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A B S T R A C T

A physics–based modelling framework to describe microstructure and mechanical properties in maraging steels is pre-

sented. It is based on prescribing the hierarchical structure of the martensitic matrix, including dislocation density,

and lath and high–angle grain boundary spacing. The evolution of lath–shaped reverted austenite is described using

grain–boundary diffusion laws within a lath unit. The dislocation density provides the preferential nucleation sites for

precipitation, whereas descriptions for particle nucleation, growth and coarsening evolution are identified for Ni3 Ti, NiAl

and its variants, and BCC–Cu clusters. These results are combined to describe the hardness at different ageing tempera-

tures in several Fe Ni–, Fe Mn– and Fe Ni Mn–based steels. A critical assessment on individual contribu-

tions of typical alloying elements is performed. Ni and Mn control the kinetics of austenite formation, where the latter

shows stronger influence on the growth kinetics. Ti additions induce higher hardness by precipitating stronger Ni3 Ti,

whereas Cu clusters induce low strength. A relationship between the reverted austenite and the total elongation in over-

aging conditions is also found. This result allows to identify optimal process and alloy design scenarios to improve the

ductility whilst preserving high hardness in commercial maraging steels.

© 2016 Published by Elsevier Ltd.
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1. Introduction

Maraging steels combine exceptional properties, including high

strength and toughness, high strength to weight ratio, good weld-

ability, simplicity of heat treatments and dimensional stability. These

properties stem from the complex microstructures forming during hot

processing: (i) A hierarchically–arranged lath martensite matrix (α′)

decorated by (ii) nano–sized intermetallic precipitates and (iii) austen-

ite laths (γ) that re–precipitate from α′. The first two items dictate

mostly the hardness, whilst the partial reversion from martensite to

austenite strongly influences their ductility and toughness [1,2]. Ad-

ditionally, complicated interactions between alloying elements and

the evolving microstructure occur during ageing. For instance,

grain–boundary embrittlement occurring in underaged conditions is

due to Mn and Ni segregation to the prior–austenite boundaries, be-

coming ductile again during overaging [1,2]. This effect is induced by

austenite reversion, promoting Ni and Mn partitioning into the γ, and

by overaging grain–boundary precipitates [1].

Systematic experimental studies have been performed to explore

optimal compositions for improving the mechanical properties of

maraging steels [3–7], whilst optimisation algorithms have been pos-

tulated to link alloying additions with strength variations [8–10]. Al-

though the optimisation methods show good correlation with experi-

ments, no detailed microstructural information is predicted; this lim
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its their application to other compositional scenarios. Additionally,

thermokinetics methods have been applied to understand how the

chemical composition affects intermetallic [11] and reverted austen-

ite [12,13] evolution; however, these approaches have not provided a

direct link with mechanical properties, including strength and elonga-

tion.

These results show that, in spite of the considerable work done

to improve the properties of maraging steels, a unified physics–based

modelling framework is missing. Such could provide direct links be-

tween the microstructure and mechanical properties for different com-

positions and heat treatments. A key reason for this is the lack of

a description for the martensitic matrix, as its hierarchical structure

strongly controls microstructure evolution [6,12,14]: a high disloca-

tion density in the laths accelerates precipitation nucleation, whereas

the segregation of γ–stabilising elements into the lath boundaries de-

termines the morphology and kinetics of the reverted austenite

[14–16].

The objective of this work is to present a modelling suite for de-

scribing microstructure evolution and mechanical properties in marag-

ing steels, including effects of chemical composition and initial mi-

crostructure. The models are based on a previous description of the

hierarchical structure of lath martensite in Fe C steels [17,18],

where the density of dislocations, laths, and high–angle grain bound-

aries were prescribed in terms of the prior–austenite grain size and

ageing conditions; the extension of the martensite models to marag-

ing steels is presented in Section 3. These features will allow us to

provide the microstructural landscape for modelling reverted austen-

ite and precipitation evolution in Sections 4 and 5, respectively.

http://dx.doi.org/10.1016/j.actamat.2016.07.020

1359-6454/© 2016 Published by Elsevier Ltd.
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These results are combined in Section 6 to link the resulting mi-

crostructure with the hardness of maraging steels. Model validation

with experimental data in 19 steels is presented in Sections 7 and 8.

A critical assessment on individual contributions of the typical alloy-

ing elements to the yield strength and ductility is presented in Section

8.1. A direct link between the volume fraction of reverted austenite

and the total elongation in several grades is established in Section 8.2.

This allows exploring optimal compositions and processing scenarios

for improving the ductility whilst preserving high strength. Conclud-

ing remarks are outlined in Section 9.

2. Materials and methods

A number of Fe Ni–, Fe Mn–, and Fe Ni Mn–based

maraging steels were studied following various ageing conditions.

Table 1 shows the chemical composition and denomination of the ma-

terials tested in this work; experimental results on the microstructure

and hardness have been obtained from the literature. The composi-

tional range of these materials will allow to study several microstruc-

tural features induced by different alloying elements. The effects of

other substitutional elements with less than 1 wt% are ignored due

to their low contribution to microstructure evolution. It is worth not-

ing that although the carbon content in most of the steels tested is

low, a significant amount of carbides could still be present; this would

promote a competition between carbide and intermetallic strengthen-

ing. Nevertheless, Schintzer et al. [14,19] and Leitner et al. [3] did

not report carbide formation in PH13 8Mo for the ageing condi-

tions employed in this work. Similarly, Zhu et al. [20] did not mea-

sure any carbon content in C300. Additionally, no carbide formation

was reported in M350 [21], 5Mn [22], Fe12Ni6Mn [15], LeanLAl

and LeanLAl [23], and the Mar6–13 grades [7]. No carbon content

in Fe8Ni8Mn was reported [24]. Coarse TiC particles were observed

in Lean7Mn, Lean10Mn and Lean12Mn in as–quenched conditions,

having volume fraction of 0.22% and a mean size of 500 nm; nev-

ertheless, Qian [25] concluded that they have no influence on hard-

ening due to their size. Similarly, carbide formation in 17-4 SS has

been reported [26]; Viswanathan et al. [27] have explored their ef-

fects in strengthening, concluding that it is low. Carbide formation in

AISI 301 has been reported, however only reverted austenite kinet-

ics is explored in this work. These results show that, for the condi-

tions tested in this work, carbide contribution to strengthening can be

ignored. Additionally, except for C300, only Co–free steels are con-

sidered in this study, as this work is focused on cost–efficient alloy

development. Similarly, it will be assumed that the martensite laths

are fully formed in as–quenched conditions and no retained austenite

is present, unless otherwise stated; this is to consider a homogenous

structure during ageing.

3. Martensite structure

The microstructure of lath martensite in Fe C steels has been

described in previous work [17,18]. The martensite matrix consists of

fine lath units (∼100–300 nm thick) hierarchically arranged in sub-

structures within the prior–austenite grains (PAG), namely packets

and blocks of individual laths. These arrangements accommodate the

crystallographic distortions during the transformation from austenite

into martensite and ensuring that the net strain in the prior austen-

ite grain is pure dilatation [28]. The packet (dpacket) and block (dblock)

sizes are proportional to the prior–austenite grain size (Dg), where the

proportionality constants are determined by the variant number of the

austenite/martensite transformation habit planes within an austenite

grain and the crystallographic orientation of the laths within a packet,

respectively [17]:

where Np = 4 and Nb = 6 are the number of packets in a PAG and

number of blocks in a packet, respectively [29,30]. This has also been

validated in a Fe 9Ni (wt%) martensite [28]. Fig. 1(a) shows a

schematic representation of the hierarchical structure of lath marten-

site; laths are the fundamental unit of thickness dlath and length dblock.

Lath boundary spacing is arranged in such form that it ensures

complete relaxation of the crystallographic distortions during the

phase transformation with the overall strain being pure dilatation

[17,28]. This mechanism is controlled by dislocations forming in the

laths in order to conceal the local distortions produced by impurity

atoms [31]. This implies that the dislocation and lattice strain energy

in a lath should be equal. If the lath boundaries are formed by dislo

Table 1

Chemical composition (in wt%) of the steels tested in this work.

Steel Ni Mn Co Cr Al Ti Mo Cu C Author

PH13 8Mo 8.2 – – 12.7 1.1 – 2.2 – 0.03 [3,14,19]

C300 18.8 – 8.5 – 0.12 0.75 4.75 – – [20]

M350 18.9 – 0.22 – 0.05 1.9 4.1 – 0.0037 [21]

5Mn 0.3 5 – – 0.01 – 0.2 – .pdf0.04 [22]

Fe8Ni8Mn 8 8 – – – – – – – [24]

Fe12Ni6Mn 12 6 – – – – – – 0.006 [15]

LeanLAl 1.97 9.1 – – 0.155 1 1 – 0.0056 [23]

LeanHAl 2.98 8.76 – – 1.33 – – – 0.01 [23]

Lean7Mn 2 7 – – 1 1 1 – 0.03 [25]

Lean10Mn 2 10 – – 1 1 1 – 0.015 [25]

Lean12Mn 2 12 – – 1 1 1 – 0.02 [25]

AISI 301 6.5 1.29 – 17.3 – – – – 0.11 [83]

17-4 SS 3.94 0.52 – 16.24 – – – 3.3 0.049 [26]

Mar6 2.5 0.5 – – 0.6 – – 2.5 0.06 [7]

Mar7 2.5 1.5 – – 0.5 – – 2.5 0.06 [7]

Mar9 4 1.5 – – 1 – – 2.5 0.05 [7]

Mar11 4 3 – – 1.5 – – 3 0.05 [7]

Mar13 4 4 – – 1 – – 4 0.05 [7]

(1)
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Fig. 1. (a) Schematic representation of the hierarchical structure of lath martensite with

laths of cuboidal morphology. (b) Mechanism of austenite reversion in lath martensite.

cation loops and they are assumed of cuboidal shape (Fig. 1(a)), the

energy per unit volume required to nucleate an interfacial disloca-

tion of length 4dlath (lath boundary perimeter) is given by Ref. [32]

, where ρ is the lath dislocation density,

b = 0.286 nm is the magnitude of the Burgers vector, μ = 80 GPa is

the shear modulus and the 1/4 factor accounts for the shared disloca-

tion density on adjacent lath boundaries. On the other hand, the lat-

tice strain energy produced during the phase transformation is esti-

mated by the Stibitz equation [17,33]:

, where E = 211 GPa is the Young's modulus, ν = 0.3 is the Poisson

ratio, ε = 0.245 is the Bain strain [17,34], and the ratio ac-

counts for the localised distortions accommodated in the lath bound-

ary area (Alath = wlathdlath, where wlath is the thickness of a lath bound-

ary), from an equivalent undistorted area in the prior–austenite phase (

) [17]. For the case of Fe C steels, wlath was found

equal to the length of a Cottrell atmosphere inducing carbon segrega-

tion at the lath boundaries [35]; for the case of maraging steels, we

consider that wlath equals the thickness of a dislocation distortion field

and it has been experimentally estimated in Fe 9Mn (at%) to be

wlath ≈ 4 nm [36]. Combining these results, ρ equals:

dlath depends on the composition of the steel and it is related to the re-

distribution of alloying elements into the lath boundaries. For the case

of Fe C martensite, dlath was obtained by estimating the amount

of carbon segregating to the lath boundaries in the form of Cottrell

atmospheres [17]. Similarly, substitutional atom segregation to the

lath boundaries and dislocations occurs in Fe Ni Mn marten-

site during ageing [2,36–38], and these features could affect the val-

ues of dlath with alloying content. However, small variations in dlath
have been observed in a variety of maraging steels with different

Ni and Mn content, even for tempered conditions [14,20,25,26,39];

this behaviour can be due to the relatively low lattice distortion and

high solubility of substitutional atoms in Fe with respect to C atoms;

hence, based on these experimental results, it is considered that

dlath = 250 nm remains constant for all steels tested. For this case,

ρ ≈ 3.6 × 10
14

m
−2

, being this prediction consistent with experimental

estimations in a stainless maraging steel [40]. The description of the

grain boundary density of lath martensite in this section will allow us

to describe the growth of γ in terms of the α′ structure.

4. Reverted austenite kinetics

Reverted austenite nucleates at the lath and PAG boundaries [41],

and growth is diffusion–controlled at a given ageing temperature

[12,14]. Moszner et al. [42] have suggested that austenite formation

in Fe Mn martensite follows the partitioning of Mn into the austen-

ite nuclei, and the growth mechanisms are interface–controlled. This

process is consistent with experimental evidence showing that γ–sta-

bilising elements partition into the lath boundaries [37]. Moreover, the

growth of reverted austenite is controlled by the matrix as individual

nuclei will grow around the α′ laths [14].

Based on the previous results, the following mechanism for austen-

ite evolution during ageing is proposed: γ nuclei form at the lath

boundaries, where they grow into the lath interiors upon eventually

transforming the α' laths into γ. The thickness (rγ) and length (Lγ) of

the austenite are restricted to occupy the α′ lath size (dlath) and length

(dblock), respectively. Fig. 1(b) shows a schematic representation of

this process in a number of laths within a block (Fig. 1(a)). This mech-

anism is valid if the equilibrium volume fraction is high enough to

fully transform the α′ laths into austenite; however, if the equilibrium

volume fraction of γ (fγ,eq) at a given ageing temperature is lower, then

rγ and Lγ are lower than dlath and dblock by a factor of , respec-

tively [25]; this is to account for the growth restriction effect on each

direction of the austenite laths. Since the phase transformation is in-

terface–controlled, the thickness and length evolution of γ can be pre-

scribed by standard grain boundary kinetics equations [43]:

where Γγ is the interfacial energy between austenite and ferrite, M is

the grain boundary mobility, and the 2dblock/dlath term in accounts

for shape effects in particle growth [44]; the last term in both equations

accounts for the growth restriction within the lath boundaries, where

Lγ includes effects of γ formation at the PAGBs via dblock. The mobil-

ity is dictated by grain boundary diffusion [43]:

where is the effective diffusion coefficient driving the

transformation and is the lattice parameter of and it is con-

sidered equal to 0.286 nm. The solution to equation (3) provides the

(2)

(3)

(4)
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evolution of an austenite unit within a single lath; the initial nucleus

size is assumed to be . The volume fraction of γ is given by the ratio

between the volume of transforming austenite ( ) and the volume

of an lath:

This equation provides a direct link between the size of the re-

verted austenite and its volume fraction without the need of additional

parameters. It is interesting that when in equation

(3), the steady state values of rγ and Lγ equal and

, respectively; this shows that

reaching its equilibrium volume fraction during steady state.

For the steels tested in this work, γ is controlled by additions of

Ni, Mn and Cr which are combined with Fe to increase the volume

fraction of austenite at a given ageing temperature. For the case of Al,

Cu and Ti additions, it has been reported that their content in the re-

verted austenite is significantly lower, as they mainly partition to in-

termetallics forming before (underaging) than γ (overaging). For in-

stance, Schnitzer et al. [11] have reported in PH13 8Mo that the

chemical composition in austenite is mainly composed by Fe, Ni and

Cr, whereas Al content in the γ is less than 1 at%. Similarly, in the

Mar6–13 series (Fe Ni Mn Al Cu steels), Kapoor et al.

[7] reported that most of the Al and Cu atoms partition to the inter-

metallics, although no reverted austenite composition was reported for

the conditions tested. As for molybdenum, it remains mostly in solid

solution in during underaging, and later forming Mo–rich inter-

metallics during overageing [45,46]. These results allow us simplify-

ing the description for by approximating it to an effective inter-

diffusion between and γ of Fe, Ni, Mn and Cr [47]:

where xFe,i, xNi,i, xMn,i and xCr,i are the equilibrium concentrations

of Fe, Ni, Mn and Cr in each phase ( ), respectively, and

DFe, DNi, DMn and DCr are the diffusion coefficients of Fe, Ni, Mn

and Cr in Fe, respectively. xFe,i, xNi,i, xMn,i and xCr,i values can

be obtained using the CALPHAD software Thermocalc for a given

composition and temperature, whereas the diffusion coefficient val-

ues are shown in Table 3, with . Diffusion

parameters in ferrite are considered in this work due to the lack of

information on interdiffusion in martensite. For the case of the in-

terfacial energy, Rajasekhara and Ferreira [12] have found in AISI

301LN (Fe-6.5Ni–1.29Mn wt%) Γγ = 1.3 J/m
2
. Similar values (∼1 J/

m
2
) have also been reported for phase–field simulations on austenite

to ferrite transformation [48,49]. However, Lange et al. [50] employed

lower values (0.5–0.6 J/m
2
) to describe austenite → ferrite transfor-

mation kinetics in Fe C steels. In all cases, Γγ strongly depends on

chemical composition. For instance, Qian [25] has found experimen

Table 2

Intermetallics usually observed in multicomponent maraging steels.

Intermetallic Structure Fe Ni Mn Ti Al Mo Cu Morphology Author

NiMn (θ) L10 X X X – – – – Lenticular [15,16,23]

Ni2 AlMn L21 X X X – X – – Spherical [16]

NiAl (β') B2 X X – – X X – Spherical [53]

Ni2 AlTi L21 X X X X X X – Spherical [25,54]

Ni3 Ti (η) D024 X X X X – – – Rod [52,57,87]

Ni3(Ti,Al),

NiAl

D024, B2 X X – X X X – Rod (η),

Spherical

[58]

Ni3(Ti,Al),

NiAl, Cu

D024,

B2,

BCC

X X – X X X X Rod (η),

Spherical

[19]

NiAl, Cu B2,

BCC

X X X – X – X Spherical [7]

tally that the kinetics of γ increase with increasing Mn content; sim-

ilarly, austenite reversion occurs faster in steels with high Ni addi-

tions (18 wt%) [51], than for steels with lower Ni content (8.2 wt%)

[14]. An empirical formula for the interfacial energy was obtained

by adjusting it to the experimental data of the steels tested in this

work: J/m
2
; using this formula Γγ

in AISI 301LN is estimated to be 0.62 J/m
2
. The description of austen-

ite kinetics in terms of chemical composition and ageing conditions

will allow relating these features to the total elongation in Section 8.

5. Precipitation kinetics

5.1. Compositional effects on intermetallic formation

Understanding the role of each alloying element in the structure

of the formed intermetallics is key to elucidate their relative contribu-

tion to mechanical properties. Table 2 shows typical intermetallics ob-

served, as well as their morphologies, within different compositional

ranges of multicomponent Co–free maraging steels for ageing temper-

atures in the range 450–600 °C
1
; the constituents of each multicom-

ponent system are marked by an X. Cobalt was included in the initial

developments of maraging steels as it reduces the solubility of Mo in-

creasing the fraction of Ni3(Ti,Mo) [6] and promoting the precipita-

tion of Fe2 Mo (laves phase) [52]. However, the effect of cobalt on the

mechanical properties can be compensated by increasing the content

of Ti [5,6].

Nickel is one of the most important elements in maraging steels,

as it is not only a γ–stabiliser element, but also the main constituent

of several intermetallics forming in these steels. Similarly, Mn is a

γ–stabiliser element and can influence the content and structure of

the forming intermetallics. For the ternary Fe Ni Mn system, or-

dered face–centred tetragonal NiMn (θ) particles of lenticular shape

form; Heo et al. [16] have reported that they transform into austen-

ite after long ageing periods. He & Lee [24] observed that Al addi-

tions in Fe Ni Mn promote the transition from θ to finely dis-

persed Ni2 MnAl; this effect also increases the strength of the steel

[23]. Schober et al. [53] observed in Fe Ni Al Mo the for-

mation of -NiAl.
2

Small additions of Ti partition into NiAl forming

Ni2 AlTi in Fe Ni Mn Al Ti when nickel content is low

(≤4 wt%) [4,25,54], whilst very low amounts of Mn atoms partition

into the precipitates. No Mo partitioning to NiAl and its variants in

1 Although BCC-Cu is not an intermetallic phase, the same evolution descriptions

will be adopted for all precipitates. Hence, to simplify the notations they will also

be referred to as intermetallics.
2 Although this alloy contained 0.39 wt% of Mn, it was not enough to form θ

intermetallics.

(5)
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Table 3

Diffusion parameters of the alloying elements for the steels tested in this work.

Element Fe Ni Mn Cr Al Ti Cu

D0 (m
2
/s) 5 × 10

−5
1.4 × 10

−4
1.5 × 10

−4
8.5 × 10

−4
1.8 × 10

−3
2 × 10

−3
5.7 × 10

−5

Q (kJ/mol) 240 245.6 233 250.6 233 242.6 244

Ref. [34] [88] [89] [90] [91] [92] [93]

Al–containing steels has been observed [23,25]. This shows that Ni

and Al have strong interrelations as they tend to form B2 inter-

metallics; Ti and Mn additions modify this structure by transitioning

into L21 precipitates, and when both elements are added, Ti has pref-

erence to form Ni2 AlTi.

Ti additions to the Fe Ni Ti Mo system promote the for-

mation of rod–shaped Ni3 Ti (η) in high–Ni containing steels, show-

ing an apparent higher strength than the Al–containing steels at lower

ageing temperatures [23,25]. Mo additions to this system in Co–free

alloys promote the formation of the laves phase Fe2 Mo; however,

Tewari et al. [45] showed that Fe2 Mo intermetallics form at temper-

atures below 500 °C and after 100 h of ageing due to the low diffu-

sivity of Mo in Fe. Hence, they concluded that only the η particles

contribute to the peak hardness in Fe 18Ni Ti Mo (wt%). Al-

though it has been suggested that Mo contributes to the formation

of Ni3(Ti,Mo) in Co–free alloys [55], experimental evidence shows

that only small amounts of Mo partition into η [52]; moreover, simi-

lar peak hardnesses have been measured in Fe 18Ni–2.6Ti Mo

(wt%) containing different Mo contents [56], indicating no increase in

the η volume fraction. Additions of Mn up to 3.5 wt% do not modify

the structure of Ni3 Ti [57].

When increasing the number of alloying elements, Leitner et al.

[58] found in the Fe Ni Al Ti Mo Cr system that both

Ni3(Ti,Al) and NiAl particles form simultaneously; however,

Ni3(Ti,Al) nucleation was only possible due to the higher Ni content

in the alloy (9 wt%). Moreover, when Cu is added to the Fe Cr

Ni Al Ti Cu system, Schnitzer et al. [19] have found that

Ni3(Ti,Al) forms at the interface between the matrix and Cu clusters.

BCC-Cu precipitates evolve to a twinned 9R structure until they ul-

timately transform to an equilibrium FCC structure after long age-

ing times [59]. Similarly, Kapoor et al. [7] have shown that the yield

strength can increase up to 1.6 GPa in Fe Ni Mn Al Cu by

systematically increasing Cu and Al content to precipitate Cu clusters

and Ni2 AlMn.

In summary, there are four intermetallic systems for study in the

typical compositional range of maraging steels: 1) NiMn forms in the

Fe Ni Mn system. 2) NiAl and variants form when adding Al in

Fe Ni Al, Fe Ni Mn Al and Fe Ni Mn Al

Ti. 3) Ni3 Ti forms by Ti additions in Fe Ni Ti and in Fe Ni

Ti Al if Ni content is high enough. 4) Cu additions promote the

formation of BCC clusters that will form independently from other in-

termetallics. These results allow us to describe precipitation behaviour

on each particle system and determine their individual contribution to

the hardness for each alloy tested.

5.2. Modelling precipitation kinetics

A mean radius approach is adopted for describing the evolution of

each intermetallic species. This includes employing classical nucle-

ation theory to estimate the nucleation rate and Zener's law to describe

growth kinetics [60,61]. Additionally, since grain boundary embrittle-

ment occurs during underaging, the analysis is focused on precipita-

tion behaviour in the vicinity of the peak hardness and during overag-

ing, hence classical coarsening laws are also included.

Multiple species of precipitates are considered, including single

(Cu) and multicomponent systems with 2 (NiAl, NiMn, Ni3 Ti) and 3

(Ni2 AlTi, Ni2 AlMn) constituents. In order to use the same formal-

ism for all intermetallics and simplify the analysis, modelling of sin-

gle–component precipitation is assumed, where the constituent with

the slowest diffusivity in Fe controls the evolution kinetics [62], i.e.

the diffusion coefficient (Dp) during nucleation, growth and coarsen-

ing equals the diffusion coefficient of the constituent j holding the

lowest ratio [63], where xj,p is the equilibrium concentration in

the intermetallic p and Dj is the diffusion coefficient of j element in

Fe. For instance in NiAl, xNi,p = xAl,p = 0.5, and in Ni3 Ti, xNi,p = 0.75

and xTi,p = 0.25. Table 3 shows the diffusion parameters of the rele-

vant constituents showing that, for the range of temperatures tested

(400–575 °C), the diffusion coefficient of Ni controls the kinetics of

NiMn, Ni3 Ti, NiAl, Ni2 AlMn and Ni2 AlTi. This simplification has

been applied to multicomponent particles in Ni– and Fe–based alloys

[62–64].

The nucleation rate of new particles is given by Ref. [60]:

where N0 are the potential nucleation sites for precipitation,

, and are con-

stants dictated by the particle's molar volume Vm, critical radius for

nucleation , interfacial energy γp and instantaneous concentration of

the constituent j in the matrix towards forming the precipitates

. In maraging steels, dislocations are ideal sites for precipitation nu-

cleation due their high density [65].
3

Hence, the number of nucleation

sites (m
−3

) for precipitation is given by Ref. [44]: .

The critical radius dictates the minimum size to reach the critical

energy for nucleation and it is given by Ref. [61]:

where Keq is a constant related to the solubility product of in the

matrix with respect to the intermetallic phase (p) [61].

3 ρ also includes possible precipitation around lath boundaries (Section 3).

(7)

(8)
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Particle growth is given by Zener's law [61]:

where xj,int is the concentration of element j at the matrix/particle in-

terface and it is given by the Gibbs–Thomson relation [66]:

represents the effective concentration of j in diffusing towards

forming p; however, the equilibrium volume fraction of p is limited by

the constituent with the lowest concentration (x0) diffusing to the par-

ticle. For instance, the volume fraction of NiAl in Fe 8Ni 2Al

(at%) is limited by Al (although Ni is controlling elemental interdif-

fusion), as there are less Al atoms available to form the intermetal-

lic phase [11]; this implies that , with x0 = 2 at% be-

ing the initial value for . For Ni3 Ti, x0 can be obtained using the

CALPHAD software Thermocalc, by estimating the effective concen-

tration of Ti diffusing to the particle: x0 = xTi,pfp,eq = 0.25fp,eq, where

fp,eq is the predicted equilibrium volume fraction of Ni3 Ti at a given

composition and ageing temperature. However, for NiMn, NiAl, Ni2
AlMn, Ni2 AlTi, and Cu, these phases are not predicted in the equi-

librium phase diagrams of the respective systems, as some of these

phases are metastable [16,59]. Nevertheless, x0 can be computed by

using the lever rule [67]. For instance, in NiMn, x0 = min(xNi,xMn),

where the min function limits the increase in the particle fraction by

the constituent with minimum content; similarly for Ni2 TiAl, it gives

; the second min function

is to account for gradual transition from B2 to L21 [68].

The particle number density (Np) and radius (rp) are obtained by

combining equations (7), (9) and (10), where Keq is the only fitting pa-

rameter. The volume fraction is then given by:

where the term accounts for the effective increment in the volume

fraction when the constituent j diffuses to p in a multicomponent in-

termetallic [60].

As particles form, the content of each constituent (j) in the matrix

decreases until reaching an equilibrium concentration according to:

where xj is the atom fraction of element j in the steel.

Large particles coarse at the expense of the smaller ones and equa-

tion (8) dictates that particles with size below are unstable, under-

going dissolution. Thus, since increases during growth, the tran-

sition from particle growth to coarsening occurs when the equilib-

rium volume fraction is reached and . The mean radius during

coarsening is given by:

where r0 is the initial radius in the coarsening step and kp is given by

Ref. [44]:

Once the phase fraction reaches equilibrium, the particle number

density decreases due to coarsening (overaging), according to the re-

lation [69]: . It is worth noting that additional expres-

sions have been proposed to account for a “smooth” transition
4

be-

tween growth and coarsening [60,70]. These are usually fitted in the

form of exponential decay or power laws of the ratio between and

rp. However, they require introducing a number of fitting parameters,

thus they are not included in the models to simplify the descriptions.

For the non–spherical intermetallics tested (NiMn and Ni3 Ti), the

average aspect ratio (ar) between their length (lp) and diameter (2rp)

has been measured to be almost constant: ar for Ni3 Ti has been found

to be ≈4.5 [20], whereas for NiMn ar is approximately 3 [71]. Hence,

the relation lp = 2arrp is adopted. Additionally, the particle volume in

equation (11) is modified to include this effect in fp and Np, becoming

and (during coarsening).

The required parameters for each intermetallic are fp,eq, γp and Keq;

the latter is fitted equal to Keq = 0.0001 in all cases. As for the interfa-

cial energy in NiMn, it is assumed to be γNiMn = 0.2 J m
−2

. For NiAl, γp
has been estimated to be 0.02 J m

−2
in Fe–Ni–Al–Mo [72]; however,

the kinetics of NiAl and variants increase with Mn content [25]; hence,

based on the effect of Mn in NiMn and austenite reversion, the fac-

tor exp(7xMn) is added to the interfacial energy: γNiAl = 0.02exp(7xMn)

J m
−2

; For Ni2 AlMn and Ni2 AlTi, the interfacial energy is assumed

to be γNi2AlMn = γNi2AlTi = 0.1exp(7xMn) J m
−2

. The interfacial energy of

Ni3 Ti is estimated to be [20]: γNi3Ti = 0.2 J m
−2

. For Cu clusters mul-

tiple γCu values have been proposed [73,65]; γCu = 0.02 m
−2

is con-

sidered in this work. The molar volumes of NiMn, NiAl and vari-

ants, Ni3 Ti and Cu are 7.3 × 10
−6

m
3
/mol [74], 10

−6
m

3
/mol [75],

9 × 10
−6

m
3
/mol [20] and 7 × 10

−6
m

3
/mol [75], respectively.

These results provide descriptions with a direct link between the

microstructure evolving during ageing and chemical composition.

This will allow us to integrate microstructure–based models for yield

stress in different steels.

6. Strengthening mechanisms in maraging steels

The yield strength of maraging steels accounts for three contri-

butions [17]: 1) the strength of lath martensite σMart, 2) precipitation

hardening of a number of intermetallics σp and 3) solid solution hard-

ening σss. It is assumed that the reverted austenite has no effect in the

4 Since the growth and coarsening equations in 9 and 13 evolve according to ∼t
1/2

and ∼t
1/3

, respectively, a sharp variation in rp can be observed at the transition

when .

(9)

(10)

(11)

(12)

(13)

(14)
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strength of the steels [18]. This is expressed in terms of the Vickers

hardness as:

The strength of the martensitic matrix is controlled by the increase

in grain boundary area and dislocation density. The block size is con-

sidered as the “effective” grain size and grain boundary strengthen-

ing is expressed in terms of a Hall–Petch equation for dblock [17,76],

whereas the Taylor equation accounts for the strengthening contribu-

tion of the increase in the dislocation density. σMart equals [17]:

where M = 2.5 is the Taylor orientation factor.

Schnitzer et al. [77] have tested in PH 13-8 Mo a number of models

describing dislocations–particle interactions, including particle shear-

ing (Friedel formula), Orowan bypassing and a pile–up model pro-

posed by Ansell and Lenel [78]. The latter is based on the assumption

that yielding occurs when a critical number of dislocations pile–up

reaching the threshold stress to plastically deform the particles. Only

the Orowan and pile–up models were able to reproduce the experi-

mental trends for underaging, peak hardness and overaging. However,

experimental observations in other materials with intermetallics of

similar crystal structures do not report traces of dislocation pile–up at

the particle's interface nor anti–phase boundary formation [79]. Since

Friedel formula and the Orowan equation hold similar values for un-

deraged conditions [77], it will be assumed that σp is dictated by the

Orowan equation to simplify the analysis:

This equation is valid for spherical particles where 2rp represents

the extent of particle bypass; however, Ni3 Ti and NiMn have rod–like

shape with constant aspect ratio (a) between its length lp and thick-

ness (2rp); this morphology can increase the applied stress for dis-

locations to bypass particles, as they will have to cover an addi-

tional area; this is dictated by the relative orientation between the slip

direction and particle alignment. Nevertheless, an equivalent circu-

lar particle of same area can be defined with radius

. Thus, the ratio ρp/rp dictates an effective increase of the bypass

length without identifying specific alignments between the particle

and a dislocation, and the applied stress for dislocations to bypass

rod–shaped particles can be assumed to increase according to this ra-

tio: .

Ardell [80] has shown that when multiple species of precipitates

are present, the total particle strengthening is given by the superposi-

tion of their individual contributions:

where σj is the strength increase by an intermetallic j with volume

fraction and radius fj and rj, respectively (equation (17)). This equation

is also consistent with the lower strengthening effect produced when

distinct precipitates form at the interface of other intermetallics [7], as

their individual contribution is lower than if they form separately.

Solid solution strengthening is obtained with Fleischer's equation

estimating the increment in the critical resolved–shear stress due to

the presence of substitutional solute atoms [81,82]:

, where is the atom fraction of substitu-

tional element i in the matrix and βi is the strengthening constant

related to the lattice and modulus mistift of element i with respect

to iron. βi values have been obtained in previous work [17,81], and

are shown in Table 4. Ti and Mo induce the highest solid solution

strengthening effect, whereas Al, Cu and Mn have the lowest contri-

butions. The solid solution hardening effects of the particle–forming

elements (Ni, Al, Mn, Ti, Cu) decreases as the volume fraction of the

particles increases; this transition is obtained by a mass balance equa-

tion, where the solute content in is: , where

fj is the volume fraction of particle j and xi,i its the equilibrium concen-

tration of element i in j.

For a prior–austenite grain size of 20 μm, σMart = 450 MPa,

whereas for the alloys tested, σss values range between 300 and

500 MPa. This gives the initial hardness to be in the range 250–330

Hv, being these predictions in agreement with experimental estima-

tions for the hardness in as–quenched conditions [3,20,25,26].

7. Results

The model results on the hardness at room temperature, reverted

austenite and intermetallic evolution are tested against experimen-

tal measurements in several maraging steels (Table 1). This is done

by solving equations (((3), (5), (9), (11), (13) and (15) for a given

composition and ageing temperature. An initial particle radius of

r0 = 0.285 nm is assumed in all cases. The input parameters of the

models are the nominal composition, ageing temperature, and

prior–austenite grain size. MATLAB scripts with the solution of all

models are included as supplementary material. Results on reverted

austenite evolution are tested first to show how Ni and Mn affect mi-

crostructure evolution.

Fig. 2 shows the model predictions and experimental measure-

ments of the reverted austenite evolution with time at different age-

ing temperatures in PH13 8Mo, including (a) volume fraction, (b)

thickness and (c) length.Dg = 25 μm was measured, whereas measure-

ments report fγ,eq = 0.2 and 0.3 at 525 °C [3] and 575 °C [14], respec-

tively, xNi,γ = 0.17, xNi,α = 0.045, xCr,γ = 0.12,.xCr,α = 0.14
5

The model

shows good agreement with experiments in all cases. fγ and rγ in

5Mn aged at 650 °C are also shown in (a) and (b), respectively; for

5 Elemental partitioning in α is subtracted from Thermocalc and it is assumed

equal than in .

(15)

(16)

(17)

(18)
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Table 4

Solid solution strengthening constants.

Element Ni Mn Cr Al Ti Mo Cu

βi (MPa/at) 708 540 622 196 2628 2362 320

this case, Dg was assumed to be 20 μm as this value was not re-

ported, and fγ,eq = 0.33, xMn,γ = 0.098, xMn,α = 0.001, xNi,γ = 0.00626

and xNi,α = 0.001 were estimated using Thermocalc; the model predicts

a higher volume fraction in 5Mn, however the γ size is close to the

experimental values; the discrepancies can be due to higher volume

fraction predicted in Thermocalc, as equilibrium has been reached for

this condition. Fig. 2(d) shows additional results in the trans-

formation at high temperatures of cold–rolled AISI 301 and reverted

austenite kinetics of M350. The lath thickness of AISI 301 was re-

ported to be 170 nm [83], and dblock = 170 nm was considered due to

the heavily deformed structure; fγ,eq = 1 for all temperatures tested.

For M350 an initial 5% of retained austenite is assumed, whereas

fγ,eq = 0.64, xNi,γ = 0.24 and xNi,α = 0.042 were estimated using Ther-

mocalc; Dg = 20 μm was assumed, as this value was not reported. The

model also shows very good agreement in both steels. These results

indicate that equations (3) and (5) successfully describe trans-

formation kinetics for Fe Ni– and Fe Mn–based steels.

Fig. 3 shows the combined effects of Ni and Mn on the kinetics of

reverted austenite in Lean10Mn and Lean12Mn, including (a) volume

fraction, thickness at (b) 500 °C and (c) at various temperatures. The

prior–austenite grain size is 30 μm [25]. The parameters for (a) and (b)

in Lean10Mn are (Thermocalc) fγ,eq = 0.33, xNi,γ = 0.05,

xMn,γ = 0.25, xNi,α = 0.001 and xMn,α = 0.03, whereas for Lean12Mn

fγ,eq = 0.41; elemental partitioning is approximately constant for all

conditions. In (c), fγ = 0.35 and 0.5 at 460 °C and 540 °C, respectively.

The model underpredicts the growth rate in Lean10Mn; the discrep-

ancies can be due to a stronger effect of Mn additions in the Γγ. Nev-

ertheless, these results show that additions of Mn in the steels not

only increase the volume fraction of reverted austenite, but they can

also accelerate γ growth at a given temperature. Additionally, Fig.

3(d) shows fγ results in 12Ni6Mn, where higher austenite fraction is

measured at lower times; these discrepancies can be due to the pres-

ence of retained austenite in the steel, however this was not confirmed

experimentally; additionally for 12Ni6Mn aged during the first 10 h,

the X-ray measurements of γ reported in Ref. [15] can also be due

to the formation NiMn (fct) precipitates (Fig. 3(d)), hence increas-

ing the apparent values of fγ during underaging. The parameters for

12Ni6Mn are fγ = 0.37 and 0.45 at 500 °C and 538° C, respectively,

whereas xNi,γ = 0.25, xMn,γ = 0.15, xNi,α = 0.02 and xMn,alpha = 0.001 at

500 °C and xNi,γ = 0.22, xMn,γ = 0.12, xNi,α = 0.02 and xMn,α = 0.001 at

538 °C Dg = 20 μm was assumed in both cases as these values were

not reported.

To explore the role of Al and Mn additions on intermetallic be-

haviour, Fig. 4 shows the model predictions in PH13 8Mo contain-

ing NiAl intermetallics and their comparison with experimental data

for (a), (b) precipitation and (c) hardness evolution; the Al content of

this steel at 525 °C and 575 °C is 2 and 1.5 wt%, respectively [3,19].

Dg = 25 μm was considered [19]. The initial hardness is given by

the martensite strength (σMart) and solid solution hardening (σss). The

model shows very good results in almost all cases, confirming good

correlation between the hardness and the predicted kinetics of NiAl.

Fig. 2. Reverted austenite predictions in PH13 8Mo and 5Mn, including (a) volume fraction, (b) lath thickness and (c) length. (d) transformation kinetics in AISI301 at

high temperatures and reverted austenite evolution in Mart1.
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Fig. 3. Reverted austenite evolution in Lean7Mn, Lean10Mn and Lean12Mn at different temperatures, including (a) volume fraction and (b) thickness; (c) rγ evolution in Lean12Mn

at various temperatures. (d) Effect of Mn in fγ evolution in two maraging steels.

Although lower volume fraction is predicted at 525 °C, the growth and

coarsening rates are consistent with the experiments. The peak hard-

ness at 525 °C (Fig. 4(c)) in this alloy is achieved a few hours after the

equilibrium fraction is reached due to particle growth still occurring

(Fig. 4(b)); the particles coarse and decrease the number density of in-

termetallics (Fig. 4(b)) in the overaging conditions. Fig. 4(d) shows

the hardness predictions and experimental measurements in θ–con-

taining Fe Ni Mn steels; Dg = 30 μm was assumed as no PAG

size values were reported. The model is able to reproduce experimen-

tal observations at 500 °C, indicating that the predicted strengthening

of NiMn particles are consistent with experimental data, as well as in

predicting the hardening mechanisms in maraging steels; the discrep-

ancies in growth kinetics at 400 °C and 440 °C can be due to temper-

ature variations in the interfacial energy or due to a different structure

formed in the steel; however no information was provided on the ini-

tial martensitic structure. It is worth noting that the ageing conditions

in (d) correspond to the conditions shown in Figs. 2 and 3 for the re-

verted austenite kinetics in PH13 8Mo and FeNiMn steels, respec-

tively. This shows that the models are successful in correlating varia-

tions in microstructure and hardness.

Fig. 5 shows results in Lean7Mn, Lean10Mn and Lean12Mn,

where Ni2 AlTi precipitates form. Fig. 5(a) shows the size evolution

of Ni2 AlTi for different Mn content, where it is confirmed that also

Mn accelerates the growth of these particles, however a weaker effect

is predicted. Nevertheless, it is predicted that coarsening occurs after

10 h Fig. 5(b), (c) and (d) show the hardness variation in these steels

at different temperatures. At 420 °C, it takes more than 100 h to reach

the peak hardness in all cases due to the slow kinetics. Similarly, at

460 °C Lean7Mn reaches the peak hardness after 100 h, whereas

Lean10Mn and Lean12Mn reached the peak hardness after ∼50 and

∼2 hours, respectively. However, the model underpredicts the hard-

ness during underaging; these discrepancies can be due to the par-

tial formation of NiMn, especially with higher Mn content, which can

later transition to Ni2 AlTi [24], or due to the interdiffusion of addi-

tional elements to the intermetallic increasing the values of r during

early stages of precipitation [25]. Nevertheless, the model describes

the experimental trends in the peak hardness values and overaging.

Fig. 5(d) shows Hv at 500 °C, where the peak hardness is reached in

all cases within 2–10 h, due to the rapid diffusion kinetics at high tem-

peratures. This is also consistent with the increased kinetics in austen-

ite reversion in Lean10Mn and Lean12Mn shown in Fig. 4. The model

overpredicts (underpredicts) the experiments by 50 Hv during overag-

ing (underaging), although it shows good agreement in the hardening

(softening) rates; these discrepancies can be due to a lower volume

fraction of Ni2 AlTi not being considered, or due to interdiffusion of

additional elements. Figs. 4 and 5 show complete microstructural de-

scription and its correlation with strength in Lean7Mn, Lean10Mn and

Lean12Mn during heat treatment.

To illustrate Ti effects on precipitation strengthening, Fig. 6 shows

the evolution of Ni3 Ti in C300 and M350 for various ageing tem-

peratures, where Ti content in the former and latter are 0.75 and

1.9 wt%, respectively. Fig. 6(a) and (b) show the mean radius and

length evolution of Ni3 Ti, respectively (assuming an aspect ratio of

4.5), and 6(c) shows the phase fraction evolution in C300 with time;

the equilibrium volume fraction obtained from Thermocalc in C300

was 0.036, whereas in M350 it was 0.089. Fig. 6(d) shows the con
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Fig. 4. Results on intermetallic formation and strengthening in PH13 8Mo: (a) mean particle radius, (b) volume fraction and number density and (c) hardness evolution. (d) Hard-

ness evolution in θ–containing Fe Ni Mn steels.

comitant variations in hardness showing the effects of precipitation

and solid solution hardening in M350. In all cases the correlations

between the models and experiments show good results, except fp at

440 °C and Hv at 480 °C, where slower η kinetics are reported. This

can be due to variations in the interfacial energy with temperature.

Ti contributions during underageing stem from solid solution harden-

ing and transition to precipitation hardening when Ni3 Ti form at peak

hardness and during overaging. It is interesting noting that these steels

show apparent higher peak hardness than their Al–containing coun-

terparts (PH13 8Mo) in spite of having lower volume fraction; this

is due to their rod–shape morphology increasing the critical–resolved

stress for dislocations to bypass the particles.

8. Discussion

A theoretical framework for prescribing microstructure and

strength evolution in maraging steels has been proposed. It is based on

describing the hierarchical structure of the martensitic matrix, includ-

ing the density of dislocations, laths, and high–angle grain boundaries.

This microstructural landscape allowed introducing evolution equa-

tions for lath–shaped austenite, as it mostly forms at the lath bound-

aries, restricting their growth within a martensite lath. The prescrip-

tion of the dislocation density provided the number density for in-

termetallic particles nucleation, where classical theories for precipita-

tion nucleation, growth and coarsening where employed to describe

the mean particle size and volume fraction. These results were com-

bined to describe the evolution of the room–temperature hardness

due to precipitation hardening under various ageing conditions in Fe

Ni–, Fe Mn– and Fe Ni Mn–based maraging steels. Pre

cipitation parameters for each kind of intermetallic and reverted

austenite were obtained from the literature and validated with experi-

ments. These results show that the modelling methodology is able to

describe microstructure and hardness in several maraging steels when

modifying their chemical composition. This allows us to assess the in-

dividual contribution of alloying elements typically included in com-

mercial steels. Moreover, the predictions on reverted austenite forma-

tion can also help us to design steels and heat treatments for increasing

the ductility.

The hardness in these steels accounts for contributions of the

martensite (via dislocation density and grain boundary strengthening),

solid solution and precipitation hardening. It is interesting exploring

their variation during ageing; Fig. 7 shows the contribution of each

mechanism to Hv in (a) M350 and (b) PH13 8Mo when ageing at

540 °C and 575 °C, respectively. In M350, Ni3 Ti shows the greatest

contribution close to peak hardness (t > 18 s) and during overaging

up to 5 h, whereas solid solution (from Ni and Ti) contributes signifi-

cantly to the Hardness during underageing (t < 18 s) and decreases by

50 Hv when Ni3 Ti forms; the strength of the martensite is constant

as no dislocation recovery has been considered. Conversely in PH13

8Mo, the solid solution contribution is not significantly affected

by NiAl formation, as Ni and Al have lower strengthening constants

(Table 4); precipitation strengthening is highest between 100 s and up

to 2 h, however decreasing at longer times. These results show that

precipitation strengthening can be very high for a given ageing win-

dow, however decreasing significantly during overaging; strengthen-

ing from the matrix and solid solution are necessary to ensure high

strength for wider ageing conditions.
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Fig. 5. Results on intermetallic formation and strengthening in Lean7Mn, Lean10Mn and Lean12Mn. (a) particle radius, and hardness evolution at (b) 420 °C, (b) 460 °C, (b) 500 °C.

8.1. Elemental optimisation: alloying contributions to strength

Results in the previous section showed how distinct intermetallics

contribute to the total strength of commercial steels. However, it is

also interesting to explore how the hardness changes when modify-

ing the alloying content of each element. Fig. 8(a) shows Al effects

on Fe 4Ni 10Mn 1Mo Al (wt%) when ageing at 450 °C

and forming Ni2 AlMn; experimental results of two lean maraging

steels with similar compositions are also shown (Table 1); LeanLAl

contains 1 wt% of Ti, hence increasing the initial hardness by 50 Hv.

Dg = 30 μm was considered. The model shows good agreement with

the experimental observations, showing an increase of ∼200 Hv when

the Al content increases from 0.15 to 2.5 wt%. This is due to the in-

crease in the volume fraction of Ni2 AlMn increasing precipitation

strengthening effects. Fig. 8(b) shows the effects of Ti additions in

the Fe 18Ni 3Mo Ti (wt%) system aged at 500 °C; fNi3Ti,eq
are estimated to be 0.093, 0.063 and 0.03, when adding 0.74, 1.4 and

2 wt% of Ti, respectively. Dg = 20 μm was assumed. Experimental

peak hardness are also shown in a number of 18Ni Ti Mo steels

containing similar Ti and Mo additions [6]. The model results show

good agreement with experimental trends. Moreover, the increase in

hardness when increasing Ti content is more pronounced than Al. This

is illustrated by comparing Fig. 8 (a) and (b), where the hardness in

the Fe 18Ni 3Mo Ti system increases up to 650 Hv with Ti

additions of 2 wt%, whereas for the Fe 4Ni Mn Al it only in-

creases up to ∼500 Hv with Al additions of 2 wt%; however, higher

Ni content is required to form Ni3 Ti. Fig. 8(c) shows the effects of

Mo in the Fe 18Ni–0.74Ti Mo system, where the hardness in-

creases from 470 to 525 Hv when adding up to 3 wt%; the Mo contri-

bution is lower as it mostly remains in solid solution. Fig. 8(d) shows

the hardness evolution when increasing Cu content in the Fe 16Cr

4Ni Cu system aged at 580 °C; experimental results in 17-4

SS (Fe–16.24Cr–3.94Ni–3.4 Cu wt%) are also shown for comparison,

where Cu precipitates have the main strengthening contribution [27];

Dg = 50 μm was estimated from Ref. [26]. The model shows an in-

crease in hardness up to 475 Hv when adding 6 wt% of Cu, showing

significantly lower strengthening than in previous cases; this is due to

the increase in the volume fraction of Cu particles with Cu additions

is lower (1 at% of copper is equivalent to 1% volume fraction). These

results demonstrate that Ni3 Ti induce the highest strengthening effect,

followed by NiAl and variants, and Cu clusters display the weakest ef-

fect.

Fig. 9 shows the strengthening effects of multiple precipitation

in the Fe Mn Ni Al Cu system when modifying alloying

content [7]; the compositions and denominations are given in Table 1

(Mar6, Mar7, Mar9, Mar11 and Mar13). Ni2 AlMn and BCC-Cu are

present in this system when ageing at 550 °C, and the coarsening rate

in the latter is reduced by the presence of Ni2 AlMn. Hence, the in-

terfacial energy in Ni2 AlMn is reduced to that for BCC-Cu (0.02 J/

m
2
) to account for combined growth kinetics. Fig. 9(a) shows the hard-

ness predictions when increasing the concentration of alloying ele-

ments and their comparison with experimental data when ageing for

2 h; the model shows good agreement with the experimental trends,

where the peak hardness is achieved within the first hour [7], and Hv
increases as the volume fraction of both precipitates increases. To il
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Fig. 6. Results on Ni3 Ti formation and strengthening in C300 and M350: (a) particle radius and (b) length; (b) phase fraction evolution, and its (d) corresponding hardness.

Fig. 7. Relative contribution to strengthening in (a) M350 and (b) PH13 8Mo.

lustrate their relative contribution, Fig. 9(b) and (c) show the par-

ticle radius and number density increments in Mar11, respectively,

showing good results in the growth and coarsening rates; although a

higher number density is predicted, the variation in Np for both kind

of precipitates is well described; the discrepancies can be due to a

lower dislocation density induced by lower alloying concentrations, or

lower elemental partitioning effects. Fig. 9(d) shows the individual

contribution of Ni2 AlMn and BCC-Cu to the hardness in Mar11 (σss
and σMart are also added to each prediction); Ni2 AlMn particles have

higher strengthening than BCC-Cu; the peak hardness in Cu occurs ∼

2 h later than in Ni2 AlMn, although this is not observed in the total
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Fig. 8. Analysis on the hardness variations with alloying content. (a) Al effects in Fe 2Ni 10Mn 1Mo Al; (b) Ti effects in Fe 18Ni 3Mo Ti; (c) Mo effects

in Fe 18Ni–0.74Ti Mo; and (d) Cu effects on Fe 16Cr 4Ni Cu.

hardness; this is due to σp predicting an average evolution (

).

8.2. Elemental optimisation: ductility VS strength

An interesting aspect of this work is to correlate the strength/duc-

tility tradeoff with alloying content and ageing time. For instance,

in PH13 8Mo the peak hardness when ageing 525 and 575 °C is

achieved between 2 and 10 h (Fig. 4(c)), whereas full transformation

of austenite is achieved after 70 h (Fig. 2(b)); the hardness then de-

creases to 300 Hv. Nevertheless, Schnitzer et al. [14] reported an in-

crease in the total elongation from 11% (as–quenched) up to 20% af-

ter the austenite forms. Similar results have been reported in other

steels [15,25]. Thus, there is an apparent link between γ increase and

elongation. To further support this, a number of experimental ob-

servations linking the volume fraction of reverted austenite and to-

tal elongation (El) in overaging conditions are shown in Fig. 10(a).

These data cover different Ni and Mn contents and ageing tempera-

tures; they were obtained from Refs. [14,25,26,84–86]. It is interest-

ing noting that when fγ = 0 (and when no grain–boundary embrittle-

ment occurs), the elongation lies within 7–10%, and it increases as

fγ increases. It is worth noting that this correlation does not rule out

the fact that other mechanisms can control ductility in these steels,

such as dislocation evolution in the martensite, precipitation structure

and grain boundary processes. Nevertheless, the aim of this section is

to correlate microstructure evolution (reverted austenite) with ductil-

ity, based on experimental information collected in Fig. 10(a), which

covers mainly overaging conditions and grain boundary embrittlement

is not expected to operate. Since a description of the ductility in these

steels is complex and it lies beyond the scope of the models, a lin-

ear relationship is adopted to quantitatively describe the trends ob-

served: El = 7 + 0.57fγ, where fγ is in %; these predictions are also

shown in the figure. To illustrate how different additions of Ni and

Mn can affect the total elongation, Fig. 10(b) shows a contour plot

of the γ equilibrium volume fraction in the Fe Ni Mn system

for different Ni and Mn contents at 550 °C; the contour lines denote

fγ,eq (in %) and these values were obtained from Thermocalc. Lower

Mn additions than Ni are required to increase the equilibrium frac-

tion, however the ageing time can affect the values of γ. Using the

relationship obtained in (a), the increase in ductility with fγ can be

correlated with Ni and Mn content in the steel for a given ageing

time. Fig. 10(c) shows a contour plot of El (in %) for different Ni

and Mn additions when ageing at 550 °C for 100 h. It is observed that

as feq,γ increases, the time to reach the equilibrium volume fraction

can increase, but this depends on the Ni and Mn content in the steel.

For instance, in Fig. 10(c), Fe 10Ni 2Mn and Fe 3Ni 6Mn

have approximately the same elongation (20%) and reverted austen-

ite fraction (≈23 %); however, the γ equilibrium fraction in the for-

mer and latter is ≈32 % and ≈25 %, respectively; this shows that af-

ter 100 h, the reverted austenite in Fe 3Ni 6Mn is closer to equi-

librium than in Fe 10Ni 2Mn, displaying faster kinetics. This

map allows us defining an alloy design criterion to increase ductil-

ity in terms of Ni and Mn content; for instance, if El ≈ 15 % is re-

quired, the combined Ni and Mn content in (c) should approximately

be 1.6xMn+ x Ni ≥ 8 at%; a dashed line is highlighted in Fig. 10(c) to



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

14 Acta Materialia xxx (2016) xxx-xxx

Fig. 9. Strengthening analysis when multiple precipitation occurs in Fe Mn Ni Al Cu. (a) Variations in the hardness for various compositions; (b) mean particle radius

and (c) number density in Mar11. (d) Individual strengthening contribution in Mar11 from Ni2 AlMn and Cu precipitates.

show the lower limit of this region. Similar calculations can be done

under different ageing conditions.

It also is possible to assess the strength/ductility tradeoff during

overageing for alloy design strategies. Fig. 10(d) shows the yield

stress and ductility variations during overaging in M350, PH13

8Mo and 17-4SS, for different ageing times up to 500 h at 550° C;

Additionally, a variant of M350 containing 4 wt% of Mn and only

14.9 wt% of Ni is shown with the remaining alloying additions be-

ing held constant; the fraction of Ni3 Ti decreases to 3.5% in this

case. These lines are obtained by estimating the variations in σY when

fγ > 0 and using previous formula for the total elongation. Dg = 20 μm

is assumed in all cases, whereas the parameters for γ are taken from

the previous section. It is clearly seen how the strength drops dras-

tically once the reverted austenite forms in all cases, i.e. when the

elongation increases; M350 is the only alloy with yield strength above

1200 MPa to reach total elongation of 20%. 17-4 SS is the weakest

alloy, as it contains Cu particles and the low Ni content decreases

the fraction of reverted austenite, therefore having the lower yield

stress and elongation, and requiring longer times to reach peak hard-

ness; the conventional inverse strength–elongation relationship does

not hold for all ageing times, as the time to form BCC-Cu precipi-

tates is of the same order of magnitude than the time when the re-

verted austenite forms at this temperature, hence a small increment in

elongation and hardness is predicted, however no experimental vali-

dation was possible. It is interesting noting that the modified M350

does not change the variation between the strength and elongation,

however the strength decreases by ∼100 MPa due to the lower inter-

metallic volume fraction. This alloy represents a good alternative to

replace M350 at a lower cost if the strength and ductility required are

1200 MPa and greater than 20%, respectively, displaying similar

strength/elongation relationship than PH13 8Mo. However, it can

be stronger by 150 MPa.

9. Conclusions

The following concluding remarks are summarised:

• A physics–based modelling framework for the microstructure and

mechanical properties in maraging steels has been introduced. A

critical assessment of typical alloying elements controlling the hard-

ness and total elongation was performed.

• Descriptions for the lath–shaped reverted austenite and inter-

metallics were possible due to the characterisation of the hierarchi-

cal structure of the martensitic matrix. This includes prescribing the

dislocation density, lath and high–angle boundary size.

• Reverted austenite kinetics promoted by Ni and Mn additions were

described using grain–boundary diffusion laws within a lath unit.

Mn had stronger effect than Ni on increasing the growth rate and

volume fraction.

• Descriptions for particle nucleation, growth, coarsening and volume

fraction evolution were identified for Ni3 Ti, NiAl and its variants,

and BCC–Cu clusters. The dislocation density provided the prefer-

ential nucleation sites for precipitation.

• Ti additions have the highest strengthening effect by precipitating

Ni3 Ti; however high Ni content is required. Al additions also con-

tribute to the strength without the need to increase Ni content by

forming B2 and L21 intermetallics. Cu has the lower strengthening

contribution due to the lower fraction of Cu clusters.
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Fig. 10. Elongation analysis in maraging steels: (a) Correlation between fγ and total elongation. Contour plots of (b) γ equilibrium fraction at 550° C and (c) expected elongation for

different Ni and Mn contents when ageing at 550° C for 100 h. (d) Strength/ductility variations in various grades when ageing up to 500 h.

• A relationship between the reverted austenite and the total elonga-

tion in overaging conditions was found. This result not only allowed

comparing the relative strength of different steels but also their duc-

tility. Thus, a complete modelling suite for alloy design based on

microstructure description was postulated.

Acknowledgements

This research was supported by the grant EP/L025213/1 from the

UK Engineering and Physical Sciences Research Council (EPSRC).

E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo are grateful to

Prof. Mark Blamire for the provision of laboratory facilities. 1.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.

doi.org/10.1016/j.actamat.2016.07.020.

References

[1] S. Nedjad, M. Ahmadabad, T. Furuhara, Correlation between the inter granular

brittleness and precipitation reactions during isothermal aging of and Fe-Ni-Mn

maraging steel, Mater. Sci. Eng. A 490 (2008) 105–112.

[2] N. Heo, Ductile-brittle-ductile transition and grain boundary segregation of Mn

and Ni in an Fe-6Mn-12Ni alloy, Scr. Mater. 34 (1996) 1517–1522.

[3] H. Leitner, M. Schober, R. Schnitzer, S. Zinner, Strengthening behavior of

Fe-Cr-Ni-Al-(Ti) maraging steels, Mater. Sci. Eng. A 528 (2011) 5264–5270.

[4] D. Raabe, D. Ponge, O. Dmitrieva, B. Sander, Designing ultrahigh strength

steels with good ductility by combining transformation induced plasticity and

martensite aging, Adv. Eng. Mater. 11 (2009) 547–555.

[5] V. Kardonskii, M. Perkas, High-strength maraging steel with a reduced cobalt

concentration, Metalloved. i Termicheskaya Obrab. Met. 6 (1968) 32–35.

[6] M. Rao, Progress in understanding the metallurgy of 18 % nickel maraging

steels, Int. J. Mater. Res. 97 (2006) 1594–1607.

[7] M. Kapoor, D. Isheim, G. Ghosh, S. Vaynman, M. Fine, Y. Chung, Aging char-

acteristics and mechanical properties of 1600 MPa body-centered cubic Cu and

B2-NiAl precipitation-strengthened ferritic steel, Acta Mater. 73 (2014) 56–74.

[8] Z. Guo, W. Sha, E. Wilson, Modeling the evolution of microstructure during the

processing of maraging steels, JOM 56 (2004) 62–66.

[9] W. Xu, P. Rivera-Díaz-del-Castillo, S. van der Zwaag, Computational design of

UHS maraging stainless steels incorporating composition as well as austenitisa-

tion and ageing temperatures as optimisation parameters, Phil. Mag. 89 (2009)

1647–1661.

[10] Q. Lu, W. Xu, S. van der Zwaag, A strain-based computational design of

creep-resistant steels, Acta Mater. 64 (2014) 133–143.

[11] R. Schnitzer, R. Radis, M. Nöhrer, M. Schober, R. Hochfellner, S. Zinner, E.

Povoden-Karadeniz, E. Kozeschnik, H. Leitner, Reverted austenite in PH 13-8

Mo maraging steels, Mater. Chem. Phys. 122 (2010) 138–145.

[12] S. Rajasekhara, P. Ferreira, Martensite → austenite phase transformation kinet-

ics in an ultrafine-grained metastable austenitic stainless steel, Acta

Mater. 59 (2011) 738–748.

[13] H. Mirzadeh, A. Najafizadeh, Modeling the reversion of martensite in the cold

worked AISI 304 stainless steel by artificial neural networks, Mater.

Des. 30 (2009) 570–573.

[14] R. Schnitzer, G. Zickler, E. LAch, H. Clemens, S. Zinner, T. Lippmann, H. Leit-

ner, Influence of reverted austenite on static and dynamic mechanical properties

of a PH 13-8 Mo maraging steel, Mater. Sci. Eng. A 527 (2010) 2065–2070.

[15] D. Squires, E. Wilson, Aging and brittleness in an Fe-Ni-Mn alloy, Metall.

Trans. 3 (1972) 575–581.

[16] Y. Heo, M. Kim, H. Lee, Transformation of ordered face-centered tetragonal

θ-MnNi phase to face-centered cubic austenite during isothermal ageing of an

Fe-Mn-Ni alloy, Acta Mater. 56 (2008) 1306–1314.

[17] E. Galindo-Nava, P. Rivera-Díaz-del-Castillo, A model for the microstructure

behaviour and strength evolution in lath martensite, Acta Mater. 98 (2015)

81–83.

[18] E. Galindo-Nava, P. Rivera-Díaz-del-Castillo, Understanding the factors con-

trolling the hardness in martensitic steels, Scr. Mater. 110 (2016) 96–100.



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

16 Acta Materialia xxx (2016) xxx-xxx

[19] R. Schnitzer, M. Schober, S. Zinner, H. Leitner, Effect of Cu on the evolution of

precipitation in an Fe-Cr-Ni-Al-Ti maraging steel, Acta Mater. 58 (2010)

3733–3741.

[20] F. Zhu, Y. Yin, R. Faulkner, Microstructural control of maraging steel C300,

Mater. Sci. Tech. 27 (2011) 395–405.

[21] Y. He, K. Yang, W. Sha, Microstructure and mechanical properties of a 2000

MPa grade Co-free maraging steel, Metall. Mater. Trans. A 36 (2005)

2273–2287.

[22] J. Hu, L. Du, G. Sun, H. Xie, R. Misra, The determining role of reversed austen-

ite in enhancing toughness of a novel ultra-low carbon medium manganese high

strength steel, Scr. Mater. 104 (1975) 87–90.

[23] J. Millán, S. Sandöbest, A. Al-Zubi, T. Hickel, P. Choi, J. Neugebauer, D.

Ponge, D. Raabe, Designing hustler nanoprecipitates by elastic misfit stabilisa-

tion in Fe-Mn maraging steels, Acta Mater. 76 (2014) 94–105.

[24] Y. Heo, H. Lee, Precipitation and fracture behaviour of Fe-Mn-Ni-Al alloys,

Phil. Mag. 93 (2013) 4519–4531.

[25] F. Qian, Microstructural Evolution of Mn–based Maraging Steels and Their In-

fluences on Mechanical Properties, Ph.D. thesis The University of Sheffield,

2015.

[26] R. Bhambroo, S. Roychowdhury, K. Vivekanand, V. Raja, Effect of reverted

austenite on mechanical properties of precipitation hardenable 17-4 stainless

steel, Mater. Sci. Eng. A 568 (2013) 127–133.

[27] U. Viswanathan, P. Nayar, R. Krishnan, Kinetics of precipitation in 17-4 PH

stainless steel, Mater. Sci. Tech. 5 (1989) 346–349.

[28] C. Kinney, K. Pytlewski, A. Khachaturyan, J. Morris Jr., The microstructure of

lath martensite in quenched 9Ni steel, Acta Mater. 69 (2014) 372.

[29] S. Morito, Y. Adachi, T. Ohba, Morphology and crystallography of sub-blocks

in ultra-low carbon lath martensite steel’, Mater. Trans. 50 (2009) 1919.

[30] S. Zhang, S. Morito, Y. Komizo, Variant selection of low carbon high alloy

steel in an austenite grain during martensite transformation, ISJ 52 (2012) 510.

[31] G. Oslon, M. Cohen, A general mechanism of martensitic nucleation: Part I.

General concepts and the FCC-HCP transformation, Metall. Trans. A 7 (1976)

1897.

[32] G.E. Dieter, Mechanical Metallurgy, McGraw Hill, 1988.

[33] G. Stibitz, Phys. Rev. 49 (1936) 859.

[34] H. Bhadeshia, R. Honeycombe, Steels: Microstructure and Properties, Butter-

worth-Heinemann, 2006.

[35] J. Wilde, A. Cerezo, G. Smith, Three-dimensional atomic-scale mapping of a

cottrell atmosphere around a dislocation in iron, Scr. Mater. 43 (2000) 39.

[36] M. Kuzmina, M. Herbig, D. Ponge, S. Sandlöbes, D. Raabe, Linear complex-

ions: confined chemical and structural states at dislocations, Science 349 (2015)

1080–1083.

[37] M. Miller, P. Pareige, Atomic level characterization of neutron irradiated pres-

sure vessel steels, Mater. Res. Soc. Symp. 650 (2000) 1–12.

[38] O. Dmitrieva, D. Ponge, G. Inden, J. Millán, P. Choi, J. Sietsma, D. Raabe,

Chemical gradients across phase boundaries between martensite and austenite in

steel studied by atom probe tomography and simulation, Acta Mater. 59 (2011)

364–374.

[39] U. Viswanathan, G. DEy, V. Sethumadhavan, Effects of austenite reversion dur-

ing overageing on the mechanical properties of 18 Ni (350) maraging steel,

Mater. Sci. Eng. A 398 (2005) 367–372.

[40] K. Macek, P. . Lukáš, J. Janovec, P. Mikula, P. Strunz, M. Vrána, M.

Zaffagnini, Austenite content and dislocation density in electron-beam welds of

a stainless maraging steel, Mater. Sci. Eng. A 208 (1996) 131–138.

[41] K. Tomimura, S. Takaki, Y. Tokunaga, Reversion mechanism from deformation

induced martensite to austenite in metastable austenitic stainless steels, ISIJ

Int. 12 (1991) 1431–1437.

[42] F. Mossier, E. Povoden-Karadeniz, S. Pogatscher, P. Uggowitzer, Y. Estrin, S.

Gerstl, E. Kozeschnik, J. Löfeller, Reverse α′→γ transformation mechanisms of

martensitic Fe-Mn and age-hardenable Fe-Mn-Pd alloys upon fast and slow con-

tinuous heating, Acta Mater. 72 (2014) 99–109.

[43] F. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenom-

ena, Elsevier, 2004.

[44] E. Kozeschnik, Modeling Solid-state Precipitation, Momentum press, 2013.

[45] R. Tewari, S. Mazumdea, I. Batra, G. Dey, S. Banerkee, Precipitation in 18 wt%

Ni maraging steel of grade 350, Acta Mater. 48 (2000) 1187–1200.

[46] M. Hättestrand, J. Nilsson, K. Stiller, P. Liu, M. Andersson, Precipitation hard-

ening in a 12%Cr-9%Ni-4%Mo-2%Cu stainless steel, Acta Mater. 52 (2004)

1023–1037.

[47] J. Svoboda, F. Fischer, P. Fratzl, E. Kozeschnik, Modeling of kinetics in

multi-component multi-phase systems with spherical precipitates I: Theory,

Mater. Sci. Eng. A 385 (2004) 166–174.

[48] I. Loginova, J. Odqvist, G. Amberg, J. Agren, The phase-field approach and

solute drag modelling of the transition to massive γ→α transformation in binary

Fe-C alloys, Acta Mater. 51 (2003) 1327–1339.

[49] A. Yamanaka, T. Takaki, Y. Tomita, Phase-field simulation of austenite to fer-

rite transformation and Widmanstäthen ferrite formation in Fe-C alloy, Mater.

Trans. 47 (2006) 2725–2731.

[50] W. Lange, M. Enomoto, H. Aronson, The kinetics of ferrite nucleation at

austenite grain boundaries in Fe-C alloys, Metall. Trans. A 19 (1988) 427–440.

[51] J. Pardal, S. Tavares, M. Cindra Fonseca, Study of the austenite quantification

by X-ray diffraction in the 18Ni-Co-Mo-Ti maraging 300 steel, J. Mater.

Sci. 31 (2006) 2301–2307.

[52] V. Vasudevan, S. Kim, C. Wayman, Precipitation reactions and strengthening

behavior in 18 wt pct nickel maraging steels, Metall. Trans. A 21 (1990)

2655–2668.

[53] M. Schober, R. Schnitzer, H. Leitner, Precipitation evolution in a Ti-free and

Ti-containing stainless maraging steel, Ultramicroscopy 109 (2009) 553–562.

[54] J. Millán, D. Ponge, D. Raabe, P. Choi, O. Dmitrieva, Characterisation of

nano-sized precipitates in a Mn-based lean maraging steel by atom probe to-

mography, Steel Res. Int. 82 (2011) 137–145.

[55] Y. He, K. Yang, W. Qu, F. Kong, G. Su, Effects of solution treatment tempera-

ture on grain growth and mechanical properties of high strength 18% Ni cobalt

free maraging steel, Mater. Sci. Tech. 19 (2003) 117–124.

[56] W. Sha, Z. Guo, Maraging Steels: Modelling of Microstructure, Properties and

Applications, Woodhead Publishing, 2009.

[57] S. Kim, C. Wayman, Precipitation behaviour and microstructural changes in

maraging Fe-Ni-Mn-Ti alloys', Mater. Sci. Eng. A 128 (1990) 217–230.

[58] H. Leitner, M. Schober, R. Schnitzer, Splitting phenomenon in the precipitation

evolution in an Fe-Ni-Al-Ti-Cr stainless steel, Acta Mater. 58 (2010)

1261–1269.

[59] S. Goodman, S. Brenner, J. Low, An FIM-Atom probe study of the precipitation

of copper from iron-1.4 at. pct copper, Metall. Trans. A 4 (1973) 2363–2369.

[60] M. Perez, D. Dumont, D. Acevedo-Reyes, Implementation of classical nucle-

ation and growth theories for precipitation, Acta Mater. 56 (2008) 2119–2132.

[61] M. Perrier, A. Deschamps, O. Bouaziz, Y. Brechet, F. Danoix, F. De Geuser, P.

Donnadieu, K. Hoummada, P. Maugis, Characterisation and modeling of precip-

itation kinetics in a Fe-Si-Ti alloy, Metall. Mater Trans. A 43 (2012)

4999–5008.

[62] M. Bonvalet, T. Philippe, X. Sauvage, D. Blavette, Modeling of precipitation ki-

netics in multicomponent systems: application to model superalloys, Acta

Mater. 100 (2015) 169–177.

[63] L. Rougher, A. Jacot, C. Gandin, P. Di Napoli, P. Thv́ery, D. Ponsen, V. Jaquet,

Numerical simulation of precipitation in multicomponent Ni-base alloys, Acta

Mater. 61 (2013) 6396–6405.

[64] S. Yamasaki, H. Bhadeshia, Modelling and characterisation of Mo2C precipita-

tion and cementite dissolution during tempering of Fe-C-Mo martensitic steel,

Mater. Sci. Tech. 19 (2003) 723–731.

[65] G. Stechauner, E. Kozeschnik, Thermo-kinetic modelling of Cu precipitation in

α-Fe, Acta Mater. 100 (2015) 135–146.

[66] M. Perez, Gibbs-Thomson effects in phase transformations, Scr.

Mater. 52 (2005) 709–712.

[67] Z. Teng, M. Miller, G. Ghosh, C. Liu, S. Huang, K. Russell, M. Fine, P. Liaw,

Characterisation of nanoscale NiAl-type precipitates in a ferritic steel by elec-

tron microscopy and atom probe tomography, Scr. Mater. 63 (2010) 61–64.

[68] C. Liebscher, V. Radmilovic, U. Dahmen, M. Asta, G. Ghosh, On the formation

of hierarchically structured L21-Ni2TiAl type precipitates in a ferritic alloy, J.

Mater. Sci. 48 (2013) 2067–2075.

[69] J. Robson, H. Bhadeshia, Modelling precipitation sequences in power plant

steels. Part 1-kinetic theory, Mater. Sci. Tech. 13 (1997) 631–639.

[70] A. Deschamps, Y. Brechet, Influence of pre deformation and ageing of an

Al-Zn-Mg alloy-II. Modeling of precipitation kinetics and yield stress, Acta

Mater. 47 (1999) 293–305.

[71] Y. Heo, M. Takeuchi, K. Furuya, H. Lee, Transformation of DO24η-Ni3Ti phase

to face-centered cubic austenite during isothermal aging of an Fe-Ni-Ti alloy,

Acta Mater. 57 (2009) 1176–1187.

[72] H. Calderon, M. Fine, Coarsening kinetics of coherent NiAl-type precipitates in

Fe-Ni-Al and Fe-Ni-Al-Mo alloys, Mater. Sci. Eng. 63 (1984) 197–208.

[73] I. Holzer, E. Kozeschnik, Computer simulation of the yield strength evolution in

Cu-precipitation strengthened ferritic steel, Mater. Sci. Eng. A 527 (2010)

3546–3551.

[74] E. Pereloma, D. Edmonds, Phase Transformations in Steels: Diffusionless

Transformations, High Strength Steels, Modelling and Advanced Analytical

Techniques, Elsevier, 2012.

[75] D. Lide, CRC Handbook of Chemistry and Physics, CRC Press, 2008.

[76] S. Morito, H. Yoshida, T. Maki, X. Huang, Effect of block size on the strength

of lath martensite in low carbon steels', Mater. Sci. Eng. A 438 (2006) 237.

[77] R. Schnitzer, S. Zinner, H. Leitner, Modeling of the yield strength of a stainless

maraging steel, Scr. Mater. 62 (289) 286.

[78] G. Ansell, F. Lenel, Criteria for yielding of dispersion-strengthened alloys, Acta

Metall. 8 (1960) 612–616.

[79] M. Green, G. Chin, J. Vander sand, Plastic deformation of single crystals of the

heusler alloy Cu2MnAl, Metall. Trans. A 8 (1977) 353–361.



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

Acta Materialia xxx (2016) xxx-xxx 17

[80] A. Ardell, Precipitation hardening, Metall. Trans. A 16 (1985) 2131–2165.

[81] R. Fleischer, Substitutional solution hardening, Acta Metall. 11 (1963) 203.

[82] R. Labusch, A statistical theory of solid solution hardening, Phys. Stat.

Sol. 41 (1970) 659–669.

[83] M. Karimi, A. Najafizadeh, A. Kermanpur, M. Eskandari, Effect of martensite

to austenite reversion on the formation of nano/submicron grained AISI 301

stainless steel, Mater. Charac. 60 (2009) 1220–1223.

[84] P. Gibbs, E. De Moor, M. Merwin, B. Clausen, J. Speer, D. Matlock, Austenite

stability effects on tensile behavior of manganese- enriched-austenite transfor-

mation-induced plasticity steel, Metall. Mater. Trans. A 42 (2011) 3691–3702.

[85] J. Han, S. Lee, J. Jung, Y. Lee, The effects of the initial martensite microstruc-

ture on the microstructure and tensile properties of intercritically annealed

Fe-9Mn-0.05C steel, Acta Mater. 78 (2014) 369–377.

[86] R. Miller, Ultrafine-grained microstructures and mechanical properties of alloy

steels, Metall. Trans. 3 (1972) 905–912.

[87] D. Vanderwalker, The precipitation sequence of Ni3Ti in Co-free maraging

steel, Metall. Trans. A 18 (1987) 1191–1194.

[88] K. Hirano, M. Cohen, B. Averbach, Diffusion of nickel into iron, Acta Met-

all. 9 (1961) 440–445.

[89] W. Gale, T. Totemeier, Smithells Metals Reference Books, Butterworth-Heine-

mann, 2003.

[90] A. Bowen, G. Leak, Solute diffusion in alpha- and gamma-iron, Metall.

Trans. 1 (1970) 1695–1700.

[91] M. Salamon, H. Mehrer, Interdiffusion, kirkendall effect, and Al self-diffusion

in iron-aluminium alloys, Int. J. Mater. Res. 96 (2005) 4–16.

[92] V. Shapovalov, A. Kurasov, Diffusion of titanium into iron, Metalloved. i Ter-

micheskaya Obrab. Met. 9 (1975) 71–73.

[93] M. Anand, R. Agarwala, Diffusion of copper in iron, J. App Phys. 37 (1966)

4248.


