

Of increasing interest within the community is the effect of adverse loading conditions and 

daily living activities on the degradation of implanted devices. It is becoming recognised that 

long-term studies under a standard ISO twin-peak cycle [22] are not sufficient to replicate 
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their daily use in-vivo. In addition, some devices may be sensitive to adverse loading 

conditions such as high inclination angle and/or microseparation.  

Microseparation occurs when the centre of rotation of both the femoral head and 

ĂĐĞƚĂďƵůĂƌ ĐƵƉ ŵŽǀĞ ƌĞůĂƚŝǀĞ ƚŽ ĞĂĐŚ ŽƚŚĞƌ ĚƵƌŝŶŐ Ă ĐǇĐůĞ͕ ƚǇƉŝĐĂůůǇ ĚƵƌŝŶŐ ƚŚĞ ͚ƐǁŝŶŐ ƉŚĂƐĞ͛͘ 

As illustrated in Figure 1 this can result in a collision when the components re-engage at 

͚ŚĞĞů ƐƚƌŝŬĞ͕͛ ǁŚŝĐŚ ƌĞƐƵůƚƐ ŝŶ Ă ŵƵĐŚ ŵŽƌĞ ƐĞǀĞƌĞ ĐŽŶƚĂĐƚ͘ MŝĐƌŽƐĞƉĂƌĂƚŝŽŶ has been shown 

to increase the wear rates of 28 mm devices three to four-fold over the first and second 

million cycles, commonly thought to be a bedding-in period [23,24]. MoM devices were 

initially marketed as low-wear devices compared to MoP couples, with orders of magnitude 

lower reported simulator wear rates [4]. A three to four-ĨŽůĚ ŝŶĐƌĞĂƐĞ ŝŶ MŽM ͚ǁĞĂƌ͛ ŵĂǇ 

therefore be significant, but is still orders of magnitude lower than typical values reported 

for MoP devices. Gravimetric wear does not fully capture the failure mechanisms of MoM 

bearings. There may therefore be a shift in the importance of the degradation mechanisms, 

and the path to failure for Hard-on-Hard prostheses. It is the aim of this study to examine 

the electrochemical degradation from the metallic bearing surface of total hip replacements 

articulating against metal (MoM) and ceramic (MoC) counterfaces under standard and 

adverse simulation methods. 
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Figure 1 - Schematic Illustration of Microseparation occurring during ƚŚĞ ͚ƐǁŝŶŐ ƉŚĂƐĞ͛ ŽĨ Ă 

walking cycle. 

2. Material and Methods 

2.1. Hip Simulation 

Two 28 mm diameter Hard-on-Hard THR bearing combinations were tested to one million 

cycles in a ProSim Deep Flexion Hip Simulator (Simulation Solutions, UK). High-Carbon (HC) 

Cobalt Chromium Molybdenum alloy (CoCrMo) femoral heads were articulated against HC 

CoCrMo acetabular cups for the Metal-on-Metal combination. For Metal-on-Ceramic (MoC) 

components from a different manufacturer were used with Low-Carbon (LC) CoCrMo 

femoral heads articulated against Biolox®delta Aluminum Oxide ceramic cups. An example 

of the components can be seen in Figure 2. 

The MoC couple was selected in order to simplify the contact with only one 

electrochemically active metallic surface under sliding. In both instances, cups were fixed in 

place using Ti6Al4V acetabular shells which were cemented into the hip simulator fixture 

using laboratory grade Poly(Methyl Methacrylate) (PMMA) bone cement. The femoral heads 

were held in place using a fixture created from high compressive strength resin (Torlon 
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4203). All other fixtures were made from polyetheretherketone (PEEK) in order to 

electrically isolate the bearings from the simulator. The bearing combinations were tested 

to one million cycles at 1 Hz under a twin-peak loading profile detailed in Table 1 [13]: 

 

Figure 2 ʹ Image of unworn 28 mm diameter (left to right) CoCrMo Femoral head, CoCrMo 

Acetabular Liner and Biolox®delta Ceramic Acetabular Liner. 

 

Table 1 ʹ Twin-peak profile parameters for both Standard Gait and Microseparation Cycles 

 

Heel-strike 

& Toe-off 

Load 

(N) 

Swing 

Phase Load 

(N) 

Flexion / 

Extension 

(°) 

Internal / 

External 

Rotation 

(°) 

Swing-phase 

Separation 

(mm) 

Standard Gait 

(SG) 3,000 300 +30 / -15 ±10 - 

Microseparation 

(MS) 3,000 300 +30 / -15 ±10 0.8 

 

TǁŽ ƌĞƉĞĂƚƐ ĨŽƌ ĞĂĐŚ ĐŽŶĚŝƚŝŽŶ ǁĞƌĞ ĐŽŶĚƵĐƚĞĚ ŐŝǀŝŶŐ ĂŶ ͚Ŷ͛ ǀĂůƵĞ ŽĨ Ϯ͘ The 

microseparation was affected by applying a negative load during the swing phase, limited to 

0.8 mm separation of the centres of rotation of each component. The lubricant used was 

Foetal Bovine Serum (FBS) diluted to 17 gL-1 total protein content [25] with phosphate 

buffered saline. Sodium Azide (0.03 % w/v) was added in order to retard bacterial growth 

during the test. Every 333,000 cycles the test was paused in order to change the serum. The 
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serum was drained and the station was rinsed three times with deionised water before 

filling again with fresh serum. 

2.2. Electrochemistry 

The hip simulator was instrumented with a three-electrode electrochemical cell to facilitate 

in-situ measurements of corrosive degradation. For the Metal-on-Metal bearing 

combination, a connection was made to the rear of the acetabular shell, forming the 

working electrode (WE). For the Metal-on-Ceramic combination, the working electrode 

connection was taken from the femoral head, inside the modular taper connection. The 

working electrode therefore compromised all metallic components which remained in 

contact and were exposed to the lubricant during sliding. The cell was completed using a 

combination Silver/Silver Chloride (Ag/AgCl) reference electrode and platinum (Pt) counter 

electrode. All tests were completed using a PGSTAT101 (Metrohm Autolab, Netherlands) 

Potentiostat. Care was taken to seal connections and taper junctions with silicone sealant in 

order to prevent them coming into contact with the lubricant. Any electrochemical 

measurements should therefore be solely concerned with the sliding interface at the 

bearing surface. A schematic representation of the hip simulator test cell can be seen in 

Figure 3. 



8 

 

Figure 3 - Schematic representation of the Hip Simulator test cell. 

The Open Circuit Potential (OCP) was monitored continuously over the course of each test 

to give a semi-quantitative assessment of the reactions taking place on the exposed surface 

of the working electrode. Every 10,000 cycles the resistance to polarisation (Rp) was 

determined using Linear Polarisation Resistance (LPR, ±25 mV vs. OCP at 1 mVs-1). Examples 

of fitted LPR curves to determine the slope and thus Rp can be seen in Figure 4. The 

corrosion currents (Icorr) were estimated using the Stern-Geary equation (Equation 2) [26]. 

This was done in order to quantify the material degradation as a result of corrosion. The 

Tafel constants ;ɴĂ ĂŶĚ ɴĐͿ were both assumed to be 120 mV/decade throughout the test as 

per the qualification set previously by Hesketh et al. [12,27].  

Icorr с ɴaɴc / 2.303Rp;ɴa н ɴc)      (2) 
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Figure 4 ʹ Example LPR curves for Static and Sliding conditions showing the fitted Rp slope. 

Estimates for Icorr were then integrated with respect to time in order to give a total charge 

transfer (Q) (Equation 3). The charge transfer was then used to estimate a mass loss as a 

result of corrosive phenomena at the working electrode surface using FĂƌĂĚĂǇ͛Ɛ LĂǁ 

(Equation 4). Due to the assumptions commonly made for pure metals there is some 

ƵŶĐĞƌƚĂŝŶƚǇ ŝŶ ĂƉƉůǇŝŶŐ FĂƌĂĚĂǇ͛Ɛ LĂǁ ƚŽ ĂŶ ĂůůŽǇ͘ AƐ CŽCƌMŽ ŚĂƐ ƚŚƌĞĞ ŵĂŝŶ ĐŽŶstituent 

elements, each with different molar masses and half-cell valence numbers, interpretation of 

the data can be critical. A weighted average molar mass (59.2 g/mol) and valence number 

(2.35) was used based on the approximate percentage alloy composition (Co у 62.5 %, Cr у 

28 %, Mo у 6 %). This assumes a stoichiometric release of ions from the working electrode 

surface, which may not be the case. Upper and lower error bars (shaded regions) in Figures 

7 and 8 therefore represent the values for Cobalt (58.9, 2) and Chromium (51.99, 3) 

respectively, to account for possible preferential release of those elements. 

ܳ ൌ   ௧ݐ݀ ܫ     (3) 

 

Where: Q = Charge Transfer (C) 

 Icorr = Corrosion Current (A) 

 t = time (s) 
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m = MQ / nF         (4) 

 

Where: m = Mass loss from oxidation 

 M = Atomic Mass (g/mol) 

 N = Valence number 

 F с FĂƌĂĚĂǇ͛Ɛ CŽŶƐƚĂŶƚ ;ϵϲ͕ϰϵϬ CͬŵŽůĞͿ  

 

Intermittent Potentiostatic Polarisation measurements were taken every 10,000 cycles in 

between LPR sweeps. The system was polarised to +50 mV with reference to the OCP for 10 

seconds and the resultant anodic current transient was sampled at high frequency (100 Hz). 

An analogue voltage signal was also taken from the hip simulator load cell and sampled at 

the same rate by the potentiostat. The resultant current was governed by the Butler-Volmer 

equation (Equation 5) and this enabled monitoring of the depassivation/repassivation 

kinetics during a cycle in an attempt to link the tribology of the cycle to the 

electrochemistry. 

ܫ  ൌ ܫ  ቄ݁ݔ ቀఈೌிఎோ் ቁ  െ ݔ݁ ቀെ ிఎோ் ቁ ቅ       (5) 

 

Where: I = Current as a result of applied potential (A) 

  ɲa = Anodic charge transfer coefficient 

  ɲc = Cathodic charge transfer coefficient 

  ɻ = Applied overpotential (V) 

  R = Ideal Gas Constant 

  T = Temperature (Kelvin) 

 

2.3. Total Volume Loss  

For the Metal-on-Ceramic series an attempt was made to determine the overall volume loss 

from the components, in order to estimate the proportion of material loss from the bearing 
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surface as a result of corrosion. This was not undertaken for the Metal-on-Metal series in 

order to study the formation of tribofilms on the implant surface, which may have been 

affected by the cleaning procedure. Two approaches were taken; gravimetric loss and 

surface form profiling.  

For gravimetric assessment, the components were weighed before the test on an analytical 

balance with ± 0.01 mg precision (Mettler Toledo XPE205) in a controlled atmosphere. After 

testing the components were subjected to the cleaning regime described in ISO14242-2 [28] 

and weighed again. Each component was weighed in rotation until five readings within 0.1 

mg were obtained. The difference between the two gravimetric points was then taken as 

the material loss as a result of articulation during the test. 

For surface form profiling a sub-micron accurate Coordinate Measuring Machine (CMM, 

Mitutoyo Legex 322) was used to map the surface by taking single points within 0.5 mm of 

each other. These points on the surface were used to generate an XYZ coordinate cloud and 

this was imported into commercially available RedLux Sphere Profiler software. By analysing 

damage noted on the surface, an estimate for the volume loss during sliding could be made. 

3. Results 

3.1. Open Circuit Potential (OCP) 

Figures 5 and 6 show the OCP trends over one million cycles for Metal-on-Metal and Metal-

on-Ceramic bearings respectively. The Metal-on-Metal bearings stabilised to an initial noble 

potential of approximately -50 to +50 mV for each SG 1 and SG 2 respectively during the 

settle period. Upon the initiation of sliding under standard gait, this potential immediately 

shifted cathodically to an initial value of approximately -200 to -300 mV. This cathodic shift 

is commonly seen in tribocorrosion as a result of the removal of protective surface oxides; 
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ƐŽ ĐĂůůĞĚ ͞ĚĞƉĂƐƐŝǀĂƚŝŽŶ͟. The OCP under standard gait gradually shifted more noble over 

the course of the experiment, at points almost reaching pre-sliding values, and ending at 

approximately -200 mV after one million cycles for both implant combinations. Once sliding 

had stopped a shift in the anodic direction (i.e. more noble) was observed for all Metal-on-

Metal bearings, suggesting a decrease in corrosion. 

 

Figure 5 ʹ Open Circuit Potential vs. Ag/AgCl for 28 mm MoM hip joints over one million 

cycles. 

For the MoM bearings under microseparation (Figure 5), one bearing displayed a much 

greater cathodic shift to approximately -500 mV and remained low throughout the course of 

the test. This bearing also displayed large spikes and transient behaviour when compared to 

standard gait. The second bearing subjected to microseparation also displayed transient 

behaviour although appeared more stable than the first repeat. Upon initiation of sliding 

this device shifted to approximately -350 mV and remained relatively stable there over the 
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first 333,000 cycles. After the serum change however the observed OCP was more noble at 

between approximately -500 and -250 mV. The OCP then began to shift more noble to 

approximately +100 mV and remained stable there. Upon the second serum change at 

666,000 cycles lower OCP values of between -50 and -300 mV were reported and also 

shifted to as low as -600 mV before the end of the test. 

 

Figure 6 ʹ Open Circuit Potential vs. Ag/AgCl for 28 mm MoC hip joints over one million 

cycles. 

For bearings with a ceramic acetabular cup, shown in Figure 6, the OCP for a standard gait 

displayed different trends compared to the Metal-on-Metal bearing. All bearings displayed a 

much more negative initial static potential when compared to MoM devices, of 

approximately -350 to -450 mV. Upon initiation of sliding there was a small cathodic shift 

but for standard gait the gradual ennoblement was much more rapid, reaching relatively 



14 

noble OCP values of 0 mV for one bearing and approximately -100 mV for the second. This 

occurred over 333,000 cycles and at serum changes the initial low OCP was restored during 

a brief static period before sliding. Once sliding was initiated again however the OCP 

immediately began to shift towards noble values again. 

Under microseparation a small cathodic shift in OCP was also noted upon sliding. After this 

the OCP shifted slightly more noble than pre-sliding values, but remained lower than 

standard gait over the course of the test between approximately -200 and -350 mV. 

3.2. Linear Polarisation Resistance 

The cumulative volume loss as a result of corrosion at the bearing surface, estimated from 

Polarisation Resistance (RpͿ ĂŶĚ FĂƌĂĚĂǇ͛Ɛ LĂǁ͕ ĐĂŶ ďĞ ƐĞĞŶ ŝŶ Figures 7 and 8. For Metal-on-

Metal bearings under standard gait the contribution of corrosion to overall material loss 

during sliding was estimated at 0.029 and 0.056 mm3. The rate of material loss also 

remained constant over the test. 
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Figure 7 ʹ Estimated cumulative volume loss as a result of corrosion at the bearing surface 

for 28 mm MoM hip joints over one million cycles. Shaded areas represent possible 

preferential release of Cobalt or Chromium ions. 

Under microseparation the final values for corrosive material loss were found to be much 

higher at 0.24 and 0.23 mm3. The rate of material loss also changed regularly with the 

bearing undergoing periods of higher corrosion current (Icorr) values, resulting in spikes in 

the cumulative volume loss. A good overall correlation was noted between the two samples. 
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Figure 8 ʹ Estimated cumulative volume loss as a result of corrosion at the bearings 

surface for 28 mm MoC hip joints over one million cycles. Shaded areas represent possible 

preferential release of Cobalt or Chromium ions. 

For Metal-on-Ceramic bearings, shown in Figure 8, the overall material loss as a result of 

corrosion was lower than that seen in the Metal-on-Metal devices at 0.013 and 0.017 mm3 

under standard gait. Under microseparation the bearings also displayed higher rates of 

degradation ending at 0.094 and 0.049 mm3. During the first 333,000 cycles one bearing 

displayed much lower corrosion rates than had been observed under standard gait. This was 

thought to have been an issue related to the reference/counter electrode used and rates 

were immediately higher when the serum was changed and the electrode was replaced. The 

corrosion rates also appeared much more stable under microseparation than had been seen 

for Metal-on-Metal bearings with more consistent corrosion current values (Icorr). 
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3.3. Anodic Polarisation 

Typical anodic current transients for both bearing combinations can be seen in Figures 9 and 

10. By employing a slight overpotential on the working electrode (+50 mV vs. OCP) the 

resultant net anodic current flow between the working and reference electrodes is a 

measure of the depassivation and repassivation of the exposed surface. During sliding 

therefore, depassivation and accelerated corrosive degradation is observed as increased 

anodic current. By sampling the anodic current and load at a high frequency, it is possible to 

examine the depassivation of the surface as a result of interaction between the surfaces at 

the sliding interface over a cycle. The shape of current transients as well as current values 

varied over the course of the test. The transients displayed in Figures 9 and 10 represent 

typical shapes and values that were noted consistently over the full million cycles. 

Clear periodicity, a repeating pattern in the anodic transient, was consistently noted across 

all tests; suggesting a link between the tribology and corrosive loss. Under standard gait a 

similar transient was see for both metallic and ceramic acetabular components. A twin-peak 

current, similar to the loading profile was established. Both transients displayed a base level 

of current, 6 ʹ 7 µA for MoM and 1 ʹ 2 µA for MoC. Peaks in current were noted after 

unloading events, with the larger peak occurring after toe-off. Peaks in current of 11 µA 

were noted for MoM and 3 µA for MoC.  

Under microseparation Metal-on-Metal bearings displayed peak currents of 100 µA and 

above after the second load peak (toe-off); an order of magnitude higher than standard gait. 

The current then decayed back down to a base level of approximately 10 µA with a slight 

peak before or upon the re-application of load. The shape of the Metal-on-Ceramic transient 
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was very different, with peaks occurring after toe-off and upon heel-strike. The larger of the 

peaks was also an order of magnitude higher than standard gait (approximately 40 µA) 

although occurred at heel strike. A base level current was also observed, although the decay 

to this base level was much more rapid than for MoM bearings. 

 

Figure 9 ʹ Typical anodic current transients (+50 mV vs. OCP) for 28 mm MoM hip joints 

articulated at 1 Hz under Standard Gait (a) and Microseparation (b). 
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Figure 10 ʹ Typical anodic current transients (+50 mV vs. OCP) for 28 mm MoC hip joints 

articulated at 1 Hz under Standard Gait (a) and Microseparation (b). 

3.4. Total Material Loss 

The results of the gravimetric analysis for the Metal-on-Ceramic femoral heads can be seen 

in Table 2. After one million cycles under Standard Gait gravimetric material loss of the 

femoral heads was recorded at 1.27 and 2.96 mg. For Microseparation mass losses of 6.09 

and 4.40 mg were noted. A density of 8.29 g/cm3 for CoCrMo alloy was taken to convert 

values to volume losses [29]. Comparing the volume loss to the estimated corrosive loss it is 

possible to obtain values of 4.76 and 8.44 percentage corrosive loss under Standard Gait 

and as high as 17.7 percent under Microseparation. Due to an apparent electrode issue 

during the first 333,000 ĐǇĐůĞƐ ĨŽƌ ͚MŝĐƌŽƐĞƉĂƌĂƚŝŽŶ ϭ͛ ƚŚĞ ĨŝŶĂů ƉĞƌĐĞŶƚĂŐĞ ǀĂůƵĞ ǁas not 

taken, although corrosive rates appeared similar over the remainder of the test. On the 

acetabular cup side, no significant material loss was noted for the ceramic cups. In two 
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cases, under both standard gait and microseparation, the ceramic inserts displayed a mass 

gain after one million cycles. 

 

Table 2 ʹ Gravimetric Mass Loss for 28 mm MoC Femoral Heads after one million cycles 

under Standard Gait and Microseparation 

 

Gravimetric 

Mass Loss 
Volume 

Estimated 

Corrosive Loss 

Percentage 

Corrosion 

(mg) (mm3) (mm3) % 

Standard Gait 
1.27 0.154 0.013 8.44 

2.96 0.357 0.017 4.76 

Microseparation 
6.09 0.735 - - 

4.40 0.531 0.094 17.70 

 

Images produced by the form analysis software (RedLux Sphere Profiler) can be seen in 

Figure 11. Under standard gait a wear patch was noted slightly off centre on the pole of the 

femoral head due to the vertical orientation of the component in the ProSim Deep Flexion 

hip ƐŝŵƵůĂƚŽƌ͘ UŶĚĞƌ MŝĐƌŽƐĞƉĂƌĂƚŝŽŶ Ă ĐůĞĂƌ ͞ƐƚƌŝƉĞ͟ ǁĂƐ ŶŽƚĞĚ. After only 1 million cycles 

the analysis procedure of the RedLux software was not sufficient to accurately determine 

the small volume losses from the samples. The Standard Gait samples were estimated to 

have lost over twice as much as the Microseparation samples, contrary to the other 

techniques used. This technique may be more reliable for longer term tests with more 

clearly developed wear scars. 
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Figure 11 ʹ Form Profile analysis for metallic Femoral Heads articulated against a ceramic 

counterface after one million cycles of Standard Gait (a) and Microseparation (b). 

4. Discussion 

4.1. Standard Gait vs. Microseparation 

As discussed, the industry and research community are becoming increasingly interested in 

the effects of adverse loading situations and daily living activities on the performance of 

total hip replacements [23,24,30,31]. A continuous simple twin-peak profile may not be the 

best method for assessing these devices before they are implanted in patients. The use of a 

three electrode electrochemical cell in this study has highlighted how the pathways to 

material loss from the device may change by applying an adverse loading situation. 

Moving from a Standard Gait profile to the application of 0.8 mm of Microseparation lead to 

differences in the OCP response and a significant increase in the estimated corrosive loss 

across both bearing couples. Comparing bearings in the Metal-on-Metal series, corrosive 

volume loss was estimated at as low as 0.029 mm3 under Standard Gait and 0.23-0.24 mm3 

under Microseparation. This represents a near order of magnitude increase in the volume of 

corrosive material loss directly from the bearing surface. Under the MoC series similar 
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patterns were observed with increases from 0.013 and 0.017 mm3 to 0.09 mm3. The low 

value of 0.047 mm3 for the first MoC microseparated bearing is likely to be due to an 

electrode issue within the first 333,000 cycles, and thus the true material loss may have 

been higher. 

Very few previous studies have examined the gravimetric material loss from 28 mm MoM 

bearings with the application of microseparation. One study demonstrated a non-significant 

increase in wear over the first million cycles [23]. After the initial bedding-in period the wear 

rate under microseparation increased, resulting in a 2.6 fold increase in total gravimetric 

material loss after five million cycles. Another study reported a three-to four fold increase 

over the first two million cycles, not separating the data for the initial million cycles [24]. 

These increases have previously been attributed to the breakdown of lubrication caused by 

the much more severe contact occurring at heel-strike, where the femoral head may also 

connect with the edge/rim of the acetabular cup [32]. Contact pressures as a result of a 

smaller 0.25 mm of microseparation have been estimated through modelling to be as high 

as 972 MPa for a 28 mm MoM bearing  and 672 MPa for MoC [33,34]. The tribological 

contact is also likely to be very different, moving from Standard Gait sliding with sub-100 

MPa contact pressures to more of a cutting action when meeting the rim under 

microseparation. This is ŚŝŐŚůŝŐŚƚĞĚ ǁŝƚŚ ƚŚĞ ƚǇƉŝĐĂů ͚ƐƚƌŝƉĞ ǁĞĂƌ͛ ƉĂƚƚĞƌŶ ŽďƐĞƌǀĞĚ ŝŶ FŝŐƵƌĞ 

11. This stripe pattern is typical of edge or rim loading and normally noted in Ceramic-on-

Ceramic devices [35,36]. This action results in a more aggressive depassivation of the 

surface, as well as an increase in the generation of wear debris, resulting in a significantly 

higher rate of corrosion and therefore a higher rate of release of metallic ions directly at the 

bearing surface. 
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This is also demonstrated in the anodic current transients directly measured by applying a 

small overpotential to the bearing. On moving from Standard Gait to Microseparation, there 

is not only a change in the transient shapes for MoM and MoC, we also see an order of 

magnitude increase in peak currents. 

The increase in the corrosive material loss represents a shift in the importance of corrosive 

degradation taking place at the bearing surface. As a result of moving from Standard Gait to 

Microseparation the estimated contribution of corrosion to the total material degradation 

moves from 4 ʹ 8 % of the total to as much as 17 % for the Metal-on-Ceramic series. Even 

larger corrosive percentage contribution has been demonstrated under boundary lubricated 

contacts in simple reciprocating tribometer studies [37]. This shift is not captured by a 

simple gravimetric wear rate. 

Saikko [30] demonstrated that under adverse loading conditions the gravimetric wear rate 

was not able to show a difference in performance of simulator tested hard-on-hard bearings 

unless the testing conditions passed a so-ĐĂůůĞĚ ͚ĞŶĚƵƌĂŶĐĞ ůŝŵŝƚ͛ ĨŽƌ ƚŚĞ ĚĞǀŝĐĞ͘ ĚĞ VŝůůŝĞƌƐ 

et al. [31] have also shown evidence of material degradation in hard-on-hard bearings with 

AgCrN coatings, despite no visible damage or gravimetric mass loss. Changes of the sliding 

regime to anything representing less than ideal conditions (i.e. adverse loading) could have 

large implications on the material degradation as a direct result of corrosion. 

 

4.2. Metal-on-Metal vs. Metal-on-Ceramic 

The use of Metal-on-Ceramic bearings has never been prevalent within the UK. Even 

following the rapid decline in Hard-on-Hard devices with a metal surface only 11 MoC 

devices were implanted in 2014 compared to 1,096 MoM devices [38]. The study of how this 
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contact behaves in a hip simulation may be useful however as the contact is simplified with 

only one active metallic surface. The large titanium acetabular shell is also removed from 

the electrochemical cell. A significant portion of tribometer studies rely on a ceramic 

counterface in order to study the depassivation of a single active metallic surface, and thus 

can be used to draw comparisons with the Metal-on-Ceramic series examined in the present 

study. 

The Open Circuit Potential response of the Metal-on-Ceramic bearings for example was very 

different to the Metal-on-Metal series. Compared to the more typical response of an 

electrochemically instrumented sliding couple, the MoC series displayed an initial low OCP 

with a small cathodic shift upon the initiation of sliding. The OCP then displayed the same 

shift toward more noble values observed in the MoM bearings although was much more 

rapid. This is not a typical response seen in tribometer studies, which display sustained OCP 

drops on the initiation of sliding, despite being a similar material combination. This suggests 

the difference is system related which may have an impact on modern tribocorrosion 

models. These models have often been derived from base assumptions made for boundary 

lubricated tribometer contacts [39,40]. The model proposed by Cao et al. [41] for example 

predicts that both Metal-on-Metal and Metal-on-Ceramic spherical contacts within a hip 

simulator would display a degradation regime dominated by corrosive loss under a twin-

peak profile. This does not appear to be the case in the present study, or for 36 mm 

diameter Metal-on-Metal contacts examined previously by Hesketh et al. [13].  

The Metal-on-Ceramic series followed similar trends to the Metal-on-Metal series with 

significant increases in estimated corrosive material loss and in peak anodic currents under 

microseparation. The shape of the anodic currents changed under microseparation 
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however. Also overall the observed currents were lower for the MoC series. The lower 

currents may be explained simply by the fact that only one active surface is present in the 

contact. The values for corrosion current (Icorr) and the net anodic current transient are the 

overall currents measured through the electrochemical cell. With only one active surface 

the area of depassivated metal is less and there may have been similar current densities 

between the experiments. Differences in the tribological conditions may have also affected 

the corrosive degradation. Nominally, the contact between the two bearing combinations is 

similar, with similar values for radial clearance, initial surface roughness and thus lubrication 

regime. However the OCP trends for the MoM and MoC series, the latter of which did not 

display a typical cathodic tribocorrosion shift, suggests a difference in the effect of 

tribological conditions on the electrochemical cell. Further work is needed to elucidate 

these mechanisms. 

Also of importance in the hip simulator cell is the presence of the titanium acetabular shell, 

which would not be a concern in the discussed tribometer studies. Under the Metal-on-

Metal contact the sliding interface was electrically connected to the exposed surface of the 

titanium shell through the cup liner. This connection is not present for the Metal-on-

Ceramic series as the ceramic liner insulated the metal femoral head from the shell. The 

MoM series therefore represents a mixed metal system, whereas the electrochemical 

analysis of the MoC series is purely concerned with the CoCrMo femoral head. Titanium is a 

much more noble metal than CoCrMo and connected to the sliding interface may polarise 

the depassivated wear scar, forming a galvanic cell and increasing corrosion. Bryant et al. 

[42] demonstrated this phenomena by utilising a titanium ring connected to the working 

electrode and exposed to the lubricant during fretting at the stem/cement interface. Of 
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importance is also the fact that the MoC series came from a different manufacturer and was 

a low carbon CoCrMo alloy. 

 

5. Conclusions 

• Under Microseparation the percentage contribution of electrochemical degradation 

to the total degradation of a metallic surface in a 28 mm diameter hip replacement 

was seen to increase. 

• Both the corrosion current and anodic current transient measured during 

articulation for both Metal-on-Metal and Metal-on-Ceramic hip joints increased by 

approximately an order of magnitude under Microseparation conditions versus 

Standard Gait. 

• Similar patterns in the anodic current transients for Metal-on-Metal and Metal-on-

Ceramic hip joints under Standard Gait suggests a similar pathway to depassivation 

of the surface. The smaller currents measured for Metal-on-Ceramic may have been 

due to only one active surface in the interface. 

• Adverse loading conditions may change the pathway of material loss during sliding 

for total joint replacements compared to Standard Gait simulation. For the success 

of the prosthesis, the dominating mechanism of loss needs further investigation. 

 

The current use of pre-clinical simulator testing does not fully capture the degradation 

mechanisms of metallic surfaces in a sliding contact. Whilst great progress is being made to 

ĞǆĂŵŝŶĞ ͚AĚǀĞƌƐĞ LŽĂĚŝŶŐ͛ ĂŶĚ ͚DĂŝůǇ LŝǀŝŶŐ͛ ƐĐĞŶĂƌŝŽƐ͕ Ă ƐŝŵƉůĞ ŐƌĂǀŝŵĞƚƌic wear rate does 
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not distinguish their effect on corrosive material loss. The present study has demonstrated 

that moving to a microseparation loading profile greatly shifts the pathway to degradation, 

resulting in a greater percentage contribution of corrosion to total material loss. This may 

arguably be more important to the indications for revision commonly associated with MoM 

THRs (ARMD, pseudotumor, high blood/urine ion levels) than the gravimetric wear rate. 

Tribocorrosion must be accounted for in pre-clinical assessment of new devices. 
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