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The issue of whether human perception of speech and song recruits integrated or dissociated neural systems is

contentious. This issue is difficult to address directly since these stimulus classes differ in their physical attributes.

We therefore used a compelling illusion (Deutsch et al. 2011) in which acoustically identical auditory stimuli are

perceived as either speech or song. Deutsch's illusionwas used in a functionalMRI experiment to provide a direct,

within-subject investigation of the brain regions involved in the perceptual transformation from speech into

song, independent of the physical characteristics of the presented stimuli. An overall differential effect resulting

from the perception of song compared with that of speech was revealed in right midposterior superior temporal

sulcus/right middle temporal gyrus. A left frontotemporal network, previously implicated in higher-level cogni-

tive analyses ofmusic and speech,was found to co-varywith a behaviouralmeasure of the subjective vividness of

the illusion, and this effect was driven by the illusory transformation. These findings provide evidence that illu-

sory song perception is instantiated by a network of brain regions that are predominantly sharedwith the speech

perception network.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

Introduction

Perceiving language and music constitutes two of the highest level

cognitive skills evident in humans. The concept that the hierarchy of

syntactic structures found in language and music result in shared

perceptual representations (e.g. Koelsch et al., 2002; Patel, 2003)

contrasts with the idea that such stimuli are perceived using entirely

disparate neural mechanisms (e.g. Peretz and Coltheart, 2003;

Rogalsky et al., 2011), whilst others propose amore emergent function-

al architecture (Zatorre et al., 2002). Song is a well-known example of a

stimulus category which evokes both linguistic and musical perception

and therefore provides an avenue with which to explore the relation-

ship between these perceptual systems.

There is currently debate regarding the extent to which the repre-

sentations of melody and lyrics are integrated or segregated during the

perception of song. This issue has been examined in a wide range of

experiments including integration of memory for melody and lyrics

of songs (Serafine, 1984; Serafine et al., 1986), neurophysiological

changes resulting from semantic and harmonic incongruities in famil-

iar music (Besson et al., 1998; Bonnel et al., 2001), fMRI repetition sup-

pression induced by listening to unfamiliar lyrics and tunes (Sammler

et al., 2010) and modulations of BOLD response to changes in words,

pitch and rhythm for both spoken and sung stimuli (Merrill et al., 2012).

Existing fMRI studies have implicated an extensive network of brain

regions which show larger BOLD responses to the perception of sung

stimuli as compared to speech stimuli, including bilateral anterior supe-

rior temporal gyrus (STG), superior temporal sulcus (STS), middle

temporal gyrus (MTG), Heschl's gyrus (HG), planum temporale (PT)

and superior frontal gyrus (SFG) as well as left inferior frontal gyrus

(IFG), left pre-motor cortex (PMC) and left orbitofrontal cortex (Callan

et al., 2006; Schön et al., 2010).

The question of whether speech and song recruit shared or distinct

neural systems remains a contentious and controversial topic which is

difficult to address directly, since linguistic and musical stimuli differ

in their physical attributes. Even when the same syllable is spoken or

sung significant differences in the physical properties of the spoken

and sung syllable are apparent, such as theminimal andmaximal funda-

mental frequency (F0) and amplitude variation (e.g. Angenstein et al.,

2012). Physical differences between spoken and sung stimuli have

introduced potential low-level confounds in previous studies designed
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to examine the dissociation and/or integration of speech and song

perception.

Deutsch et al. (2011) demonstrated an auditory illusion in which

identical auditory stimuli may be perceived as either speech or song.

Deutsch's speech-to-song illusion is achieved simply through repeti-

tion of a spoken phrase. When the spoken phrase was heard for the

first time, participants rated the stimulus as speech-like. Following

several repetitions of the same spoken phrase, the perception of the

stimulus changed and participants rated the stimulus as song-like.

The perceptual transformation did not occur if the pitch of the spoken

phrase was transposed, or the order of the syllables in the spoken

phrase was changed during the repetition phase of the experiment.

As identical stimuli can be perceived as both speech and song,

Deutsch's speech-to-song illusion provides an elegant solution to con-

trolling auditory confounds, i.e. physical differences in speech and

musical stimuli.

Tierney et al. (2013) carried out an fMRI study in which they

contrasted neural activity when listeners were presented with song-

like and speech-like stimuli. However, rather than using identical stim-

uli (i.e. Deutsch's illusion in its original form), different spoken phrases

were used as song- and speech-like stimuli based upon prior behaviour-

al judgements. Using this approach, they reported BOLD changes within

bilateral anterior STG, bilateral MTG, right posterior STG, left IFG and

right-lateralised activity in the inferior pre-central gyrus. In contrast,

in the current fMRI study, we exploited the power of Deutsch's

speech-to-song illusion and employed physically identical stimuli that

could be perceived as either speechor song. By contrasting brain regions

responsive to the percept of the same stimulus as speech-like or song-

like, this approach provides a direct, within-subject investigation of

the integration or dissociation of neuronal activity involved in differen-

tially perceiving speech and song. As the stimuli are physically identical

in the present study, we predict that our approach should show differ-

ences in regions of higher-level auditory cortex (e.g. anterior/posterior

STG, STS andMTG) aswell as higher-order, heteromodal regions includ-

ing left IFG and left PMC when comparing the perception of speech and

illusory song.

Materials and methods

Participants

Thirty-one native English-speaking, right-handed adults gave full

informed consent to participate in the study. Before taking part in the

main experiment, all participants were screened for normal hearing

and absence of amusia in a double-walled sound-attenuating booth.

Participants who had absolute thresholds better than 20 dB HL for

octave frequencies from 250 to 8000 Hz in both ears progressed to the

main experiment. Four participants did not meet this requirement.

Participants were also screened using a relevant subset of the Montreal

Battery for the Evaluation of Amusia (MBEA: Peretz et al., 2003). One

participant did not meet this requirement. As part of the MBEA, partic-

ipants were asked about the number of years of formal musical training

they had received. The average number of years of formalmusical train-

ing was 3.3 years (range 0–16 years) in this participant group. Of the

twenty-five participants who took part in the fMRI study, 15 partici-

pants had some formal musical training and 10 participants had

received no formal musical training.

Twenty-six participants (mean age 22.6 years, SD 4.0 years; 8

female) were therefore entered into the main experiment. One initial

pilot subject was discarded due to technical problems with data acqui-

sition. All data from the remaining 25 participants were analysed.

Participants were not paid for taking part in the experiment. The project

was approved by the Research Governance Committee, York Neuroim-

aging Centre, University of York and conformed to the guidelines

given in the Declaration of Helsinki.

Stimuli

Auditory stimuli for the main experiment were drawn from the

Institute of Electrical and Electronics Engineers sentence lists

(Rothauser et al., 1969). Thirty sentences were identified which

contained fragments of 4–6 syllables (mean duration 2.37 s, range

1.92 to 2.83 s) — for example “in the red hot sun”. The extracted

sentence fragments were used as stimuli. The experiment layout was

based around 30 “trial-sets”. The layout of each of these individual

trial-sets can be seen in Fig. 1. Each trial-set consisted of three pre-

presentations of a stimulus, a repetition phase based around the same

stimulus and three post-presentations of the same stimulus. Each

trial-set used a single stimulus from the pool of 30 fragments and each

participant heard each fragment in only one trial-set. The two condi-

tions within the experiment were termed untransformed and jumbled.

The difference between the two conditions occurred only during the

repetition phase of the stimulus presentation — during the pre-

repetition andpost-repetition phases the stimuli were always presented

in their original, unmodified form (see Fig. 1). In the untransformed con-

dition, the repetition phase consisted of presenting the unprocessed

fragment ten times, i.e. the number of repetitions shown to cause the

perceptual transformation from speech to song (Deutsch et al., 2011).

This was to ensure that in the post-repetition phase, the illusory trans-

formation had already taken place. For the jumbled condition the Praat

software (Boersma and Weenink, 2013) was used to divide each sen-

tence fragment into individual syllables. Five-millisecond logarithmic

ramps were applied to the start and end of individual syllables which

were then recombined into a jumbled fragment as described in

Deutsch et al. (2011). The repetition phase in the jumbled condition

then consisted of the presentation of 10 sentence fragments with differ-

ent syllable orderings. No perceptual transformation was predicted to

occur in the jumbled condition. Each participant was presented with

15 trial-sets for the jumbled condition and 15 trial-sets for the untrans-

formed condition. The experiment was performed over three scanning

blocks — each of which contained 5 jumbled and 5 untransformed trial-

sets. The order of the presentation of jumbled and untransformed trial-

sets within the blocks was pseudo-randomised.

In order to further minimise the difference between the untrans-

formed and jumbled conditions, the 30 stimuli were chosen from the

sentence battery such that 15 pairs of stimuli approximately matched

for content were derived. As an example, for the sentence fragment

“in the red hot sun”, the paired fragment was “in the hot June sun”. It

should be noted that the exact content of the fragments was irrelevant

as only trials in which identical sentence fragments were presented

were contrasted with each other in the fMRI analysis. Thus there were

two sets of 15 stimuli. For each participant, one of these sets was

assigned to the untransformed condition and the other half to the

jumbled condition. The assignment of stimulus sets to either the

untransformed or the jumbled condition was counterbalanced across

subjects. This pairing counterbalancing was an extra step to minimise

any potential differences between conditions.

fMRI procedure

The noise generated by MR scanners poses serious problems to

researchers who wish to carry out auditory fMRI experiments (e.g.

Gaab et al., 2007a, 2007b). To alleviate some of these issues, data were

acquired using Interleaved Silent Steady-State Imaging (ISSS)

(Schwarzbauer et al., 2006). Thismethod of fMRI data acquisition differs

from traditional sparse imaging in that even during the quiet periods,

the slice-select gradient and radio-frequency excitation pulses are

applied in the normal way. However, frequency-encoding, phase-

encoding and data acquisition do not take place during the quiet

periods. This method allows for the acquisition of multiple temporal

volumes after a quiet period, without the necessity of modelling T1

saturation effects, and has been shown to be more sensitive than
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traditional sparse imagingwhen performing auditory fMRI experiments

(Müller et al., 2011). The RMS levels of the auditory stimuli were first

normalised to −25 dB FS. Participants wore earplugs and sound-

attenuating headphones forming part of the fMRI-compatible auditory

stimulus delivery system (MR Confon, MR Confon GmBH). The sound

level of the scanner noise, not accounting for attenuation provided by

earplugs and ear defenders, was 81 dB SPL during the quiet period

and 98 dB SPL during the acquisition period. Stimuli were presented

using Neurobehavioural Systems Presentation version 13.1 at a

sound level of 98 dB SPL, not accounting for attenuation provided by

earplugs only.

The experiment was divided into three fMRI runs for each partici-

pant. The order of runs was counterbalanced across participants.

Each run consisted of 10 blocks, each with a 96 s duration. The layout

of a block is shown in Fig. 1. Each block consisted of three pre-trials

(before the repetition phase) and three post-trials (following the

repetition phase). The duration of an individual trial was 12 s (giving

a total of 72 s for the three pre- and three post-trials) and a repetition

phase with a duration of 24 s. For each of the pre-repetition and post-

repetition trials, the auditory stimulus was presented aligned to the

end of a 4-s period in which no data were acquired (the quiet period).

The stimulus presentation period was followed by four fMRI volume

acquisitions (TR = 2 s), i.e. an 8-s duration of data acquisition during

each trial. Pilot work indicated that fMRI data acquisition during the

repetition phase diminished the subjective vividness of the speech-

to-song illusion. Therefore no fMRI data acquisition was performed

during the repetition phase, in which 10 repetitions of either the

untransformed or jumbled fragment occurred. Note that the auditory

stimuli during the pre- and post-trials of all conditions were the orig-

inal, unscrambled fragments and the BOLD responses to these physi-

cally identical stimuli were modelled in the fMRI analyses. Within a

run there were five untransformed and five jumbled blocks. All three

runs, and therefore all 30 stimuli, were presented to each participant.

Each participant therefore heard each stimulus either in its untrans-

formed or jumbled context and this allocation was counterbalanced

across participants. Participants were instructed to listen to the stimuli

during the fMRI scans and make a response after seeing the visual cue

(“?”) to respond. Participants knew in advance that there were two

response options, “speech” or “song” during the fMRI experiment but

were not provided with explicit information about the perceptual

transformation.

During the acquisition periods, whole head fMRI data (GE-EPI, TR=

2 s, TE = minimum full, flip angle = 90°) were collected using a GE

Signa HDx 3 T system (General Electric, Waukesha, WI, USA). A

64 × 64 pixel matrix with a field of view of 19.2 cm was used, giving

an in-plane resolution of 3 mm × 3 mm. 38 interleaved slices were

collected with a slice thickness of 3 mm. A total of 245 3D volumes of

data were acquired for all subjects. The volumes during the first stimu-

lus presentation period (quiet, non-acquisition volumes) were used to

allow T1 saturation to reach a steady-state.

Post-fMRI behavioural rating

As it was not possible to collect a 5-point rating in the fMRI scanner,

participants were asked to provide post-scan ratings (Fig. 2). Partici-

pants were asked to listen to the same stimuli they had heard in the

fMRI experiment and rate the subjective vividness of the speech-to-

song illusion. Each participant was asked to rate each of the stimuli on

a scale of 1 (speech-like) to 5 (song-like). The stimuli were presented

using Sennheiser HD 558 headphones on a PC controlled by MATLAB

(The MathWorks Inc., Natick, MA) in a quiet room.

Fig. 1. Experimental layout of a single sentence fragment presentation. Each trial-set consisted of three pre-presentations, a repetition phase and three post-presentations. The pre- and

post-phases involved presentation of the sentence fragment in its original form. For stimuli in the untransformed condition, the repetition phase involved ten repeats of the stimulus in its

original form, whilst for those stimuli in the jumbled condition, the order of the syllables was shuffled. No fMRI data acquisition occurred during either the stimulus delivery phases of the

pre- and post- presentations or during the repetition phase. Responses were visually cued 4 s into the data acquisition block after each pre- and post-presentation.

Fig. 2.Results of the post-scan behavioural experiment. Each participant was asked to rate

each of the stimuli on a scale of 1 (speech-like) to 5 (song-like). Therewas a significant in-

crease in rating between stimuli which had been presented as jumbled and untransformed

(t = 3.98, p b 0.01, r = 0.63).
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fMRI analysis

The fMRI data were analysed using Feat-5.98, part of FSL (FMRIB's

Software Library, http://www.fmrib.ox.ac.uk/fsl) as well as custom

scripts which implemented filtering of the temporally non-contiguous

data. A separate first-level analysis was carried out for each session,

for each subject. The data were motion corrected using MCFLIRT

(Jenkinson et al., 2002) and brain extraction was performed using BET

(Smith, 2002). Themotion correctionparameterswere entered as regres-

sors of no interest in the general linear model. Spatial smoothing was

performed on the EPI data using a full-width half-maximum of 6 mm.

Linear and quadratic trends were removed per-voxel using an in-house

tool which took into account the times at which data were acquired.

Each set of three pre-repetition or post-repetition trials were

modelled as separate explanatory variables (EVs). Due to the nature of

the ISSS acquisition sequence, the non-contiguous temporal nature of

the acquired EPI data needs to be taken into account when performing

analysis. This study used a version of the analysis pipeline described in

Peelle (2014), page 8. The design matrix was initially constructed to

span the entire length of the experiment regardless of data acquisition.

Each event entered into the design matrix consisted of the 2-second pe-

riod from the onset of the auditory stimulus and was then convolved

with a double gamma haemodynamic response function along with its

temporal derivative (Friston et al., 1998). The design matrix was then

re-sampled at the times at which fMRI acquisition occurred using a

local modification to the standard FSL analysis routines (available on re-

quest from the authors). As discussed by Peelle, this avoids the necessity

to adjust the degrees of freedom when assessing statistical maps at the

first level. In addition, the sixmotion correction parameterswere entered

into the model and the appropriate regressor heights were recalculated

for the EVs and contrasts to take into account the temporally reduced

design matrix. The resulting reduced design matrix was used with

FMRIB's Improved Linear Model (FILM) in order estimate beta values.

Contrasts of parameter estimates were calculated by pairing each

pre-repetition and post-repetition set of trials together as well as pooled

estimates for each of the pre-untransformed (upre), post-untransformed

(upost), pre-jumbled (jpre) and post-jumbled (jpost) conditions.

Parameter estimates were then carried through to a second-level,

within-subject, fixed-effects analysis in which the mean of each condi-

tion was calculated. Finally, a third-level, between-subjects, mixed-

effects analysis was performed using FLAME (FMRIB's Local Analysis of

Mixed Effects) stage 1 (Beckmann et al., 2003; Woolrich et al., 2004).

The primary contrast of interest was the interaction term: (upost −

upre)− (jpost− jpre) as our primary hypothesis was that there would

be differential changes in BOLD between pre-repetition and post-

repetition trials in the untransformed compared with the jumbled

condition. In order to disambiguate whether regions involved in the

perception of the illusion either overlapped or were distinct from

those involved in speech perception, a contrast involving the pre-

conditions only (upre, jpre) was performed, termed the speech-only

contrast. Statistical images for all contrasts were converted to Z scores

and corrected for multiple comparisons using a cluster-thresholding

procedure (using Z = 2.3 and p = 0.05; Worsley, 2001).

Predictors for both a mean effect and a demeaned co-variate effect

were included in the third-level analysis. The co-variate effectwas includ-

ed to reflect, for each participant, the difference between their mean rat-

ings of the stimuli heard in the untransformed and jumbled context as

measured in the post-scan behavioural experiment. This behavioural rat-

ing was included as a proxy for the subjective vividness of the illusion.

Results

Behavioural

Themean rating for stimuli heard in the jumbled condition (mean=

1.84, SE = 0.15) was lower than that in the untransformed condition

(mean = 2.61, SE = 0.13). A paired t-test (on jumbled versus untrans-

formed ratings) was performed and the ratings were found to differ

between conditions (t = 3.98, p b 0.01, r = 0.63). The mean rating

increase from the jumbled to the untransformed condition was 0.77

with a 95% confidence interval of 0.37 to 1.17. Consistent with a previ-

ous behavioural study of the speech-to-song illusion (Falk et al., 2014)

therewas no significant correlation between numbers of years of formal

musical training and change in mean rating increase (r=−0.160; p=

0.446; df = 23).

fMRI

Fig. 3 illustrates the results of the interaction contrast performed at

the group level (upost− upre)− (jpost− jpre). No statistically significant

differential activations were found for the negative of the interaction

term [i.e. (jpost− jpre)− (upost− upre)], either in the mean or the co-

variate analysis. The mean difference found in the interaction term

(representing changes which are related to mean performance) is

shown as an orange overlay. This activity localised to the right middle

temporal gyrus/superior temporal sulcus (BA21/22). The co-variate

analysis, based upon an individual behavioural rating (the difference

between mean ratings of the jumbled and untransformed stimuli), is

shown as a red overlay. A network of areas in the left frontotemporal

region including the frontal pole, inferior frontal gyrus (pars opercularis),

frontal orbital cortex and the temporal pole co-varied with behavioural

performance (Table 1).

BOLD responses found per-participant, in the four individual condi-

tions (upre.,upost, jpre, jpost)were correlatedwith theparticipants' behav-

ioural ratings (the covariate in thewhole-brain analysis). An example of

this analysis for the post-untransformed condition in the left

frontotemporal cluster is shown to the left of Fig. 4. It should be noted

that here we were interested only in which condition, or conditions,

were contributing to the overall interaction; the fact that at least one

of the terms contributes to a significant effect was already known. The

only overall significant correlation found in all of the regions previously

discussed was found in the post-untransformed condition (upre: r =

0.042, p = 0.840; upost: r = 0.595, p = 0.002; jpre: r = 0.376, p =

0.064; jpost: r = 0.136, p = 0.517).

To examine whether or not the resources involved in perception of

the speech-to-song illusion are shared with those involved in speech

perception, we compared areas significantly activated by the speech

contrast with those dependent on perception of the illusion (the inter-

action contrast, with and without behavioural covariate) by performing

a conjunction analysis. This comparison is shown in Fig. 4. The cluster-

corrected activations from the speech-only contrast are shown as a

blue mask. Overlap between the mean interaction contrast and the

speech-only contrast are shown in green. The cluster found in the

right STS/MTG in the interaction contrast consisted of 535 voxels. In a

conjunction analysis with the speech-only contrast, 471 of these voxels

overlapped; the remaining 64 voxels (shown in orange) were found on

the inferior border of the right MTG (see Fig. 4, right-hand panel). The

region (consisting of 548 voxels) which was identified in the conjunc-

tion between the co-variate analysis and the speech contrast is shown

in pink (Fig. 4). Themajority of the brain regions identified in the covar-

iate analysis share neural substrates with the speech contrast, although

notably regions of left frontal and fronto-orbital cortex (shown in red:

107 voxels) contribute only to the illusory percept of song, i.e. are not

shared with speech perception.

To exclude the possibility that the effects were underpinned by the

effect of repetition suppression during the repetition phase, an analysis

of BOLD changes in the pre and post trials in the untransformed and

jumbled conditions was carried out. The results of this analysis are

shown in Fig. 5. In the right middle temporal regions (STS/MTG), the

interaction effect was driven by decreases in BOLD relative to baseline

in both conditions and the jumbled condition showed a greater BOLD

decrease than the untransformed condition. In the left frontotemporal
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network (localised via the covariate analysis), the change between pre

and post trials in the untransformed condition showed an increase in

BOLD relative to baseline whilst the jumbled condition showed a

decrease. If repetition suppression during the repetition phase was

driving these changes, we would predict a greater BOLD decrease in

the untransformed condition, relative to the jumbled condition, because

the same untransformed fragment was presented consecutively in the

untransformed repetition phase. However, the data are contrary to this

prediction and therefore repetition suppression cannot explain the

changes in BOLD response induced by listening to Deutsch's speech-

to-song illusion.

Discussion

The question of whether the neural substrates of listening to speech

and song reflect integrated or dissociatedmechanismswas tested using

Deutsch's speech-to-song illusion. Our findings provide evidence that

resources recruited during speech and song perception are largely

shared, notably in rightmidposterior STS/MTGand a left frontotemporal

loop. Critically, this study differs from all previous studies on song and

speech perception because physically identical, and therefore tightly

controlled, stimuli were used to uncover the differential involvement

of these neural systems in the perception of speech and song

(cf. Tierney et al., 2013).

Shared neural substrates for speech and illusory song perception

Despite variation in the individual subjective ratings of the illusory

percept, an overall differential response, i.e. the difference between

perception of speech and song, was localised to regions in right

midposterior STS/MTG (BA 21/22). This region has been implicated in

song perception (Schön et al., 2005, 2010), melody recognition (Peretz

et al., 2009), and classification of music from speech (Abrams et al.,

2011). Moreover, this region has been identified as being involved in

the mental imagery of song (Zatorre and Halpern, 1993; Müller et al.,

2013), i.e. imaginary perception of a song when no musical stimulus is

present. The identified regions in right midposterior STS/MTG over-

lapped completely with those areas active during the speech-only

contrast. Previous findings (Zatorre and Halpern, 1993) have shown

that the imagery and perception of song share neural resources and

we extend this model to include the perception of speech and song

stimuli, suggesting that themechanisms in rightmidposterior STS/MTG

reflect integrated processing.

Sammler et al. (2010) used a repetition suppression paradigm to

investigate the integration and segregation of lyrics and tunes. They

reported varying degrees of integration along bilateral STS/STG, with

stronger integration of lyrics and tunes in more posterior auditory

areas. In contrast, here we found that the effect of perceiving a stimulus

as song localised to the right STS/MTG (BA 21/22).Moreover, a conjunc-

tion analysis showed that resources underlying the perception of

speech and song are largely integrated. It should be noted that the

tune condition in the Sammler et al. study consisted of combined varia-

tions in both melody and rhythmic content, whereas in the present

study perceptual changes occurred despite the stimuli remaining acous-

tically identical. Despite the repeated presentation of fragments in the

repetition phase of the present study, we ruled out the possibility that

repetition suppression could explain the results. Sammler et al. specu-

lated that the degree of integration/independence of lyrics and tunes

may depend on the specific cognitive task required by the experiment

which may have contributed to the discrepancies in degree of integra-

tion found in the two studies.

As behavioural data from individual participants showed that the

subjective vividness of the illusion was variable, despite the fact that

all participants were screened for normal musical ability using the

Fig. 3.Cluster-thresholded (Z=2.3, p b 0.05), statisticalmaps (corrected formultiple comparisons) of the [(upost−upre)− (–jpost− jpre)] interaction. Areas shown in orange showamean

interaction effect whilst those in red show an effect which co-varies with the subjective vividness of the illusion. Abbreviations: STS: superior temporal sulcus; MTG: middle temporal

gyrus; FP: frontal pole; IFG: inferior frontal gyrus; TP: temporal pole.

Table 1

Cluster localisation details for the interaction contrast (upost− upre)− (jpost− jpre). Probabilistic locations in MNI-152 space taken from the Harvard-Oxford cortical atlas.

Term Z Location (mm) Area Speech-song overlap

x y z

Mean (extent: 535 voxels) 4.40 50 −38 6 25% SMG, posterior division BA 22 Y

4.37 50 −38 2 30% MTG, temporo-occipital part BA 22 Y

3.19 52 −28 −10 27% MTG, posterior division BA 21 Y

3.17 56 −28 −12 20% MTG, posterior division BA 21 Y

3.07 58 −44 2 47% MTG, temporo-occipital part BA 22 Y

2.94 60 −42 18 47% SMG, posterior division BA 22 Y

Covariate (extent: 548 voxels) 3.92 −48 18 −18 72% temporal pole (anterior) BA 38 Y

3.21 −44 48 −10 87% frontal pole BA 10 N

3.17 −48 14 0 27% IFG, pars opercularis BA 44/45 Y

3.13 −44 46 −6 85% frontal pole BA 10 N

3.11 −32 22 −16 66% frontal orbital cortex BA 47/11 Mixed

3.10 −50 44 −8 77% frontal pole BA 10 Y

Abbreviations: MTG: middle temporal gyrus; SMG: supramarginal gyrus; IFG: inferior frontal gyrus.
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MBEA, a covariate analysis of the fMRI results was carried out to eluci-

date activity in brain regions thatwas predicted by an enhanced illusory

percept. This analysis revealed that the enhanced perception of song

compared with that of speech was manifest in differential activation

in a network of left frontotemporal brain regions including left temporal

pole (BA 38), left IFG (BA 44/45/47), left prefrontal cortex (BA 10) and

left orbital cortex (BA 11). Functionally significant correlations between

the BOLD change within the left frontotemporal loop and behavioural

Fig. 4.Overlap and common areas of activation between the interaction term (see Fig. 3) and themean effect of presenting speech (as defined by the speech-only contrast, shown in blue).

The green area demonstrates that themajority of voxelswhich responded in themean of the interaction termwere also significantly active in the speech condition. The pink overlay in the

left frontotemporal network shows a large area of overlap between the co-variate term and the speech-only contrast, but with the most anterior areas (shown in red) statistically signif-

icantly active in the co-variate analysis only. The far left inset on the lower row of thefigure shows correlation between percent BOLD signal change and the subjective vividness of illusion

on an individual participant basis. The performance rating has been de-meaned to reflect its use as a regressor for the fMRI data. This is shown in the post-untransformed case only for the

left frontotemporal cluster. Other conditions are discussed in the main text. Abbreviations: STS: superior temporal sulcus; MTG: middle temporal gyrus; FP: frontal pole.

Fig. 5. BOLD changes from pre- to post-trials across untransformed and jumbled conditions. Regionswere localised using the interaction contrast. Error bars show 95% confidence intervals.

The left-hand panel shows themean effect BOLD change in right posterior STS/MTG. Both conditions show a decrease from baseline,with a greater decrease in the jumbled comparedwith

the untransformed condition. The right-hand panel shows the effect of the behavioural performance co-variate on the BOLD signal change in the left frontotemporal region. The untrans-

formed condition showed an increase from baseline whilst the jumbled condition showed a decrease from baseline. Abbreviations: STS: superior temporal sulcus; MTG: middle temporal

gyrus; FTL: frontotemporal loop.
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measures of the subjective vividness of the illusion were identified only

in the post-untransformed condition, i.e. when participants heard the

stimuli as song.

The network of left frontotemporal areas identified in the current

study largely overlapped with the direct, within-subject measures of

speech perception (Fig. 4). Perhaps the extent of the overlap between

neural systems for speech and song perception should be expected,

given that song is a special musical case that requires semantic in addi-

tion to melodic analysis. However, a song stimulus is not just a linear

combination of “melody + spoken lyrics” (c.f. Schön et al., 2005;

Callan et al., 2006; Merrill et al., 2012) as, under normal circumstances,

spoken and sung words differ in their physical properties (Angenstein

et al., 2012). It therefore seems unlikely that any neural processes

underlying song perception can be decomposed into entirely indepen-

dent linguistic and musical cognitive processes, at least without

additional integrative mechanisms.

Comparisons with previous work: listening to song vs. listening to speech

Previous work on speech and song perception (e.g. Callan et al.,

2006; Schön et al., 2010) used both spoken and sung versions of the

same stimuli to remove the influence of low-level articulatory proper-

ties, phonetics, syntactic structure and semantic content. However,

low-level acoustical differences remain in spoken and sung versions of

the same stimulus (Angenstein et al, 2012). When the perception of

sung stimuli was contrasted with the perception of spoken stimuli

Callan et al. (2006) found activation in areas including bilateral anterior

STG, bilateral HG, bilateral PT, left premotor cortex and left orbitofrontal

cortex. Schön et al. (2010) contrasted listening to the same stimulus

presented as either song or speech and identified a network in bilateral

STG, STS and MTG, including BA 21 and BA 22, that was lateralised

towards the right hemisphere for song perception when contrasted

with speech perception. In the present study the mean interaction

term identified a change in the BOLD response in right midposterior

STS/MTG (BA 21/22), possibly reflecting the influence of melodic

processing on phonological processing (Schön et al., 2010).

Tierney et al. (2013) measured BOLD changes to speech-like and

song-like speech phrases and identified an extensive network of brain

regions, including bilateral anterior STG, bilateral MTG, right lateral

precentral gyrus, left supramarginal gyrus, right posterior STG and left

IFG. Only the brain regions identified by Tierney et al. (2013) in right

posterior temporal cortex and left IFG are consistent with the regions

implicated in the illusory perception of song in the present study. In

contrast to the design of the present study Tierney et al. (2013) did

not use the speech-to-song illusion in its original form i.e. using percep-

tual transformation of acoustically identical stimuli to induce the

illusion. Instead Tierney et al. (2013) used different speech phrases in

their “speech” and “song” conditions, which had been shown to induce

the illusion in pilot testing. Tierney et al. (2013) argued that low-level

acoustical differences between their “speech” and “song” conditions

did not influence their results because they did not find an increase in

BOLD in primary auditory cortex. However, representations of the

low-level acoustical properties of sounds are not restricted to primary

auditory cortex. For example, several auditory cortical areas surround-

ing posteromedial HG, including lateral HG, planum temporale, planum

polare and superior temporal gyrus, are typically responsive to the

spectrotemporal properties of sound (Griffiths et al., 2001; Patterson

et al., 2002; Hall and Plack, 2009; Barker et al., 2012).

Another important difference between previous studies (Callan

et al., 2006; Schön et al., 2010; Tierney et al, 2013) and the present

study is that the present study used an ISSS fMRI data acquisition

sequence (Schwarzbauer et al., 2006). An ISSS acquisition sequence

allows for auditory presentation in the relatively quiet periods when

the scanner is not acquiring data. The acoustic noise generated by

fMRI scanners has several implications for auditory fMRI research,

including energetic masking of auditory stimuli, reduced dynamic

range in auditory cortex and increased listening effort resulting in

effortful neural processing of auditory stimuli (for a recent review see

Peelle, 2014).

The functional organisation of illusory song perception

According to the prevailing view of hemispheric specialisation, the

left hemisphere may be more specialised for language whilst the right

hemisphere is more involved in music perception. On the one hand

the right-hemispheremay bemore important for some aspects ofmusi-

cal processing such as melody perception (e.g. Samson and Zatorre,

1988; Patterson et al., 2002; Hyde et al., 2006, 2007; Albouy et al.,

2013), short-term memory for pitch (e.g. Samson and Zatorre, 1991;

Zatorre et al., 1992, 1994; Albouy et al., 2013) and exploration of

complex acoustic environments (Teki et al., 2012). On the other hand

other aspects of musical processing including pitch processing (e.g.

Patterson et al., 2002), familiar melody recognition (e.g. Peretz et al.,

2009) and unfamiliar song perception (Sammler et al., 2010) probably

require contributions from both hemispheres.

Song is a special form of music that is more than just the sum of

linguistic and musical processing (Schön et al., 2010). Therefore brain

regions involved in some aspects of song perception may not necessar-

ily be right-lateralised. Indeed, the present study found a network of

brain regions in the left hemisphere, including the temporal pole, pars

triangularis and orbital parts of the inferior frontal areas which co-

variedwith the strength of the illusory percept. These areas are typically

associated with higher-level cognitive analyses of spoken language (for

reviews see Binder et al., 2000; Friederici, 2011), the representations of

structural regularities in music and language (Zatorre and Salimpoor,

2013), musical syntactic processing (Koelsch et al., 2004) and musical

memory (Satoh et al., 2006; Platel, 1997; Platel et al., 2003; Groussard

et al., 2010a,2010b).Musical semanticmemory “allows us to experience

a strong feeling of knowing when listening to music” (e.g. Groussard

et al., 2010b). The left frontotemporal loop identified by the covariate

analysis in the present study is consistent with the network for musical

semantic memory (Platel, 1997; Platel et al., 2003; Groussard et al.,

2010b). The overlap between speech and song in the frontotemporal

loop reported here (BA 38, 44/45, and 47) is convergent with the idea

that ventrolateral areas play a domain-general role in speech and song

perception (Patel, 2003), although whether the computational mecha-

nisms elucidated in these areas are identical across both modalities

remains to be established.

Schön et al. (2010) suggested that left temporal and frontal brain

regions may be more involved in linguistic perception whereas right

temporal and frontal structures are more involved in processing the

musical aspects of song. In addition they argued that anterior temporal

lobe and frontal regions (BA 44/45/46/47) may be more specifically

involved in the processing of complex temporal patterns. In the present

study, the conjunction analysis of speech and song perception revealed

largely overlapping brain regions and only some left frontal regions (BA

10/11/47) were revealed to be specific to song perception. Based on the

present data, we cannot determine whether these left frontal regions

(BA 10/11/47) are involved in processing complex musical patterns or

some other aspects of listening to illusory song. Anterolateral frontal

cortex has previously been implicated in musical semantic memory

when hit-rate was included as a covariate (Groussard et al., 2010a).

We interpret this as evidence that participants who perceived the

illusion more strongly recruited these additional frontal regions in the

left frontotemporal loop (see Figs. 3 and 4).

Overall, the results from the present study are in agreement with

previous evidence that the perception of song involves both the left

and right hemispheres (Callan et al., 2006; Schön et al., 2010;

Sammler et al., 2010; Tierney et al., 2013). Song perception may prefer-

entially recruit left frontotemporal regions because the linguistic

aspects are an essential component of song.
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Neural mechanisms underlying the speech-to-song illusion

Deutsch et al. (2011) proposed the intriguing idea that whilst listen-

ing to speech under normal conditions the neural circuitry underlying

pitch salience is somewhat inhibited. This theory posits that during

the repetition phase, which causes the speech-to-song illusion, the

exact repetition of the speech fragment causes this circuitry to become

disinhibited, thereby enhancing the salience of the perceived pitches.

This leads to their prediction that activation in brain areas that respond

preferentially to pitch would be enhanced. Indeed the interpretation

put forward by Tierney et al. (2013) focused onmechanisms underlying

pitch processing, vocalisation and auditory-motor integration. It should

be noted that a model based purely on mechanisms for increased pitch

saliency does not take into account that multiple auditory cues (includ-

ing pitch and rhythm) contribute to the perceptual differences between

speech and song (Peretz and Zatorre, 2005; Merrill et al., 2012; Falk

et al, 2014). In contradistinction to the predicted pitch-based mecha-

nism underlying the speech-to-song illusion (Deutsch et al., 2011),

here we show that brain regions in right midposterior STS/MTG and a

left frontotemporal loop, which are not typically implicated in low-

level pitch processing, reflect the ability of participants to successfully

perceive Deutsch's speech-to-song illusion.

Falk et al. (2014) hypothesised that the illusory percept of song is

achieved through a mechanism of functional re-evaluation of prosodic

features, supporting the idea that pitch trajectories play a major role

in perceiving the speech-to-song illusion. Right temporal cortex plays

a prominent role in the comprehension of prosodic information (e.g.

Zatorre et al., 1992, 1994). BOLD responses specific to the evaluation

of linguistic prosody occur in left lateral inferior frontal cortex

(BA 44/45) (e.g.Wildgruber et al., 2004). The left inferior frontal regions

(BA 44/45) implicated in the present study are therefore consistent

with the idea of tracking the prosodic features of illusory song (Falk

et al., 2014). As hypothesised by Falk et al. (2014) the encoded prosodic

contour would then have to be interpreted as musical, possibly within

the “song-specific” left frontal areas (BA 10/11/47) revealed in the

present study, for the perceptual transformation to occur successfully.

Enhancing the subjective vividness of the speech-to-song illusion

The Deutsch et al. (2011) study used a phrase spoken by Diana

Deutsch to successfully induce the speech-to-song illusion. Behavioural

ratings of about 3.8, on a 5-point scale, for the untransformed condition

were reported, demonstrating that the spoken phrase used in the

original study resulted in a strong perceptual transformation from

speech to song.

In the present study the untransformed conditionwas rated, on aver-

age, asmore song-like than the jumbled control condition. However the

behavioural ratings in our untransformed condition were not as high

(mean rating of 2.61) as in the original study by Deutsch et al. (2011)

(mean rating of ~3.8). One explanation for this may be that, in the

present study, we used excerpts from a standard corpus of IEEE speech

sentences (Rothauser et al., 1969) to test the generalisability of the

speech-to-song illusion. In comparison, Tierney et al. (2013) identified

phrases which resulted in the desirable perceptual transformation by

an “exhaustive search” through an audiobook prior to fMRI scanning.

Moreover, a recent study by Falk et al. (2014) carried out a systematic

examination of the prosodic and rhythmic characteristics that are

most or least likely to induce the perceptual transformation in the

speech-to-song illusion. They found that tonal target stability was the

most powerful cue in facilitating perceptual transformation.

Falk et al. (2014) also reported individual variation in the ability to

hear the speech-to-song illusion, despite prior selection of two

sentences that induced the illusion, still only 59 of 62 participants

perceived the illusion and on average the perceptual transformation

occurred in 65% of trials. In addition, they note that the most reliable

perceptual transformations from speech to song occurred when

“targeted instructions” were given to participants. The current study is

in agreement with previous work (Tierney et al., 2013; Falk et al.,

2014) showing that the subjective vividness of the speech-to-song

illusion varies across participants and speech material used to induce

the illusion. Explicitly cueingparticipants about the expected perceptual

transformation that occurs as a result of the speech-to-song illusion,

increasing the tonal target stability and providing rhythmic cues

that enhance prominence contrasts of the test material may result in

an improved perceptual transformation from speech to song (Falk

et al., 2014).

Conclusion

Overall, our findings are in concord with the view that the percep-

tion of speech and illusory song largely share common, ventrolateral,

computational substrates (Koelsch et al., 2002; Patel, 2003; Patel and

Iversen, 2007; Fadiga et al., 2009) The present work demonstrates that

recruitment of the left frontotemporal loop, and thereby access to

brain regions crucial for higher level cognitive and semantic tasks

relevant to both speech and song, relates to individual differences in

subjective vividness of the speech-to-song illusion. The present findings

therefore support the theory that a largely integrated network underlies

the perception of speech and song.
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