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Abstract: This paper assesses and evaluates the detrimental effect of standard and complex 

geometrical features on the static strength of samples made of Q460 steel. The experimental 

results generated by testing four types of notched specimens were analyzed using the Theory of 

Critical Distances (TCD). The considered configurations included uniaxial tension tests on standard 

notched round bars and double-side U-notched flat plate specimens. In particular, our attention was 

focused on the fracture behavior of two specimens containing complex geometrical features 

subjected to pure-shear and tensile-shear local stress states. The common feature of these two 

notched specimens was that cracks were seen to initiate, within the material, away from the stress 

raisers, even though obvious stress concentrations existed at notch tip. The performed validation 

exercise confirms the accuracy and reliability of the linear-elastic TCD in estimating the fracture 

initiation position and static strength of standard notched round bars and double-side U-notched flat 

plate specimens. In the meantime, the linear-elastic method proposed in this paper can also be 

used as an effective approach to assess the fracture behavior of metallic components having 

complex geometry. 

Key words: notches; Theory of Critical Distances; static failure; fracture; structural steel 
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1.Introduction 

Many engineering investigations have demonstrated that failure of engineering components 

takes place in the vicinity of notches, cracks and complex geometrical features. Further, micro 

defects due to manufacturing usually tend to concentrate themselves in these regions with a 

weakening effect on the overall strength of the components. In parallel, stress concentration 

phenomena and the resulting local multiaxial stress states accelerate the crack initiation process. In 

this context, it is key to provide structural engineers with design methods suitable for evaluating the 

detrimental effect of notches on the overall strength of engineering components. 

The Theory of Critical Distances (TCD) [1] is a group of failure criteria which make use of the 

local linear-elastic stress fields in the vicinity of the assumed crack initiation locations to estimate 

the fatigue and fracture strength of notched components. The key feature of the TCD is that the 

relevant stress fields are post-processed by using a material dependent length scale parameter. 

The fundamental ideas on which the TCD is based can be dated back to the pioneering work 

carried out by Neuber [2] and Peterson [3] in the twentieth century. Neuber [2] proposed to calculate 

an effective stress to estimate the high-cycle fatigue strength of notched components by averaging 

the linear-elastic stress over a line emanating from the assumed crack initiation point. A few years 

later, Peterson [3] simplified the above approach by suggesting that the effective stress can directly 

be calculated by simply using the stress at a given distance from the notch apex. Subsequently, 

studying the notch effect on the static strength of fiber composites, Whitney and Nuismer [4] 

established the link between the critical distance and Linear Elastic Fracture Mechanics (LEFM), 

where the material's characteristic length can directly be determined through the LEFM fracture 

toughness and the material's ultimate tensile strength. These methods were then reformulated by 

Taylor [1, 5-6] to make them suitable for addressing different structural integrity problems. 

In recent years, a tremendous effort has been made by the scientific community to extend the 

use of the TCD to other ambits of the structural integrity discipline. In more detail, this theory was 

demonstrated to be successful in estimating the static strength of notched brittle and quasi-brittle 

material (such as PMMA, cement, rocks) [7-10] as well as of notched ductile metallic material 
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subjected to uniaxial [11,12] and multiaxial static loading [13,14]. More recently, Ameri et al. [15] 

have proven that the TCD, applied in conjunction with the Von Mises equivalent stress, is 

successful in predicting the static strength of welded joints. Further, the TCD was seen to be highly 

accurate also in estimating the fracture strength of notched metallic materials under dynamic 

loading by introducing a strain rate term in its formulation [16]. 

In contrast to other material failure theories which are based on elasto-plastic analysis (e.g. the 

phenomenological ductile fracture theories for crack-free bodies [17]), the most appealing feature of 

the TCD is its simplicity: various types of non-linearities can be accommodated into a framework 

that is entirely linear-elastic. Furthermore, when using the TCD to design real components, the 

static assessment can be performed by introducing only two additional material parameters, which 

can be determined easily using conventional standard testing equipment. 

A review of the available literature suggests that the overall reliability and accuracy of the TCD 

was verified mainly by using standard stress raisers, whose crack initiation locations were 

unambiguously known a priori and whose detrimental effect could be assessed directly by using a 

bi-dimensional model. On the contrary, real engineering components often contain complex 

geometrical features, where the location of the crack initiation is not always obvious, especially in 

the presence of complex multiaxial loading. It was demonstrated in a recent research conducted by 

Louks et al.[18] that the TCD used in conjunction with Modified Wöhler Curve Method (MWCM) is 

capable of giving a high-level accuracy in estimating the fatigue strength of a number of 

components containing complex/3D geometrical notches subjected to a complex multiaxial fatigue 

load history, where, however, the common feature of these investigated specimens was that the 

crack was observed to initiate at the stress raiser apices. 

It is well-known that, for some real notched engineering components, cracks do not initiate at 

the stress raiser tips, but in the interior area of the component, i.e., away from the highly stressed 

regions. In other words, the cracking behavior of such notched components is not governed by the 

mechanical behavior of the material in the vicinity of the stress raisers being assessed. 

In this complex scenario, this paper aims to use the linear-elastic TCD to estimate fracture 

initiation locations and static strength of notched samples made of high-strength structural steel 
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Q460 subjected to uniaxial and local multiaxial loading. Initially, the reliability and accuracy of the 

TCD were checked against a large number of experimental results generated by testing standard 

notched round bar and double-side U-notched flat plate specimens under uniaxial tensile loading. 

Subsequently, attention was focused on the performance of the TCD in assessing the fracture 

behavior of two specimens containing complex geometrical features subjected to local pure-shear 

and tensile-shear loading, where the common feature of these two specimens was that the crack 

was observed to initiate away from the stress raiser tips. 

2. Fundamentals of the Theory of Critical Distances 

Real engineering components often contain transitional geometrical features at connection 

regions. Such transitional geometrical features usually can be understood as notches which result 

in stress concentration phenomena. 

Consider a notched engineering component with an arbitrary geometry subjected to a complex 

system of forces - Fig.1(a). Stresses usually tend to concentrate in the local area at the notch root. 

Thus, the overall strength of the component is controlled and can be directly estimated by 

assessing the local stress field in the vicinity of the notch tip. 

The Theory of Critical Distances (TCD) [1] postulates that the static strength of 

notched/cracked engineering materials can be predicted by directly post-processing the local 

linear-elastic stress field in the vicinity of the notch root or crack tip via a characteristic material 

length parameter. The basic assumption of this method is that the static failure of a notched 

component will occur when the effective stress ıeff, determined from the linear-elastic stress field in 

the vicinity of the stress raiser apex being assessed, exceeds the material inherent strength ı0. In 

the determination of the effective stress ıeff, several strategies were proposed in the literature, 

which include the Point Method (PM), Line Method (LM) and the Area Method (AM). The principles 

for each of these methods are illustrated in Fig.1. 

The PM (see Fig.1(b)) is the simplest formalization of the TCD. According to Peterson's idea [3], 

the PM postulates that the static strength of a notched component can be estimated by using the 

stress state at a given distance from the apex of the stress raiser under investigation. The static 
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failure of the component being assessed is assumed to occur when the effective stress ıeff at a 

distance equal to L/2 from the notch tip on the straight line experiencing maximum stress gradient 

equals the material inherent strength ı0: 

  00, / 2 =     eff r L               Point Method         (1) 

The static strength of a notched component can also be predicted via an effective stress 

determined by averaging the linear-elastic stress over a line (see Fig.1(c)) or a semicircular area 

centered at the apex of the notch (see Fig.1(d)), i.e. the LM and AM, respectively: 
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In the above definitions, ı is the equivalent linear-elastic stress at the notch tip, which can be 

calculated according to one of the classic hypotheses (such as Von Mises, Tresca, maximum 

principal stress criterion, etc.), whereas L and ı0 are the so-called material critical distance and the 

inherent strength, respectively. Both L and ı0 are material constants. The most accurate way to 

determine these two material properties is to test samples containing, at least, two different 

geometrical features [1,11,14]. Fig. 2 schematically depicts the specific steps for determining L and 

ı0, where the two stress-distance curves are plotted, in the incipient failure condition, in terms of the 

adopted equivalent stress obtained by testing a sharp and blunt notch, respectively. According to 

the PM, the coordinates of the point at which these two curves intersect each other directly gives 

the values of both L and ı0. In what follows, we will use the TCD in conjunction with Von Mises’ and 

Tresca’s effective stress. 

Furthermore, attention should be paid as defining the straight line used to determine the 

effective stress ıeff (see Fig.1). This line is usually referred to as the focus path. Generally, for 

notched specimens with standard stress raisers, since the crack initiation location is in known a 

priori unambiguously, the focus path can be assumed to emanate from the crack initiation point and 

is parallel to the direction experiencing the maximum stress gradient. However, it was reported in a 

recent investigation [18] that, for notched components characterized by complex 3D geometries, the 
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position of the potential crack initiation location would change depending on the degree of 

multiaxiality and non-proportionality of the loading path being applied. In this scenario, when using 

the TCD, static strength has to be estimated by choosing several potential focus paths to find the 

one which experiences the maximum extent of damage. 

3. Calibration of the TCD material parameters for steel Q460 

3.1 Material 

The material considered in this study is Chinese low-alloy high-strength structural steel Q460 

(with nominal yield strength equal to 460 MPa) [19]. Table 1 gives the nominal chemical composition 

of the investigated steel. In order to obtain the conventional mechanical properties of this material, 

three smooth round bar specimens (see Fig.3(a)) with geometry designed according to ASTM 

E8/E8M-11 [20] were tested under uniaxial tensile loading. The tested specimens were machined 

from a block of 36 mm thick hot rolled steel plate with the longitudinal axis along the rolling direction. 

Fig.4 shows the engineering stress-strain curves obtained from the smooth round bar tensile tests, 

where the obtained mechanical properties for the investigated steel are as follows: Young's modulus, 

E=222758 MPa; average yield stress, ıy=430.7 MPa; ultimate tensile stress ıUTS=570.8 MPa; and 

elongation at fracture equal to 57%. All the notched specimens considered in the following sections 

were machined from the same parent steel plate in order to guarantee the investigated material 

properties to be consistent. 

3.2 Notched round bar specimens subjected to uniaxial tensile loading 

In order to estimate the values of L and ı0, 9 standard notched round bar specimens with three 

different values of the notch radii were machined and tested under uniaxial tensile loading. The 

geometry of the notched round bar specimen (see Fig.3(a)) is the same as that of the smooth round 

bar specimen described above, with a circumferential notch being introduced in the central area of 

the specimen. Three values of the notch radius, i.e. 6.25 mm, 3.125 mm and 1.5 mm, were 

considered. The initial diameter of the gross and net cross section were equal to 12.5 mm and 6.25 

mm, respectively. Before testing, the notched round bar specimens were labeled as BN-1-9 (three 

specimens were machined for each notch radius). 
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The uniaxial tension tests involving the notched round bar specimens were carried out by using 

an MTS universal testing machine with a 200 kN load cell. During testing, the nominal uniaxial 

elongation in the notch region was measured by using an extensometer having gauge length equal 

to 20 mm. The generated experimental results, including the dimension measured before/after 

testing, the ultimate tension loads and the adopted loading rate, are summarized in Table 2. 

Fig.5(a) shows the profile of some load-displacement curves for each type of notched round 

bar specimen. The load-capacity and ductility of the tested samples were observed to be strongly 

sensitive to the sharpness of the notch: the yield and ultimate nominal tensile load of the notched 

round bar specimens were seen to increase with the decrease of the notch radius. The 

displacement measured at the ultimate load and the reduced diameter of the net section after failure 

(see Table 2) were seen to decrease with the decrease of the notch tip radius.  

In addition, Fig.6(a) shows the fracture profile for each type of notched round bar specimen. A 

typical cup-and-cone rough fracture surface surrounded by 45° shear lips was observed at the 

notch root for each specimen. Moderate necking was also observed at the fracture surface, which 

indicates that final breakage was characterized by a ductile mode. 

After conducting the experiments, the linear-elastic stress fields in the vicinity of the notch root 

of the notched round bar specimens were post-processed by using FE software ABAQUS/Standard. 

The mechanical behavior of the steel being tested was assumed to obey a linear-elastic constitutive 

law. Axisymmetric two-dimensional FE models (see Fig.7) were solved to determine the relevant 

linear-elastic stress fields. In order to obtain accurate results, the mesh density in the vicinity of the 

notch tip was gradually increased until convergence occurred, this process resulting in elements 

having, in the process zone, a size of the order of 0.05 mm. 

As an example, Fig.7 shows both the Von Mises and Tresca stress contours, obtained in the 

incipient failure condition, at the root of the notched round bar specimen having a notch radius equal 

to 3.125 mm. The incipient failure condition here is defined as the maximum load recorded during 

testing. As shown in Fig.7, the position of the hot spot for the notched round bar specimen is 

univocal, directly corresponding to the notch tip. Thus, the focus path was defined as a straight line 

emanating from the notch tip, with such a line being also fully in accordance with the observed crack 
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path orientation (see Fig.6(a)). 

According to the experimental technique sketched in Fig.2, the chart of Fig.8 shows the 

stress-distance curves obtained on the corresponding focus paths of the notched round bar 

specimens in terms of Von Mises and Tresca equivalent stress, respectively. Each curve is obtained 

by using the average results generated from the three round bar specimens in the same sample 

types. Due to the usual errors associated with experiments, these curves are seen not to pass 

through the same point. As to the determination of the TCD material properties, the standard 

procedure suggested in the literature (e.g. Ref.[1,11,14]) to determine both L and ı0 is based on the 

use of two stress-distance curves characterized by different stress gradients. In other words, it is 

generally accepted that using two sets of results generated by testing bluntly and sharply notched 

specimens, respectively, allows both the critical distance and the material inherent strength to be 

determined accurately. Therefore, according to this idea, the values of L and ı0 adopted in the 

present study were determined by using the results generated from the samples containing the 

bluntest and sharpest notch, i.e. the bars having notch radius equal to 6.25 mm and 1.5 mm, 

respectively. For the investigated Q460 steel, this process resulted in the following TCD material 

parameters: L=1.026 mm and ı0=649.6 MPa when the Von Mises equivalent stress was adopted for 

the assessment; and L=1.058 mm and ı0=684.2 MPa when the Tresca equivalent stress was 

adopted for the assessment. This result clearly indicates that the values of the TCD material 

parameters depend on the adopted definition for the equivalent stress. 

4. Validation of the TCD by experimental data 

After determining the values of L and ı0, the TCD can be used to estimate the fracture initiation 

location and static strength of the notched component being assessed. The potential crack initiation 

point can be located by identifying the position of the hot spot on the component, and the overall 

static strength of the component can be estimated by comparing the magnitude of the effective 

stress ıeff, determined in the vicinity of the notch tip, with the material inherent strength ı0. 

In order to assess the reliability of the TCD, in what follows the accuracy of this theory will be 

checked against a number of experimental results generated by testing both standard and complex 
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geometrical features under uniaxial tensile and local multiaxial loading. 

4.1 Double-side U-notched flat plate specimen subjected to uniaxial loading 

The first geometry which was investigated to check the accuracy of the TCD is a flat plate with 

transversal U-notches on both sides (see Fig.3(b)). These specimens were machined from a 

rectangular sheet having length × width × thickness equal to 150 mm × 50 mm × 5 mm. In order to 

introduce the wanted stress concentration phenomena at the critical area, symmetric 

circumferential notches with three different notch radius values, i.e. 10 mm, 3 mm and 1 mm, were 

machined on both sides of the middle section of the sheet. The cross-sectional thickness at notch 

root and clamping section of the sample were 2 mm and 5 mm, respectively.  

Under uniaxial tensile loading, the specific geometry of the double-notched flat plate resulted in 

a plane strain condition at the center of the notch due to the confinement of the deformation along 

the groove length direction. Hence, such a geometry was used to investigate the fracture behavior 

of the material being assessed under plane strain condition [21]. For each notch radius, two 

specimens were machined and tested under uniaxial loading. Before testing, the double-notched 

flat plate specimens were labelled as GP-1-6. During testing, the uniaxial elongation of the notch 

region was measured by using an extensometer having gauge length equal to 20 mm. The 

measured cross-sectional thickness at the notch root and the loading rate applied to the 

double-notched flat plate specimens are summarized in Table 2. 

The load-displacement curves and the fracture modes for the double-notched flat plate 

specimens are presented in Fig.5(b) and 6(d), respectively. Similar to the mechanical behavior of 

the notched round bar specimens discussed in the previous section, the load-capacity and ductility 

of the tested double-notched flat plate samples were seen to be governed by the sharpness of the 

notch, even though the net cross-sectional areas were identical. During the loading process, cracks 

were seen to initiate at the central area of the notch region (see Fig.9(b)), that is, the region 

experiencing the largest strain confinement. The crack subsequently propagated along the direction 

perpendicular to the axis of the specimen. Further, it should be noted that, similar to what observed 

by Susmel and Taylor in Refs [13, 14], the maximum load in the load-displacement curve of the 
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double-notched flat plate specimens was seen to correspond to the presence of a visible crack on 

the specimen surface. Such phenomena were also observed for both the pure-shear and 

tensile-shear notched specimen described in the following sections (see the following section 4.2 

and 4.3). This suggests that, for the investigated samples, the maximum load recorded during the 

test could be used to define the incipient failure condition. 

The linear-elastic stress fields at the notch root of the double-notched flat plate specimen were 

post-processed by using a 3D FE model as shown in Fig.9(a). Due to the obvious symmetry in three 

planes, only 1/8 of the specimen was modelled. The minimum element size adopted at the notch 

root region of the sample was refined down to 0.1 mm in order to estimate the required stress field 

accurately. 

As an example, Fig.9(c) shows the Von Mises stress contour at the notch tip of the flat plate 

specimen with notch radius equals to 3 mm (the corresponding Tresca stress contour at the notch 

tip of the sample is similar to this result). Due to the simplicity of the geometry, as expected, the 

maximum stress point, i.e. the hot-spot, was, at the notch tip, at the midsection of the sample, that is, 

at the specimen section experiencing the largest degree of stress triaxiality. Such a hot spot position 

fully agrees with the observed crack initiation location during testing (see Fig.9(b)). Accordingly, the 

focus path was assumed to emanate from the notch tip being parallel to the specimen's thickness 

direction (see Fig.9(a)). 

For each double-notched flat plate specimen, the charts of Fig.9(d-e) show the stress-distance 

curves obtained, in the incipient failure condition, on the corresponding focus paths in terms of Von 

Mises and Tresca equivalent stress, respectively. Each curve is calculated as the average from the 

results obtained for the same sample type. In order to evaluate the accuracy of the PM and LM, the 

effective stress ıeff calculated through Eq.(1) and (2) is compared with the material inherent strength 

ı0. Table 3 and Table 4 summarize the accuracy of the PM and LM, used in terms of Von Mises and 

Tresca equivalent stress, for all the tested flat plate samples, where the results predicted by the 

TCD for all the notched round bar specimens are also reported. The error was calculated according 

to the following equation: 
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0

0

100%
 




 effError                                 (4) 

In Eq.(4), the prediction is conservative when the value of the error is positive; whereas the 

prediction is non-conservative when the value of the error is negative. 

The results reported in Table 3-4 make it evident that the TCD used in conjunction with both 

Von Mises and Tresca equivalent stress is highly accurate in predicting the static fracture strength 

of notched Q460 under nominal uniaxial tension loading. The estimates of the PM and LM for both 

the notched round bar and double-notched flat plate specimens fall within an error interval of ±20%. 

Further, it should be noted in Table 4 that, when the Tresca stress is adopted as the equivalent 

stress, the LM could not be used to estimate the strength of the specimen GP-3, 4, 6, since the 

value of 2L has exceeded the measured thickness at the notch of the sample (see Table 2). 

Table 3-4 also summarize the level of scattering charactering the results obtained for each type 

of specimen being investigated. As it can be observed from Table 3-4, with the exception of 

specimens GP-5 and GP-6 (i.e. the double-notched flat plate specimen having notch radius equals 

to 1 mm), the level of scattering obtained by applying both the PM and LM for the same type of 

specimen is quite limited. It is the authors' opinion that the large scattering level associated with 

specimens GP-5 and GP-6 is mainly due to the existing difference in terms measured thickness at 

notch root of the samples (see Table 2), this returning different values for the experimental ultimate 

loads (see Table 2). However, as it can be observed from Table 3-4, the predictions made by 

applying the PM and LM still fall within an error interval of ±20%. This error is considered to be 

acceptable, since, in general, it is not possible to distinguish between an error of ±20% and an error 

of 0% due to those problems which are usually encountered during testing as well as during the 

numerical analyses [6]. 

4.2 Complex geometrical notched specimen subjected to local pure shear loading 

In order to further check the accuracy of the TCD in predicting the strength of notched steel 

Q460 under local pure-shear stress state, a flat plate specimen characterized by the complex 

geometry shown in Fig.3(c) was tested under uniaxial tension loading. In Refs.[22-24], the geometry 
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of this type of specimen was shown to result in a nearly pure-shear stress state at the 

butterfly-shaped gauge section, with the crack initiation location being controlled by changing the 

shape and opening angle of the upper and lower notches. For example, cracks can be forced to 

initiate at the upper/lower notch tip of the gauge section by using a crack-like notch with a small 

opening angle. On the contrary, cracks can be initiated at the interior region (i.e., away from the 

notch surface) by using a blunt notch with a larger opening angle. In order to force the crack to 

initiate at the gauge area, the adopted cross-sectional thickness of the gauge and the clamping 

section were different, where the thickness of the former and latter ones were 2 mm and 4 mm, 

respectively. 

In the present paper, the notch manufactured at the upper and lower edge of the gauge section 

was a round blunt notch having an opening angle equals to 90° and notch radius equals to 2 mm. 

Two specimens were machined and labelled as FP-1,2. To apply the tensile load, pinned bolts were 

inserted in the holes at both the upper and lower clamping sections. The obtained ultimate load and 

loading displacement rate for the pure-shear flat plate specimen are reported in Table 2. 

Fig.5(c) shows the load-displacement curve of the pure-shear flat plate specimen, where a 

yielding plateau with a long plastic displacement phase is observed before breakage takes place. It 

should be pointed out also that, during the loading phase, the crack was seen to initiate at the 

interior region (see the red cross in Fig.10(d)) rather than at the surface in the vicinity of the upper 

and lower notch. This phenomenon is very interesting, since it indicates that the global fracture 

behavior of notched components is not necessarily governed by local stress concentration 

phenomena. In other words, the complex geometry being investigated makes the flat plate 

specimen behave in a manner similar to that of a plain specimen even though stress raisers exist at 

the critical region of the gauge section. 

Figs.10(b-c) show the Von Mises stress field, plotted in the incipient failure condition, at the 

gauge section of the pure-shear flat plate specimen. This stress-field was determined by using a 

finite element model (Fig.10(a)) with a minimum mesh size of 0.1 mm at the gauge area. As it can 

be observed from Fig.10(b), due to the complex geometry of the gauge area, several stress 

concentration points combined with local multiaxial stress states appear at the upper and lower 
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notch root simultaneously. Accordingly, the positions of the hot spot and the corresponding focus 

path cannot be defined unambiguously. 

In order to use the TCD to evaluate the failure condition of the pure-shear specimen, here, we 

use an alternative method to determine the fracture initiation position and the focus path of the 

sample. As described in section 2, the basic assumption of the PM is to ignore the stress at the 

crack/notch tip, and use the stress information at a given distance away from the notch tip to 

estimate the failure strength of the component. According to this idea, we can draw a curvilinear 

path at a distance of L/2 away from the surface and use the stress information obtained on this path 

to determine the failure condition of the specimen being assessed. In such circumstances, the 

potential crack initiation point can be assumed to occur at the point experiencing the largest stress 

on this critical path, whereas the focus path can be defined as a straight line passing through such a 

maximum stress point and perpendicular to the surface. 

According to the idea discussed above, Fig.10(c) shows such a critical path located, at the 

lower notch region in the mid-plane of the gauge section, at a distance equal to L/2 away from the 

notch surface. The relevant stress distribution obtained on this path is presented in Fig.10(e). Due 

to the anti-symmetry of the geometry, the stress distribution obtained from the corresponding path at 

the upper notch is mirrored by that shown in Fig.10(e). As it can be observed in Fig.10(e), the 

largest Von Mises stress magnitude is obtained at material point B with a stress value equal to 811 

MPa. Such a stress level is higher than the value of ı0, which indicates failure has occurred at this 

region. 

It should also be recalled here that, according to the cracking behavior displayed by the 

pure-shear flat plate specimens, the crack was seen to initiate in a region away from the notch area 

(see Fig.10(d)). This result suggests that, when using the TCD, one should not only focus his 

attention on the local stress information at the notch, since the stress value at a material point away 

from the notch region may be higher than that on any points on the arc path we used for determining 

the fracture initiation location. Under such circumstances, the crack would initiate internally rather 

than in the notch tip region. 

According to this idea, the stress information in the internal area of the gauge section was 
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subsequently investigated. The stress distribution shown in Fig.10(c) suggests that the material 

point experiencing the largest stress magnitude in the internal area of the gauge section 

corresponds to point F. The stress value obtained at this point, which is equal to 814 MPa, is slightly 

higher than the value obtained at point B, suggesting that the crack could also initiate at this point. 

This observation is in full agreement with the experimental result shown in Fig.10(d). 

Further, in order to clearly compare the prediction results obtained from the two stress 

strategies (i.e. Von Mises and Tresca stress) investigated in the present study, the performance of 

the Tresca stress criterion, used along with the TCD, was investigated subsequently. Fig.11 shows 

the Tresca stress field obtained, under the same conditions we used to determine the Von Mises 

stress, at the gauge section of the pure-shear specimen. As it can be observed in Fig.11,The 

distribution of the Tresca stress at gauge area of the sample is similar to that of the Von Mises 

stress (Fig.10(c)), where local high stresses were observed to appear at both the notch and internal 

regions simultaneously. In order to estimate the fracture initiation location, similar to the procedure 

we used for the Von Mises stress, the Tresca stress fields at both the notch and interior regions 

were investigated, respectively. It is shown that the points experiencing the maximum stress 

magnitude at the critical path and internal material region are also corresponding to the material 

point B and point F, respectively. However, the difference in terms of stress magnitude between the 

internal point F (938 MPa) and material point B (821 MPa) is more evident, which further proves that 

the crack was initiated at the interior material region. These results, combined with the results 

obtained from the Von Mises stress criterion, confirm that the use of the linear-elastic TCD allowed 

the potential fracture initiation location to be estimated quite accurately for this sample. This proves 

that such a design method is capable of modelling the fracture behavior of notched components 

under pure-shear stress state, this holding true independently of the complexity of the geometry 

being assessed. 

Since the crack was initiated at the interior material region, the fracture behavior of the 

pure-shear notched specimen is similar to the one displayed by a plain (i.e., un-notched) specimen. 

Such a fracture condition falls outside the application range of the TCD, since this theory is 

designed to specifically assess stress raisers rather than un-notched components [1]. In this 
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scenario, according to classic continuum mechanics, the ultimate tensile stress ıUTS, which is 

usually adopted as the strength limit for the un-notched material, should be used to estimate the 

static strength of the pure-shear specimen. In such circumstances, the expression for the error in 

Eq.(4) should be modified as: 

max 100%UTS

UTS

Error
 




                            (5) 

where ımax is the maximum value of the Von Mises’ or Tresca’s equivalent stress obtained at the 

internal gauge area of the sample. According to the results shown in Fig.10(c) and Fig.11, ıeff =814 

MPa when the Von Mises equivalent stress was adopted for the analysis, and ıeff =938 MPa when the 

Tresca equivalent stress was adopted for the analysis. The results calculated according to Eq.(5) 

shows that, for the investigated Von Mises and Tresca stress criteria, the estimated errors obtained 

using the ultimate tensile stress ıUTS as the strength limit are about 43% and 64%, respectively. It is 

the authors' opinion that such conservative results are to be ascribed to the confinement effect of 

the material around the crack initiation location, which delays the actual crack initiation process. 

Further, it is also believed that the magnitude of the load at which the crack initiated was lower than 

the maximum force recorded during testing. The fact that the initiation of a crack at one material 

point does not correspond to the complete breakage of the component being tested should explain 

why a conservative result was obtained by using the standard continuum mechanics approach 

along with the ultimate tensile stress. 

4.3 Complex geometrical notched specimen subjected to local tensile shear loading 

The notched specimen considered in the present section is a flat plate involving an oblique 

gauge area located at the center of the specimen. In Refs.[22,25] the geometry of this sample (see 

Fig.3(d)) is shown to be capable of producing a mixed tensile-shear stress state at the gauge area 

when the specimen is tested under uniaxial tensile loading. The axis of the gauge region is 

designed to be at 20 degrees to the loading axis of the specimen. In order to force the crack to 

initiate in the gauge area, the gauge section of the tensile-shear specimen was designed to be 

thinner than that of the clamping section, where the thickness of the former and the latter ones were 
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2 mm and 4 mm, respectively. 

Contrary to the geometry we used in the early research [25], no notch was employed at the 

gauge section of the tensile-shear specimen in the present study, thus this region behaves in a 

manner more like a plain specimen. However, blunt round notches, having a notch radius equals to 

3 mm and opening angle equal to 80 degrees, were introduced as a transitional feature between the 

gauge and clamping sections (see Fig.3(d)). Such a complex geometry makes the crack initiation 

location of the specimen ambiguous, since the crack could initiate either at the notch root or in the 

gauge area. 

Two tensile-shear flat plate specimens were machined and tested under uniaxial tensile loading 

by using an MTS universal testing machine, where the specimens were labelled as GP-3,4 before 

testing. The relevant experimental results generated for the tensile-shear flat plate specimens are 

summarized in Table 2. 

The load-displacement curves and the fracture profile of the tensile-shear specimen are 

presented in Fig.5(d) and 6(c), respectively. Similar to the fracture behavior of the pure-shear 

specimen, the crack on the tensile-shear specimen was observed to initiate at the center of the 

oblique gauge section (see the red cross position in Fig.12(d)) rather than at the notch root in the 

transitional region. The crack subsequently propagated forming a fracture surface being at about 

60° to the loading direction. Such a fracture initiation location suggests that the notch in the 

transitional region between the gauge and clamping section had no detrimental effect on the overall 

strength of the sample. In addition, necking was also observed at the fracture surface, which 

indicates that the cracking behavior of the tensile-shear specimen was characterized by a ductile 

mode. 

Fig.12(b-c) shows the Von Mises stress field, plotted in the incipient failure condition, obtained 

at the gauge area of the tensile-shear specimen by using the 3D FE model shown in Fig.12(a) 

(where the minimum mesh size in gauge area is 0.1 mm). Such a stress distribution confirms that 

stress concentration phenomena exist at the surface area of the transitional notch roots. Further, 

due to the complexity of the geometry, high stress values were also observed to localize at both the 

sides and the central region of the gauge section of the sample. 
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In order to determine the fracture initiation location of the tensile-shear specimen, similar to the 

procedure we used to predict the failure condition for the pure-shear specimen, the stress field 

located at the notch root area of the sample was investigated first. Fig.12(c) shows the critical path 

located at the mid-plane of the gauge section of the tensile-shear specimen with a distance of L/2 

from the surface area of the notch root. The relevant Von Mises stress-distance curve extracted on 

this path is presented in Fig.12(e). It is interesting to observe (Fig.12(e)) that the stress value 

extracted in front of the maximum stress point at the stress raiser, i.e. material point B, is lower than 

the material inherent strength ı0. Such a result explains the reason why the crack was not initiated 

at the notch root, since the material at this region was far from reaching its strength limit. In addition, 

the material point experiencing the largest stress magnitude was seen to be point D on the critical 

path, which is located at the side of the gauge section. In the incipient failure condition, the stress 

value at this point (761.1 MPa) was larger than the material inherent strength (ı0=649.6 MPa), 

suggesting that the failure process started in this region. 

Subsequently, our attention was focused on the stress information located at the interior region 

of the tensile-shear specimen. The Von Mises stress contour in Fig.12(c) shows that the material 

point experiencing the largest stress magnitude in the interior area appears at the central point of 

the gauge zone (i.e. point F), with a stress value equal to 732.6 MPa. This stress level is slightly 

lower than that obtained at material point D (i.e., 761.1 MPa). This result slightly deviates from the 

observed experimental result. 

Since the results obtained by using the Von Mises equivalent stress were not that accurate, we 

tried to re-analyse the generated results using the Tresca’s equivalent stress. Fig.13 shows the 

Tresca stress field obtained, under the same conditions we used to determine the Von Mises stress, 

at the gauge section of the tensile-shear specimen. The difference in terms of stress magnitude 

between central point F (817.5 MPa) and material point D (762.7MPa) is more evident, which 

suggests that the crack was initiated at the central region. Further, one can also find that the straight 

line which connects the central point F to point D is right in accordance with the direction of the 

maximum shear stress. Such a direction is observed to coincide with the propagation direction of 

the fracture surface as well. 
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According to the results described above (and compared with the results obtained from the 

Tresca stress criterion), the use of Von Mises equivalent stress seems slightly less successful in 

estimating the fracture initiation location of the tensile-shear specimen. However, according to the 

results in Fig.12(c), the difference in terms of stress magnitude between the central point F and 

material point D obtained from the Von Mises stress criterion is not obvious, which is within an 

internal of 5%. Such a result suggests that there was an evident competition between the notch 

effect and the intrinsic strength of the tested material during the test for this specimen. Further, it is 

demonstrated in the previous sections that the two equivalent stresses strategies resulted in the 

same level of accuracy in estimating the static strength of the notched Q460 steel components. In 

this scenario, our recommendation for predicting the cracking behavior of the tensile-shear 

specimen is to consider the results calculated by using both Von Mises’ and Tresca’s equivalent 

stress. 

To conclude, since in this specimen type the crack was seen to initiate in the interior region, the 

static strength of the tensile-shear specimen could successfully be estimated by using the Von 

Mises or Tresca stress value determined at point F (see Fig.12(c) and Fig.13), i.e. 732.6 MPa or 

817.5 MPa, respectively. According to Eq.(5), for the adopted Von Mises and Tresca equivalent 

stress, the errors calculated using the ultimate tensile stress as the strength limit are equal to 28.3% 

and 43.2%, respectively, which are not only low, but also conservative. 

5. Discussion 

The aim of the present paper is to investigate the reliability and accuracy of the linear-elastic 

TCD in assessing and evaluating the detrimental effects of notches on the overall behavior of 

notched samples made of steel Q460. According to the results obtained in the present study, the 

considered notches have an obvious influence on the overall behavior of the standard samples 

subjected to uniaxial tensile loading. The overall static strength, ductility and the fracture initiation 

location of the notched round bar and double-side U-notched flat plate specimens being assessed 

were observed to be strongly controlled by the mechanical behavior of the material in the vicinity of 

the notch root area. Under such circumstances, the linear-elastic TCD, applied in terms of both Von 
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Mises and Tresca equivalent stress, was seen to be successful in estimating the static strength of 

the these samples by directly post-processing the linear-elastic local stress fields acting on the 

material in the vicinity of the notch tip, resulting in estimates falling within an error interval of ±20%. 

On the contrary, according to the cracking behaviors observed from the pure-shear and tensile- 

shear flat plate specimens, we can conclude that, for some notched specimens containing complex 

geometrical features, cracks may initiate in a region away from the stress raisers. In this sense, the 

overall fracture mode of such notched specimens is transferred from a "local-controlled" mode to a 

"global-controlled" mode due to the considered complex geometry and material properties. Under 

such circumstances, according to the design procedure we propose in the present study, the 

fracture initiation location of such a notched component can be estimated by directly finding the 

maximum stress point in the material region having a distance of L/2 away from the surface of the 

notch root. Accordingly, the static strength of the component can be estimated by comparing the 

stress value obtained at this maximum stress point with the corresponding material strength limit, i.e. 

the ı0 or ıUTS. 

Further, it should be noted that, since the TCD method is a local approach which shares the 

basic assumption of Linear Elastic Fracture Mechanics and is based on the local mechanical 

information in front of the stress raiser, this method is not valid for estimating the failure condition of 

the "global-controlled" notched specimen, which actually behave in a manner like a plain specimen. 

Under such circumstances, the overall static strength of the notched component being assessed is 

estimated by using the theory which is suitable for estimating the fracture of plain specimen, e.g. the 

ultimate tensile stress used in the present study. 

In addition, it is worth mentioning that if ı0 (rather than ıUTS) was used as the material strength 

limit to estimate the static strength of the pure-shear and tensile-shear specimens, the prediction 

error for these two notched geometries would be significantly reduced (taking the results obtained 

from Von Mises stress criterion as examples, the prediction error for the pure-shear specimen will 

be reduced from 43% down to 25% and that for tensile-shear specimen will be reduced from 28% to 

13%). In the meantime, according to the stress fields results for these two specimens in Fig.10(b) 

and Fig.12(b), we can find that obvious stress gradients were also present around the internal 
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maximum stress region. Such a result seems to indicate that these internal material regions can 

also be treated as stress raisers, even though these regions are away from the notch. The results 

described above seem to suggest to use ı0 rather than ıUTS to assess these complex notched 

specimens, since ı0 can be considered as a local material strength index capable of taking into 

account the stress gradient effect when plastic deformation are ignored [11]. However, attention 

must be paid when using this approach since no previous work in this field suggests that the internal 

material region can be regarded as a stress raiser and addressed by using a local failure theory. 

However, we think that such a usage can be considered as an open question which needs more 

and further works to be answered properly. 

Finally, it is also interesting to discuss why the linear-elastic TCD method can work for the 

linear-elastic conditions. According to the TCD’s modus operandi, we can see that, via length L, the 

magnitude of the effective stress used to evaluate the extent of damage is reduced compared to 

that of the linear-elastic stress field close to the apex of the geometrical feature being assessed. 

Accordingly, in the incipient failure condition, this mimics the smoothing effect of plasticity on the 

local stress fields. This simple argument may explain why the linear-elastic TCD is successful in 

estimating the static strength of ductile notched materials. 

6. Conclusions 

This paper summarizes an attempt to use the linear-elastic TCD to estimate the fracture 

initiation location and static strength of notched samples made of Q460 high-strength steel 

subjected to uniaxial and multiaxial stress states. The reliability and accuracy of the PM and LM, 

used in conjunction with Von Mises and Tresca equivalent stress, were checked against the 

experimental results generated by testing four types of notched specimens. The main conclusions 

can be summarized as follows: 

(1) The linear-elastic TCD can successfully be used to estimate the static strength of notched 

ductile Q460 steel subjected to nominal uniaxial loading. The estimates of both the PM and LM 

for the standard notched round bar and double-side U-notched flat plate specimens are seen to 

fall within an error interval of ±20% when the methods are formalized in terms of Von Mises or 
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Tresca equivalent stress. 

(2) For the pure-shear and tensile-shear flat plate specimen being assessed in the present paper, 

which contained complex geometrical features and were subjected to local pure-shear and 

multiaxial stress states, the cracks were seen to initiate at the interior area of the specimen 

rather than at the surface area of the stress raiser. Under such circumstances, the strength of 

these specimens was assessed according to classic continuum mechanics. 
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Figure 1. local coordinate system located at the notch tip of the notched component subjected to a 

complex system of forces (a); the working principle of the Point Method (b); Line Method 

(c); and the Area Method (d). 

Figure 2. Determination of the material critical distance L and inherent strength ı0 through two 

linear-elastic stress-distance curves generated by testing two notched specimens with 

different notch sharpness under nominal uniaxial loading. 

Figure 3. Geometries of the tested specimens: smooth and notched round bars (a); double-side 

U-notched flat plate specimens (b); pure-shear flat plate specimen (c); and tensile-shear 

flat plate specimen (d). (dimensions in millimeters). 

Figure 4. Engineering stress-strain curves of Q460 steel 

Figure 5. Load-displacement curves of the tested specimens: notched round bar specimens (a); 

double-side U-notched flat plate specimens (b); pure-shear flat plate specimen (c); 

tensile-shear flat plate specimen (d). 

Figure 6. Fracture profiles of the tested specimens: notched round bar specimens (a); pure-shear 

flat plate specimen (b); tensile-shear flat plate specimen (c); double-side U-notched flat 

plate specimens (d). 

Figure 7. Von Mises and Tresca stress field located at the notch root of notched round bar specimen 

(notch radius=3.125 mm). 

Figure 8. Stress-distance curves obtained on the corresponding focus paths of the notched round 

bar specimens: Von Mises stress (a); Tresca stress (b). 

Figure 9. Finite element model and the focus path of double-side U-notched flat plate specimen (a); 

observed fracture initiation location of the sample in the test (b); Von Mises stress fields 

obtained at the notch root area (c); stress-distance curves obtained on the focus paths of 

the double-side U-notched flat plate specimens: Von Mises stress (d); Tresca stress (e). 

Figure 10. Finite element model developed for the pure-shear flat plate specimen (a); Von Mises stress 

fields located at the gauge section (b); the critical path located at the lower notch region of the 

specimen (c); the observed experimental fracture initiation location (d); Von Mises 

stress-distance curve obtained on the critical path (e). 
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Figure 11. Tresca stress fields located at the gauge section of the pure-shear specimen and the 

relevant stress-distance curve obtained on the critical path. 

Figure 12. Finite element model developed for the tensile-shear flat plate specimen (a); Von Mises 

stress fields located at the gauge section (b); the critical path located at the notch region 

of the tensile-shear specimen (c); the observed experimental fracture initiation location 

(d); stress-distance curve obtained on the critical path (e). 

Figure 13. Tresca stress fields located at the gauge section of the tensile-shear specimen and the 

relevant stress-distance curve obtained on the critical path. 
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Figures 

 

Figure 1. local coordinate system located at the notch tip of the notched component subjected to a 
complex system of forces (a); the working principle of the Point Method (b); Line Method (c); and 

the Area Method (d). 

 

 

Figure 2. Determination of the material critical distance L and inherent strength ı0 through two 
linear-elastic stress-distance curves generated by testing two notched specimens with different 

notch sharpness under nominal uniaxial loading. 
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Figure 3. Geometries of the tested specimens: smooth and notched round bars (a); double-side 
U-notched flat plate specimens (b); pure-shear flat plate specimen (c); and tensile-shear flat plate 

specimen (d). (dimensions in millimeters). 
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Figure 4. Engineering stress-strain curves of Q460 steel 

 

  

    
Figure 5. Load-displacement curves of the tested specimens: notched round bar specimens (a); 

double-side U-notched flat plate specimens (b); pure-shear flat plate specimen (c); tensile-shear flat 
plate specimen (d). 
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Figure 6. Fracture profiles of the tested specimens: notched round bar specimens (a); pure-shear 
flat plate specimen (b); tensile-shear flat plate specimen (c); double-side U-notched flat plate 

specimens (d). 

 

  

Figure 7. Von Mises and Tresca stress field located at the notch root of notched round bar 
specimen (notch radius=3.125 mm)  
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Figure 8. Stress-distance curves obtained on the corresponding focus paths of the notched round 
bar specimens: Von Mises stress (a); Tresca stress (b). 
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Figure 9. Finite element model and the focus path of double-side U-notched flat plate specimen (a); 
observed fracture initiation location of the sample in the test (b); Von Mises stress fields obtained at 

the notch root area (c); stress-distance curves obtained on the focus paths of the double-side 
U-notched flat plate specimens: Von Mises stress (d); Tresca stress (e). 
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Figure 10. Finite element model developed for the pure-shear flat plate specimen (a); Von Mises stress 
fields located at the gauge section (b); the critical path located at the lower notch region of the specimen 
(c); the observed experimental fracture initiation location (d); Von Mises stress-distance curve obtained 

on the critical path (e). 
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Figure 11. Tresca stress fields located at the gauge section of the pure-shear specimen and the 

relevant stress-distance curve obtained on the critical path 
 
 

 

Figure 12. Finite element model developed for the tensile-shear flat plate specimen (a); Von Mises 
stress fields located at the gauge section (b); the critical path located at the notch region of the 
tensile-shear specimen (c); the observed experimental fracture initiation location (d); Von Mises 

stress-distance curve obtained on the critical path (e). 
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Figure 13. Tresca stress fields located at the gauge section of the tensile-shear specimen and the 

relevant stress-distance curve obtained on the critical path 
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Tables 

Table 1 Chemical composition of Q460 steel (in weight%) 

C Si Mn P S Al Nb V Ti 

0.13 0.30 1.40 0.014 0.002 0.03 0.031 0.043 0.014 

 

 

Table 2 Experimental results of the notched specimens tested in this paper 

Specimen 
Notch 
depth 
D(mm) 

Notch 
opening 

angle 
(degree) 

Notch 
radius 
R(mm) 

Specimen 
code 

Ultimate 
load Fu 

(kN) 

Measured diameter 
(round bar specimen) 
 or thickness (plate 

specimen) 
Experimental 
loading rate 
(mm/min) Initial 

value    
(mm) 

Value at 
fracture 
(mm) 

Notched 
round bar 
specimen 

3.125 0 

6.25 

BN-1 21.68 6.32 3.76 

0.3 BN-2 21.54 6.38 4.68 

BN-3 21.25 6.34 3.68 

3.125 

BN-4 23.89 6.38 4.62 

0.2 

BN-5 23.59 6.38 4.12 

BN-6 24.54 6.38 4.70 

1.5 

BN-7 25.67 6.60 4.28 

BN-8 26.15 6.66 4.72 

BN-9 25.56 6.66 4.52 

Double-side 
U-notched 
flat plate 
specimen 

1.5 0 

10 
GP-1 68.14 2.16 0.94 

0.24 

GP-2 66.69 2.24 1.06 

3 
GP-3 70.76 2.10 1.18 

GP-4 71.37 2.06 1.00 

1 
GP-5 88.14 2.30 1.26 

GP-6 93.56 2.06 1.36 

Pure shear 
 flat plate 
specimen 

3.97 90 2 

FP-1 11.15 2.20 2.02 

0.48 

FP-2 11.56 2.20 2.00 

Tensile 
shear 

 flat plate 
specimen 

—— 80 3 

FP-3 9.49 2.20 1.68 

FP-4 9.57 2.20 0.94 
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Table 3 The accuracy of the PM and LM, used in conjunction with Von Mises stress, in predicting the 

static strength of notched round bar and double-notched flat plate specimens tested under uniaxial 

loading conditions 

Specimen 
Effective stress  

(Von Mises stress)  
ıeff [MPa] 

Estimate error [%] 
Mean value of the 

error [%] 

Name Notch radius 
Specimen 

code 
PM LM PM LM PM LM 

Notched 
round  
bar 

specimen 

R=6.25mm 

BN-1 672.5 609.5 3.53 -6.17 

1.76 -7.74 BN-2 656.0 594.5 0.99 -8.47 

BN-3 654.5 593.8 0.76 -8.59 

R=3.125mm 

BN-4 692.7 590.2 6.64 -9.14 

7.22 -8.63 BN-5 684.2 582.8 5.34 -10.28 

BN-6 712.5 607.4 9.69 -6.48 

R=1.5mm 

BN-7 649.0 538.7 -0.09 -17.07 

-0.65 -17.55 BN-8 649.0 538.4 -0.09 -17.11 

BN-9 638.0 529.6 -1.78 -18.47 

Double 
side 

U-notched 
 flat plate 
specimen 

R=10mm 
GP-1 591.1 594.1 -9.00 -8.54 

-11.42 -11.18 
GP-2 559.6 559.8 -13.84 -13.82 

R=3mm 
GP-3 566.2 586.7 -12.82 -9.68 

-11.84 -8.31 
GP-4 579.1 604.5 -10.85 -6.94 

R=1mm 
GP-5 536.7 559.8 -17.37 -13.82 

-10.94 -2.31 
GP-6 620.2 709.3 -4.52 9.20  

 

Table 4 The accuracy of the PM and LM, used in conjunction with Tresca stress, in predicting the static 

strength of notched round bar and double-notched flat plate specimens tested under uniaxial loading 

conditions 

Specimen 
Effective stress  
(Tresca stress)  

ıeff [MPa] 
Estimate error [%] 

Mean value of the 
error [%] 

Name Notch radius 
Specimen 

code 
PM LM PM LM PM LM 

Notched 
round  
bar 

specimen 

R=6.25mm 

BN-1 694.4 624.4 1.50  -8.74  

-0.04 -10.25 BN-2 679.2 609.3 -0.72  -10.94  

BN-3 678.1 608.3 -0.89  -11.08  

R=3.125mm 

BN-4 727.7 612.3 6.36  -10.50  

6.93 -10.01 BN-5 718.5 604.6 5.02  -11.63  

BN-6 748.6 630.1 9.42  -7.91  

R=1.5mm 

BN-7 683.6 561.8 -0.08  -17.88  

-0.70 -18.36 BN-8 683.1 561.5 -0.16  -17.92  

BN-9 671.5 552.3 -1.85  -19.27  

Double 
side 

U-notched 
 flat plate 
specimen 

R=10mm 
GP-1 627.5 634.4 -8.27  -7.28  

-10.74 -10.06 
GP-2 593.8 596.2 -13.21  -12.85  

R=3mm 
GP-3 586.4 620.0 -14.28  --  

-13.35 -- 
GP-4 599.2 636.5 -12.42  --  

R=1mm GP-5 551.7 597.3 -19.37  -12.70  -13.50 -12.70 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 36 

GP-6 632.0 749.8 -7.63  -- 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 37 

Highlights 
 

 The static assessment of notched components made of Q460 steel is investigated 

 Cracks of the samples containing complex notches initiate away from the stress raisers 

 The TCD successfully estimates the strength of the samples with standard notches 

 The TCD is able to evaluate the fracture behavior of the samples with complex notches 


