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Abstract: Bulk nanostructured magnesium alloy AZ31 has been produced by spark plasma 

sintering at four different temperatures from 350 to 450 °C. The effect of sintering 

temperature on microstructural evolution and compression behaviour was studied in detail. It 

was concluded that the sample consolidated at 400 °C exhibited the highest strength. Higher 

sintering temperature (450 °C) improved the compressive strain of the bulk sample but at the 

sacrifice of strength. However, samples consolidated at 350 °C displayed brittle behaviour 

with low strength. All consolidated samples had a bimodal microstructure with 

nanocrystalline and coarse grains. The nanocrystalline microstructure formed by cryomilling 

was retained after consolidation and a maximum microhardness was approximately 150 HV. 

The bulk samples consolidated at 400 °C with an average grain size of 45 nm showed 

exceptional average true compressive yield strength of 400.7 MPa, true ultimate compressive 

strength of 499.7 MPa, which was superior to published results for most of conventional 

magnesium alloys. Although nanostructured materials usually have high strength but poor 

ductility, the material in this study exhibited high strength and a true compressive strain of 

0.036. 

Keywords: Magnesium alloy; Cryomilling; Spark plasma sintering; Hall-Petch effect; Grain 

refinement 
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1 Introduction 

Magnesium has low density and a high specific stiffness and strength, and is therefore 

an outstanding candidate for weight critical structural applications [1]. However, the low 

ductility and relatively poor mechanical strength compared to most light aluminium alloys 

limit the applications of magnesium alloys [2]. Grain refinement is a very effective route to 

improve the strength and ductility as a result of the Hall-Petch effect [3]. This is particularly 

true for magnesium, having a hexagonal close packed structure, which exhibits a higher Hall–

Petch coefficient (ky) than face centred cubic metals, such as aluminium (magnesium: ky=279 

MPa �m−1/2 and aluminium: ky=68 MPa �m−1/2) [4].  

Grain refinement is an effective way to achieve high strength magnesium alloys and 

advanced processing methods to achieve this goal were reviewed by Pan et al. [5]. To 

produce magnesium alloys with ultrafine-grained or even nanocrystalline microstructure, 

severe plastic deformation (e.g. equal channel angular pressing, high-pressure torsion, multi-

directional forging and mechanical milling) has been applied to magnesium alloys [5-15]. For 

example, a Mg–1.78Zn–0.89Mn alloy with average grain size of 700 nm was produced via 

two-step equal channel angular pressing process [16].   

  Recently, Kim et al. [17, 18] reported an exceptionally strong AZ31 alloy produced 

by high-ratio differential speed rolling that resulted in an ultrafine-grained structure (average 

grain size of 0.6 µm) giving a yield stress of 382 MPa. Razavia et al. [15] reported that the 

grain size of AZ31 produced by ECAP could be reduced to 350 nm, giving an alloy with a 

yield strength of 385 MPa and ultimate tensile strength of 455 MPa with 13% ductility, which 

is the highest reported combined strength and ductility for an AZ31 alloy. Meng, Lu, Trividy 

and co-authors [19-21] found that an ultrafine-grained or nanocrystalline microstructure 

could be obtained in precipitate-hardened magnesium alloys via severe plastic deformation 

processes due to the combined high deformation and significant pinning effect from 

precipitates. With addition of 0.46% CaO, the strength of ultrafine-grained AZ31-CaO 

produced by 6 passes of equal channel angular pressing was enhanced without the loss of 

ductility [22]. Furthermore, Lee, Morisada and co-authors [23, 24] found that an ultrafine-

grained or nanocrystalline microstructure could be obtained in Mg-based composites via 

friction stir processing due to effective pinning effect from reinforcing particles. In contrast, 

for low alloy content, such as in commercially pure magnesium and alloys such as AZ31, it is 

a challenge to achieve even an ultrafine-grained microstructure, let alone a nanocrystalline 
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structure due to the rapid growth kinetics of the single-phase grains. Nevertheless, Chang et 

al. [25] reported that they managed to produce a nano-grained microstructure in AZ31 alloy 

with an average grain size of 85 nm by using two-pass friction stir processing with rapid heat 

sink [26]. The mean hardness of this alloy was around 150 HV, but other mechanical 

properties were not included in their published papers. In addition, Sun et al. [27] reported a 

nanocrystalline bulk AZ31 with an average grain size of 48 nm by powder metallurgy 

assisted hydriding–dehydriding and its hardness was about 89 HV, but again no resulting 

mechanical properties was reported. Most recently, Zhou et al. [28] produced a 

nanocrystalline AZ31 magnesium alloy via mechanical milling and cold pressing. The 

average grain size was refined to 66-86 nm by adding various amounts of titanium particles 

and producing a hardness of 147 HV and yield strength and 293 MPa at room temperature. 

A novel manufacturing technology that comprises a combination of cryomilling and 

spark plasma sintering has recently been successfully applied to fabricate nanocrystalline 

Mg-30Al and AZ80 alloys [29-32]. The nanocrystalline AZ80 exhibited an excellent 

compressive yield stress of 442 MPa and ultimate compressive strength of 546 MPa with an 

average compressive strain to failure of 3.7%. The nanocrystalline Mg-10Al exhibited a 

remarkable ultimate compressive strength of 579.7 MPa with a compressive strain to failure 

of 2.4%. The retained nanocrystalline reported in these papers can be also partly attributed to 

the rapid sintering process by using spark plasma sintering. In addition, ������������	
�

��
�	����� ��������	���	�	� ����� ���
��	
���� ����������
� ��
�spark plasma sintering that 

exhibited 	��	��	�� thermal stability [33, 34]. The yield strength was 330 MPa in Mg-10Al-

1diamantane even after 100 h of annealing at 400 °C [33]. 

The motivations of the current study are twofold. Firstly, to find out whether this 

novel manufacturing technology can be extended to produce nanocrystalline in a magnesium 

AZ31 alloy with much lower alloying content than Mg-30Al and AZ80 alloys, thereby 

fabricating high strength nanocrystalline AZ31 alloy. Secondly, to investigate the response of 

grain growth and mechanical behaviour when samples were sintered at various temperatures, 

especially at elevated temperatures (e.g., 450 °C, 0.78 Tm). 

2 Experimental 

2.1 Cryomilling of magnesium alloy AZ31  
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The as-received powder used in this study was 200 mesh (-75 µm) helium gas 

atomized AZ31 powder (Magnesium Elektron Ltd, USA) and particle size between 38-75 µm 

was sieved and used for cryomilling and spark plasma sintering. 6 grams of powder and a 

stainless steel ø25 mm grinding ball were loaded into a sealed grinding jar in an argon 

glovebox (MBraun, Germany) to avoid oxidation. The cryomilling was performed using a 

cryomill (Retsch, Germany) with an integrated cooling system. Liquid nitrogen circulated 

through the system and was continually replenished from an autofill system to keep the 

temperature at -196 °C and avoid direct contact with liquid nitrogen. There was no evidence 

that the nitrogen reacted in any way with the powder. The shaking frequency of the grinding 

balls was 22 Hz and the cryomilling time was 6 hours (designated as CM6h powder).  

2.2 Spark plasma sintering of bulk nanostructured magnesium alloy AZ31 

3 grams of cryomilled powder was loaded into a cylindrical graphite die with 

diameter of 20 mm. To avoid welding and obtain a more uniform current flow, thin graphite 

foils were placed between powders and the graphite dies surface. The prepressed powder was 

then sintered by spark plasma sintering (FCT Systeme GmBH spark plasma sintering system, 

type HP D 1050, Germany) under vacuum. A heating rate of 50°C/min followed by a dwell 

time 5 minutes with a maximum uniaxial pressure of 80 MPa were applied for sintering based 

on the results of preliminary experiments. The holding temperatures ranged from 350 to 

450°C. The corresponding sintered samples were designated CM350, CM400 and CM450 

hereafter (Table 1). The temperature was monitored by a TC thermocouple inserted into a 

hole located in the centre of the die close to the sample. To provide a base-line to compare 

the cryomilled powders, the as-received powder (diameter in the range 38-75 µm) was 

sintered at 400 °C, designated as AR400 (Table 1). In order to avoid oxidation, the powders 

were loaded into the grinding jar before cryomilling and the spark plasma sintering mould in 

an argon atmosphere glove box (Mbraun, Germany). The current, temperature, displacement 

and displacement rate as a function of time were recorded by the software equipped with the 

spark plasma sintering apparatus. 

 

2.3 Density measurement 

After polishing the surface, the bulk density of the sintered samples was determined 

by the Archimedes method using a balance with accuracy of ±0.0001g (MS104S, Mettler 

Toleda, Switzerland). At least three measurements were taken for each sample. 
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2.4 Microstructure characterisation 

A Siemens X-Ray Diffractometer D5000 using Cu Ka (λ = 0.15406 nm) radiation was 

employed to study the crystallite size of cryomilled powders. The diffractometer has a 

programmable divergence slit with a 0.02 rad Soller and a 1 degree divergence slit on the Cu 

Kα x-ray source. The detector was set to read from 30° to 80° at 2.4 s/step with a step size of 

0.02°. 10 grams of as-received AZ31 powder was annealed at 450 °C for 8 hours in a vacuum 

furnace. This fully annealed as-received AZ31 powder was used as a standard to subtract 

instrumental broadening. XRD peak profiles were fitted by Pearson VII function, and full 

width at half maximum was used as a measure of peak broadening. The pure sample peak 

broadening B was calculated using � = ������ − �	
���, where Bobs is the observed peak 

broadening, and Binst is the instrumental broadening. Samples for optical microscopy and 

scanning electron microscopy (SEM) were prepared by grinding with SiC paper from 1200 to 

4000 grit. To minimise oxidation through exposure to water, samples were polished with 

alcohol based diamond suspensions of 1 and 0.25�m. Some samples for grain size 

measurement were etched using an acetic-picral solution (4.2g picric acid, 10ml acetic acid, 

70ml ethanol and 10ml water) for 1 s. Transmission electron microscopy (TEM) samples of 

cryomilled powder were prepared by grinding using a mortar and pestle and suspended in 

isopropanol, followed by ultrasonic dispersion and then deposition onto a 200 mesh Cu grid 

with holey carbon film. Thin foils of bulk samples were prepared by the combination of 

grinding, dimpling and ion milling.  

2.5 Mechanical tests 

Hardness tests were conducted using a Vickers indenter with a 50 gf load for 15 s.  

Fig. 1 shows the loading force direction and also cube specimens’ sizes for compression tests. 

Prior to testing, all the samples were carefully polished to eliminate oxide layers attached on 

each surface. Compression tests were conducted using a Zwick/Roell universal testing 

machine at a crosshead speed of 0.06 mm/min until failure. All experimental data has been 

corrected for machine compliance [35]. 

3 Results and discussion 

3.1 Cryomilled Powder of Magnesium Alloy AZ31 

3.1.1 Particle size and morphology 
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Fig. 2(a) shows particle size and morphology of the as-received gas atomized AZ31 

powder. Fig. 2(b) shows the grain structure, with an average grain size of 2.03±0.47�m. Fig. 

2(c) shows the particle morphology after cryomilling for 6 hours. Most of the coarse as-

received particles were crushed into fine particles with an average size of 25 �m. Fig. 2 (d) 

shows a deformed particle where evidence of cold welding and fracture can be clearly seen, 

in agreement with other published observations [32]. 

 

The evolution of particle morphology can be explained by cold welding and fracture 

occurring during the cryomilling process [36-39]. The grinding balls plastically deform the 

particles resulting in work hardening and fracture. Fresh fractured surfaces are known to 

promote cold welding [36], which leads to an increase particle size. However, with continued 

severe cold deformation, fracture becomes dominant over cold welding, resulting in a 

reduction in particles size. With further extended milling, cold welding and fracture reach a 

balance and the particle size does not change with further milling time. 

 
 

3.1.2 Grain size  

Fig. 3 shows XRD patterns of as-received and CM6h powders. Compared to the as-

received powder, significant peak broadening was evident after cryomilling for 6h. Due to 

severe plastic deformation and very limited recovery and recrystallization during cryomilling, 

this peak broadening can be attributed to the ultra-fine crystallite size and high internal micro 

strain. Approximating the crystallite size and microstrain broadening profiles by a Cauchy 

function, the relationship between crystallite size (d) and the internal microstrain ε can be 

fitted using Williamson-Hull plot (Equation 1):  

 

                                                                                                                               (Equation 1) 

 

Where B is pure sample diffraction FWHM breadth as defined above, θ is the position 

of peak maximum, K is a constant as 0.94, λ is the wavelength of the X-ray radiation (Cu, 

0.154056 nm), D is the average crystallite size and  is the microstrain. By performing a 

least squares fit to Bcos(θ) against sin(θ) for all of the measured peaks of a sample, the 

average crystallite size was estimated to be 32 nm for powder sample CM6h.  

ε

( ) ( )θελθ sin4cos ××+×=×
D

K
B
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After 6 hours cryomilling, the grain size was significantly refined to the nanometre 

scale. Fig. 4(a) shows a transmission electron microscope bright field (BF) image and 

selected area electron diffraction (SAED) pattern of the CM6h powder. The diffraction rings 

indicated that most of the grains were nano sized with a random crystal orientation. Fig. 4(b) 

gives the grain size distribution of the 6h cryomilled powder (determined from 200 grains 

measure) and its average size is 26.2±7.9 nm, which is close to the grain size of 32 nm 

estimated by XRD.  

 

Because the main difference between cryomilling and mechanical milling is the 

working temperature, the mechanism of nanostructure formation during cryomilling can be 

considered as a mechanical milling process [36]. Due to the cryogenic milling temperature, 

suppression of recovery in the material was significant, which plays a positive role in 

reducing the milling time to obtain nanocrystallites [40]. Fecht stated there are three main 

stages of microstructure mechanically milling process [41]. Firstly, localized deformation 

occurs in shear bands consisting of high density dislocation arrays; secondly, because these 

dislocation arrays are not stable and dislocation annihilation and recombination and 

annihilation of dislocations then ensues, this results in the formation of nano-sized subgrains; 

with further deformation, the subgrains with low angle grain boundaries (LAGB) transform 

to small grains with high angle grain boundaries (HAGB) by the annihilation and 

recombination of more dislocations into the boundaries or accompanying subgrains rotation 

during collision. Finally, this LAGB structure is able to change to completely random HAGB 

between individual grains. 

 

 
3.2 Bulk sintered AZ31 samples  

3.2.1 Density and morphology 
 

The theoretical density of AZ31 alloy was calculated to be 1.780 g/cm3. Table 1 

provides the density measurement results of the four samples. CM450 had the highest density 

of 1.766 g/cm3 while CM350 had the lowest density of 1.691 g/cm3. As expected, higher 

sintering temperature led to increased bulk density. The distribution of pores and cracks was 

investigated by using optical microscopy. Fig. 5(a) shows a large-scale optical microscope 

(OM) image of sample AR400. Considerable porosity can clearly be observed. These pores 

arose from insufficient sintering and also occurred due to particle pull out during polishing 
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because of insufficient inter-particle bonding. In addition, a layer of magnesium oxide film 

was found to cover each particle, which in itself would have restricted the sintering process.  

Figs. 5(b-d) present the OM images of sample CM350, CM400 and CM450, respectively. 

The most obvious feature in these images is that the volume fraction of micro pores 

decreased substantially when the sintering temperature rose from 350 °C to 400 °C. The 

pores size and quantity slightly decreased when the sintering temperature was increased from 

400 °C to 450 °C.  Therefore, higher sintering temperature increased density, which was 

attributed to two factors. Firstly, the strength of the alloy powder drops substantially with 

increasing temperature. Secondly, creep flow is the main densification mechanism in the case 

of pressure-assisted sintering at elevated temperatures and is a diffusion-driven process which 

strongly relies on temperature [42]. 

 

It was evident that not all the particles in the starting powder had been reduced in size 

by the milling process. This led to a bimodal particle size distribution, with larger particles 

(which exhibited brighter contrast in Fig. 5) distributed amongst the much finer structure in 

all sintered cryomilled samples. The volume fraction of the larger particles in each sintered 

cryomilled sample was measured to be approximately 25%. This is inevitable with 

mechanical milling, especially without adding process control agent. The hardness of these 

particles that had not been reduced in size was only approximately 70 HV with a mean grain 

size of about 10 µm. This fraction of coarser particles will offset the improvement in the 

mechanical properties from those particles containing a nanostructure, as discussed later. 

Because samples AR400 and CM400 were processed under the same operating 

parameters, the effect of cryomilling on sample densification can be discussed. Fig. 6 shows 

back-scattered SEM images of AR400 and CM400 samples after sintering. Pores were 

observed in both sintered samples between particle boundaries (indicated by the white 

arrows). However, the pores were smaller and fewer in number in sample CM400 compared 

to sample AR400. The boundaries were difficult to find in the CM400 sample, whereas they 

were clear in the AR400 material. This was probably because the oxide film present on the 

surface of the magnesium powder had been broken up during cryomilling, such that particle 

boundaries could only be seen in the as-received material. The oxide films appeared to have 

been broken down to nano-sized inclusions and would therefore be expected to act to 

strengthen the alloy [43] (which is discussed in more detail in a separate publication). 
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The aluminium, zinc and manganese rich second phases that were apparent and 

locally distributed in sample AR400 were broken up and uniformly dispersed in the 

cryomilled sample CM400. It is also possible that the milling resulted in some dissolution of 

these second phases, as milling is well known to increase the equilibrium solubility of 

equilibrium solubility limit at room temperature and to dissolution of second phase particles 

[43]. These effects can also make contribution to increase the strength of the alloy [43].  

 

Fig. 7(a) shows a typical secondary electron SEM image of sample AR400 in the as-

sintered condition and Fig. 8(a) gives the grain size distribution of all samples measured from 

such SEM images.  This suggested an average grain size of 6.5 µm for sample AR400, which 

is larger than in the as-received powder. Interestingly, the grain size adjacent to the 

magnesium oxides rich was finer, Fig. 7(a), which suggested that the oxide film locally 

pinned the grain boundaries.  

 

Figs. 7(b,c,d) give bright field TEM images of samples CM350, CM400 and CM450.  

The corresponding grain size distributions in the nanocrystalline areas, obtained by TEM, are 

given in Figs. 8 (b,c,d), which yielded average grain sizes in the nanocrystalline area of 35nm, 

45nm and 60 nm. Note that this size distribution does not include the ~25% fraction of 

particles which retained a coarse grain size after cryomilling. Fig. 9 shows a region of 

bimodal grain structure taken from the CM400. 

 

 SEM images, such as the one  in Fig. 7 (a) showed that the original particle 

boundaries were decorated by what was presumed to be a magnesium oxide film that covered 

the surface of the as-received powder during cryomilling. These oxides were further 

investigated using TEM. Fig. 7(a) shows high angle annular dark field (HAADF) image of 

the bulk CM400 sample, which clearly demonstrates some lower atomic number (dark 

contrast) particles were located at a grain boundary. Electron energy loss spectroscopy (EELS) 

was used to investigate possible phases at the grain boundary. Fig. 10 (b) shows the EELS 

image collected from red point in Fig. 10 (a) and Fig. 10 (c) shows a reference spectrum of 

magnesium oxides from Gatan EELS Atlas. The presence of oxygen was confirmed by the 

spectrum. The shape of the ionisation edges, which is a signature of the phase, exhibited a 

good match between our results, Fig. 10 (b), and the reference standard for MgO, Fig. 10 (c). 

These oxide particles were fine and distributed as discrete particles embedded in the grain 

boundaries, which therefore would have been expected to act as pinning sites.  
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3.2.2 Micro hardness results of bulk samples produced by spark plasma sintering 
 

Fig. 11 gives the hardness results of bulk samples processed from 350 °C to 450 °C. 

The hardness of the bulk AR400 sample was only 70±5.6 HV. In contrast, the hardness of 

samples CM350 and CM400 increased significantly to approximately 150HV after 

cryomilling, resulting in a material with hardness more than twice that of bulk AR400 sample. 

However, when the sintering temperature was further increased to 450°C, the hardness was 

lower at around 135 HV.  

 

3.2.3 Compression testing behaviour 
 

Fig. 12 gives true compressive stress-strain curves of samples AR400, CM350, 

CM400 and CM450. The corresponding compressive properties are listed in Table 1. To 

illustrate the influence of cryomilling and sintering temperature on bulk materials, the 

following section will first focus on the reasons for the exceptional high strength with poor 

ductility material derived from cryomilled powder, and the mechanical behavior response on 

various sintering temperatures will be discussed afterwards.  

 

The measured average true ultimate compressive strength and yield strength (0.2% 

proof stress) of the cryomilled sample CM400 was 499.7 MPa and 400.7 MPa, respectively. 

These values were significantly higher compared to the sample produced from the as-

received powder, AR400, with a true ultimate compressive strength of 357.6 MPa and a yield 

strength of 180.5 MPa. Moreover, these values also exceed the previously reported highest 

yield strength of 385 MPa and ultimate strength of 455 MPa in AZ31 alloy [15].  

 

The average true compressive strain of sample CM400 (measured at the ultimate true 

compressive strength) was only 3.6%, which was only about 1/3 of the bulk as-received 

sample and about 1/3 the result reported by Razavi et al.  [15]. However, this value is still 

acceptable in the field of nanostructured magnesium alloys. High strength and poor ductility 

is prevalent in all nanostructured materials [44]. One source of poor ductility is that defects 

introduced from the processing, such as porosity and cracks (see Figs. 5-6), lead to low 

ductility [45,46].  In addition, work hardening is a key factor in determining the ductility of 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

nanocrystalline materials [47]. As shown in Fig. 12, extensive work hardening was observed 

in bulk AR400 samples, while only limited work hardening occurred in the cryomilled 

samples. The limited of work hardening in nanocrystalline materials can be explained by the 

lack of dislocation accumulation within the nanosized grains. In addition, the effect of 

twinning is also important. Fig. 13 presents optical microscope images of AR400 and CM400 

after compression testing. Far more deformation twins were produced during compression 

tests for samples AR400 compared to CM400, where only one twin was observed in the 

coarse grained regions. Furthermore, Fig. 9 shows a bright field TEM image with bimodal 

microstructure, and no sign of twinning was observed. This contrasts reports of twinning in 

other nanostructured magnesium alloys with higher alloying contents [29, 48, 49]. The stress 

required for twin nucleation increases substantially with reducing grain size to the nanometre 

scale, thereby reducing the occurrence of twinning as grain size is reduced [45]. One 

influence of twinning on the plastic deformation is that unfavourably oriented grains can be 

adjusted into a more favourable orientation by twinning. This positive effect has been used to 

improve the ductility of nano-twinned Cu [50].  

It would be expected that the yield strength (Fig. 12 and Table 2) would correlate with 

the grain size in the samples, which was a function of the sintering temperature. The 

histograms of grain size distribution were given in Fig. 8. The average grain size of sample 

CM350 was approximately ~33 nm, which was smaller than that of sample CM400 (~45 nm), 

and CM450 (~60 nm). It would be expected that the yield strength would scale with the grain 

size. This appears to be true for a comparison of CM400 and CM450, but does not hold true 

for CM350.  However, there are additional factors that must be taken into account. Firstly, 

CM350 had a lower density, table 1, and this probably contributed to the limited mechanical 

properties. Secondly, all cryomilled samples contained a fraction (~25%) of particles that had 

a coarser grain size as a result of incomplete cryomilling. These will have certainly 

contributed to the strength, reducing the beneficial effect of the nanoscale grains. Thirdly, the 

fine MgO particles will have contributed to the mechanical properties, on the one hand 

potentially increasing work hardening rate, but at the same time acting to limit the ductility. 

Clearly, separating these separate contributions would be very difficult.  
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4 Conclusions 

A nanocrystalline AZ31 alloy with exceptionally high strength was fabricated by a 

combination of cryomilling and spark plasma sintering. All the bulk samples consolidated 

from cryomilled powders exhibited a bimodal microstructure. The optimum conditions were 

obtained at a sintering temperature of 400 °C, which provided a balance between achieving 

full densification and minimising grain growth during sintering. This provided the highest 

average yield strength of 400.7 MPa and ultimate strength of 499.7 MPa with acceptable 

compressive true strain of 0.036. The mean grain size of the material cryomilled for 6h 

followed by sintering at 400oC was about 45 nm. The high strength of the sample was mainly 

attributed to the grain refinement strengthening, oxide dispersion and solid solution 

strengthening. The low compressive strain of this alloy is due to limited work hardening and 

pores located between particle boundaries. A higher sintering temperature of 450 °C 

improved compressive strain of the consolidated sample at the sacrifice of strength, whereas 

samples sintered at 350 °C displayed brittle behaviour with low strength. Generally, 

nanostructure materials usually have high strength but poor ductility.  
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Table 1. Samples designation and density measurement results  

Powder type Sintering 
temperature  

Sample 
designation 

Density 
(g/cm3) 

Relative density to 
AZ31 

As-received 
(AR) 

400 °C 
AR400 1.730±0.004 

97.2% 

Cryomilled 
(CM) 

350 °C 
CM350 1.691±0.003 

95.0% 

Cryomilled 
(CM) 

400 °C 
CM400 1.755±0.004 

98.6% 

Cryomilled 
(CM) 

450 °C 
CM450 1..766±0.005 

99.2% 

 

 

 

 

 

 

Table 2. Summary of compressive properties of bulk as-received and cryomilled samples 

Samples No. 0.2% Proof Stress (MPa) True Ultimate Strength (MPa) 
True strain at ultimate 

strength 

AR400 
1 185.7 359.8 0.111 

2 175.3 355.3 0.120 

CM350 
1 345.2 399.8 0.019 

2 331.3 372.7 0.018 

CM400 
1 401.2 500.2 0.036 

2 400.2 499.2 0.036 

CM450 
1 394.7 478.5 0.055 

2 361.2 484.5 0.050 

 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

 
 
 
 
 
 
 
 

 
Fig. 1 A schematic image showing the specimens size and the loading direction of 

compression test 
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Fig. 2 Typical SEM images showing (a) the morphology of as-received AZ31 powder, 
(b) internal grains of as-received AZ31 powder, (c) the morphology of cryomilled 

powder and (d) the signs of cold welding and fracture during cryomilling 
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Fig. 3 The XRD patterns of as-received and CM6h powders 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 (a) Bright field TEM micrograph and selected area diffraction pattern of CM6h 

powder and (b) corresponding grain size distributions  
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Fig. 5 Typical optical microscope images of samples (a) AR400, (b) CM350, (c) 

CM400 and (d) CM450 
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Fig. 6 Back scattered electron SEM images of bulk (a) AR400 (b) CM400 sample  
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Fig. 7 (a) Typical secondary electron SEM image of sample AR400 and typical bright 

field TEM images (with insert selected area diffraction patterns) of (b) CM350, (c) 

CM400 and (d) CM450 
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Fig. 8 Grain size distributions of (a) AR400, (b) CM350, (c) CM400 and (d) CM450. 

The AR400 was measured by SEM measurements, while the CM350, CM400 and 

CM450 were measured by TEM 
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Fig. 9 TEM image of sample CM400 showing a bimodal microstructure 
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Fig. 10 (a) High angle annular dark field (HAADF) image of bulk CM400 showing 

particles at a grain boundary, (b) Electron energy loss spectroscopy (EELS) spectrum 

collected from the red spot, showing the presence of oxygen and (c) a reference 

spectrum of MgO 
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Fig. 11 Micro hardness results of bulk samples produced by SPS from 350 °C to 

450 °C 
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Fig. 12 Room temperature true stress-strain curves for bulk as-received and 

cryomilled samples 

 

 

 

 

 

Fig. 13 Typical optical microscopy images of bulk samples (a) AR400 and (b) coarse 

grain area of CM400 after compression tests 
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Highlights: 

1. Exceptionally high strength nanocrystalline AZ31 produced by cryomilling and SPS.  

2. A mean grain size of 45nm obtained by 6h cryomill and SPS at 400oC. 

3. The optimum conditions gave a yield of 401 MPa and ultimate strength of 500 MPa. 

4. High strength attributed grain refinement and oxide dispersion hardening. 


