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Extracellular ATP and other nucleotides induce autocrine and/or paracrine 

purinergic signalling via activation of the P2 receptors on the cell surface, which 

represents one of the most common signalling mechanisms. Mesenchymal stem cells 

(MSC) are a type of multipotent adult stem cells that have many promising 

applications in regenerative medicine. There is increasing evidence to show that 

extracellular nucleotides regulate MSC functions and P2 receptor-mediated 

purinergic signalling plays an important role in such functional regulation. P2 

receptors comprise ligand-gated ion channel P2X receptors and G-protein-coupled 

P2Y receptors. In this review, we provide an overview of the current understanding 

with respect to expression of the P2X and P2Y receptors in MSC and their roles in 

mediating extracellular nucleotide regulation of MSC proliferation, migration and 

differentiation.    

 

Purinergic signalling, despite its unreceptive inception, represents one of the most 

common signalling mechanisms in cells (Burnstock, 2012; Burnstock and Verkhratsky, 

2010).  Extracellular nucleotides activate autocrine and/or paracrine purinergic 

signalling via the P2 family of purinergic receptors on the cell surface. Two structurally 

and functionally distinctive subfamilies of P2 receptors have been defined, namely, P2X 

and P2Y (Ralevic and Burnstock, 1998).  The P2X receptors function as ligand-gated 

cationic channels that are assembled as homo/hetero-trimers from the seven P2X receptor 

subunits (P2X1-P2X7) (Browne et al., 2010; Hattori and Gouaux, 2012; Khakh and 

North, 2012; North, 2002). The P2X receptor ion channels are gated exclusively by 

extracellular ATP and form a transmembrane pathway for efflux of K+ and influx of Na+ 

and Ca2+, leading to an increase in the intracellular Ca2+ concentration ([Ca2+] i) and/or 

membrane depolarization. The P2Y receptors are classical G-protein-coupled receptors. 

Mammalian cells express eight P2Y subtypes (P2Y1, P2Y2, P2Y4, P2Y6 and P2Y11-

P2Y14) (Burnstock, 2012; Jacobson et al., 2012; Jacobson and Muller, 2016; Jacobson et 

al., 2015; von Kügelgen and Harden, 2011).  Unlike the P2X receptors, the P2Y 

receptors are activated by a diversity of extracellular nucleotides, such as ATP, ADP, 

UTP, UDP, UDP-glucose and nicotinamide adenine dinucleotide (NAD), but each P2Y 
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receptor displays distinctive nucleotide preference.  Activation of the P2Y1, P2Y2, P2Y4, 

P2Y6 and P2Y11 receptors triggers the GĮ,q/11-PLCȕ-IP3R signalling pathway, namely, 

stimulation of phospholipase C ȕ (PLCȕ), generation of inositol triphosphate (IP3) and 

activation of the IP3 receptors (IP3R). This leads to Ca2+ release from the endoplasmic 

reticulum (ER) to elevate the [Ca2+] i.  Reduction in the ER Ca2+ level in many cell types, 

mostly non-excitable cells, can activate the Ca2+ release activated Ca2+ (CRAC) channels 

on the cell surface to mediate the so-called store-operated Ca2+ entry (Amcheslavsky et 

al., 2015; Parekh, 2010).  In contrast, the P2Y12-P2Y14 receptors are coupled to the GĮ,i-

AC-cAMP signalling pathway, resulting in inhibition of the adenylyl cyclase (AC) 

activity and reduction in the generation of intracellular cyclic adenosine monophosphate 

(cAMP). Some P2Y receptors are known to link to additional downstream signalling 

pathways. For example, the P2Y11 receptor can also associate with the GĮ,s-AC-cAMP 

signalling pathway to stimulate AC and elevate the intracellular cAMP level (von 

Kügelgen and Harden, 2011).  Both P2X and P2Y receptors are widely expressed in 

excitable and non-excitable cells and play important roles in mediating extracellular 

nucleotide-initiated purinergic signalling in a plethora of physiological and pathological 

processes, as have been elegantly covered in numerous recent reviews (Burnstock and 

Ralevic, 2014; Burnstock and Ulrich, 2011; Burnstock and Verkhratsky, 2010; Jacobson 

et al., 2012; Jacobson and Muller, 2016; Jiang, 2012; North, 2002; Surprenant and North, 

2009; von Kügelgen and Harden, 2011).  

Mesenchymal stem cells (MSC) are a group of non-hematopoietic multipotent stem 

cells, which were firstly isolated from bone marrow and later also from other adult tissues 

including adipose tissue, umbilical cord, periodontal ligament and dental pulp.  MSC 

are well-documented to differentiate into adipocyte, osteoblast and chondrocyte (Bianco, 

2014; Dominici et al., 2006; Pittenger et al., 1999), the important cell types in adipose, 

bone and cartilaginous tissues, respectively. Emerging evidence suggests the potential of 

differentiation into other lineages, such as neuronal (Tu et al., 2014) and Schwann glial 

cells (Faroni et al., 2013; Martens et al., 2014).  Preclinical studies and clinical tests have 

demonstrated a number of promising applications of MSC in regenerative medicine 

(Aurrekoetxea et al., 2015; Bianco, 2014; Caplan, 2007; Christ et al., 2015; Kim et al., 
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2012; Levi and Longaker, 2011; Momin et al., 2010; Phinney and Prockop, 2007; Psaltis 

et al., 2008; Rastegar et al., 2010; Reiser et al., 2005; Wakitani et al., 2011). 

Stem cells including MSC reside in a highly specialized microenvironment termed 

the stem cell niche (Scadden, 2006).  The stem cell niche is hypoxic, a condition that is 

important in maintaining stem cells in an undifferentiated state (Mohyeldin et al., 2010). 

It is known that hypoxia stimulates ATP release (Dutta et al., 2004; Kahlin et al., 2014; 

Lim To et al., 2015; Mortensen et al., 2011; Orriss et al., 2009; Roger et al., 2015). An 

increasing number of studies show that under in vitro culture conditions and in vivo, MSC 

release ATP and other nucleotides constitutively or in response to mechanical or chemical 

stimulation, via vesicular exocytosis, connexin hemi-channel or other yet defined 

mechanisms (Biver et al., 2013; Coppi et al., 2007; Kawano et al., 2006; Kwon, 2012; 

Riddle et al., 2008; Riddle et al., 2007; Sun et al., 2013; Weihs et al., 2014). Extracellular 

nucleotides can impose significant regulation of MSC functions. It is worth pointing out 

that MSC also express ecto-nucleotidases on the cell surface that metabolize extracellular 

ATP and other nucleotides (Noronha-Matos and Correia-de-Sa, 2016; Roszek et al., 2015; 

Scarfi, 2014). Indeed, adenosine as an ATP metabolite has been proposed to contribute in 

ATP regulation of MSC functions via activating the adenosine P1 receptors (Carroll et al., 

2012; Ciciarello et al., 2013; Gharibi et al., 2011; Shih et al., 2014).  Several recent 

reviews have appeared that focus on various aspects of the purinergic signalling mediated 

by the adenosine P1, P2X and P2Y receptors and ecto-nucleotidases in MSC, particularly 

in osteogenic differentiation (Cavaliere et al., 2015; Lenertz et al., 2015; Noronha-Matos 

and Correia-de-Sa, 2016; Scarfi, 2014). In this review, we discuss the current 

understanding of the P2 receptor-mediated purinergic signalling in MSC, with respect to 

expression of the P2X and P2Y receptors and their roles in mediating extracellular 

nucleotide regulation of MSC proliferation, viability, migration and differentiation into 

adipocyte, osteoblast, chondrocytes, neuronal and glial cells. We aim this review to 

provide a more inclusive overview of the findings reported by recent studies, prompting 

the reader to bear in mind the noticeable discrepancies currently existing in the literature. 

 

Expression of P2 receptors in MSC  
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Expression of the P2X and P2Y receptors in MSC has been examined at the mRNA level, 

using conventional or real time reverse transcription-polymerase chain reaction (RT-PCR), 

and at the protein level, using western blotting or immunocytochemistry. Their functional 

expression has been studied by measuring agonist-induced responses, often using 

fluorescent imaging to monitor agonist-evoked change in the [Ca2+] i, in conjunction with 

using selective antagonists to inhibit the receptor activity or small interference RNA 

(siRNA) to reduce the receptor expression. Table 1 summarizes the P2X and P2Y 

receptors that have been reported in MSC of various species and tissues, and the methods 

used to shown their expression, which gives a quick reference to the reader.  However, 

studies using MSC from different species, particularly different tissues, have reported a 

considerably variable expression profile for both P2X and P2Y receptors, noticeably at 

the protein and functional expression levels. For simplicity, we discuss expression of the 

P2X and P2Y receptors according to the tissue origins of MSC used. 

 

P2X receptors  

BM-MSC. Expression of the P2X receptors in bone marrow derived MSC (BM-MSC) 

was firstly examined in two independent studies (Coppi et al., 2007; Riddle et al., 2007). 

Coppi et al showed, using patch-clamp recording, that ATP evoked an inwardly-rectifying 

current with a reversal potental close to 0 mV in a subset of human BM-MSC (Coppi et 

al., 2007). In addition, exposure of such cells to ATP caused membrane deploarization. 

Treatment with pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS), a generic 

P2 antagonist, reduced ATP-induced inward currents and led to membrane 

hyperpolarization. These results were interpreted to indicate functional expression of the 

P2X receptor(s) (Coppi et al., 2007), but the molecular identity of the receptor(s) 

mediating ATP-induced inward currents was not established.  The second study showed 

P2X7 protein expression in human BM-MSC, using western blotting (Riddle et al., 2007).  

Ferrati et al were the first to systematically assess expression of the P2X receptors in 

human BM-MSC, and reported mRNA expression for all the P2X subunits, with the 

exception of P2X2, and protein expression for P2X1, P2X4 and P2X7 (Ferrari et al., 2011). 

The P2X7 protein expression in human BM-MSC has been further demonstrated in two 
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recent studies, using western blotting (Sun et al., 2013) and immunocytochemistry 

(Noronha-Matos et al., 2014) . Ferrati et al also studied, using Ca2+ imaging, the role of 

the P2X receptors in ATP-induced Ca2+ signalling in human BM-MSC (Ferrari et al., 

2011).  ATP induced a biphasic increase in the [Ca2+] i in extracellular Ca2+-containing 

solutions, composed of an initial transient increase and a second sustained increase. In 

extracellular Ca2+-free solutions, the transient increase was attenuated and the sustained 

increase was absent, indicating major contribution of extracellular Ca2+ influx to the 

sustained increase in the [Ca2+] i.  In the same study, Į,ȕ-methylene-ATP (Įȕ-meATP), 

an ATP synthetic analogue that activates the P2X receptors containing P2X1, P2X3 or 

P2X5 subunit, was shown to induce a measureable increase in the [Ca2+] i, suggesting 

expression of some or all of these P2X receptors. However, ATP-evoked sustained 

increase in the [Ca2+] i was almost completely abolished by KN62, a human P2X7 

selective antagonist, and oxidized ATP (oxATP), an irreversible P2X7 inhibitor (Ferrari 

et al., 2011), indicating ATP-induced Ca2+ influx is mainly mediated by the P2X7 receptor.  

In a more recent study, in addition to a sustained increase in the [Ca2+] i, ATP also evoked 

membrane blebbing and large pore formation (Noronha-Matos et al., 2014), which are 

characteristics of the P2X7 receptor activation (Virginio et al., 1999; Wei et al., 2016). 

Moreover, 2’,3’-(benzoyl-4-benzoyl)-ATP (BzATP), another ATP synthetic analogue 

with a greater potency than ATP at the P2X7 receptor, was more potent than ATP in raising 

the [Ca2+] i, membrane blebbing and large pore formation. BzATP-induced effects were 

blocked by A-438079, a P2X7 selective antagonist (Noronha-Matos et al., 2014), 

providing further evidence to support functional expression of the P2X7 receptor in 

human BM-MSC. A recent study has shown P2X7 mRNA and protein expression in rat 

BM-MSC (Li et al., 2015). As discussed further below, this study has found that BzATP-

induced regulation of adipogenic and osteogenic differentiation was attenuated by 

brilliant blue G (BBG), a P2X7 selective antagonist, and P2X7-specific siRNA, 

demonstrating functional expression of the P2X7 receptor and an important role in the 

regulation of differentiation (Li et al., 2015).  Kwon reported oscillations in the 

extracellular ATP level in mouse BM-MSC, which are dependent of the intracellular Ca2+ 

level (Kwon, 2012). Such ATP oscillations were prevented by 5-BDBD, a P2X4 selective 
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antagonist. These observations have led to the notion that the functional P2X4 receptor 

mediates ATP-induced Ca2+ influx as part of an autocrine signaling mechanism resulting 

in the ATP oscillations (Kwon, 2012).  

   

AT-MSC. Expression of the P2X receptors in human adipose tissue derived MSC (AT-

MSC) was firstly exmained by Zippel and colleagues (Zippel et al., 2012). The study 

reported mRNA expression for P2X3-P2X7, but not P2X1 and P2X2, and protein 

expression for P2X5-P2X7, using western blotting. They showed that ATP elicited an 

increase in the [Ca2+] i, which was prevented by suramin, another P2 generic antagonist, 

and attenuated by NF279 at a concentration (100 µM), which is known to inhibit multiple 

P2X receptors including P2X1 (Rettinger et al., 2000). A recent study has evaluated 

expression of the P2X receptors in rat AT-MSC and observed mRNA expression for P2X3 

and P2X4, but not any other P2X subunits (Faroni et al., 2013). The protein expression 

for P2X4 and P2X7 was examined, using western blotting, but not detectable.  ATP 

increased the [Ca2+] i in a concentration-dependent manner (10-1000 µM) with the 

concentration evoking half of the maximum (EC50) of approximately 30 µM. In 

agreement with the lack of P2X7 mRNA expression, ATP-induced Ca2+ response was 

insensitive to inhibition by AZ10606120, a P2X7 selective antagonist (Faroni et al., 2013). 

 

UC-MSC. In human umbilical cord derived MSC (UC-MSC), the mRNA transcript was 

detected for P2X1 and P2X4-P2X7, but not P2X2 and P2X3 (Tu et al., 2014) . As 

discussed further below, this study has shown that ATP stimulated neuronal differentiation, 

which was prevented by 2’,3’-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP) (Tu et al., 2014) 

at a concentration (30 µM), which is known to inhibit several P2X receptors including 

the P2X1 and P2X4 receptors (Virginio et al., 1998). These results suggest functional 

expression of the P2X receptor(s) in human UC-MSC, but the molecular identity of the 

P2X receptor(s) was not established.    

 

PDL-MSC. It remains unclear whether the P2X receptors are expressed in human 

periodontal ligament derived MSC (PDL-MSC), with an exception of the P2X7 receptor. 
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The P2X7 expression has been documented at the mRNA and protein levels in human 

PDL-MSC (Trubiani et al., 2014). In addition, BzATP induced a monophasic increase in 

the [Ca2+] i and large pore formation, which were inhibited by oxATP.  BzATP also 

induced release of interleukin-8 (IL-8) and CC chemokine ligand 20 (CCL20), which was 

suppressed by A-740003, a P2X7 selective antagonist, as well as oxATP (Trubiani et al., 

2014). There results support functional expression of the P2X7 receptor in human PDL-

MSC and an important role in mediating the immunomodulatory property of MSC.    

 

DP-MSC. Expression of the P2X receptors in human dental pulp derived MSC (DP-MSC) 

has been reently investigated by us (Peng et al., 2016). The mRNA transcript was detected 

for P2X4, P2X6 and P2X7, but not for P2X1-P2X3 and P2X5. A majority of human DP-

MSC responded to ATP with a robust increase in the [Ca2+] i, albeit with a variable 

amplitude. ATP-induced Ca2+ responses were dependent of ATP concentration (3-300 µM) 

with an EC50 of 22 µM. BzATP also evoked an increase in the [Ca2+] i concentration-

dependently with an EC50 of approximately 90 µM, but there was no discernible Ca2+ 

response to ĮȕmeATP, consistent with the lack of expression for P2X1, P2X3 and P2X5. 

ATP and BzATP also induced an increase in the [Ca2+] i in extracellular Ca2+-free solutions, 

which however were much more transient than those in extracellular Ca2+-containing 

solutions, indicating extracellular Ca2+ influx in response to ATP and BzATP. ATP-

induced increase in the [Ca2+] i was insensitive to inhibition by the P2X4 antagonist 5-

BDBD. In contrast, the increases in the [Ca2+] i induced by both ATP and BzATP were 

attenuated by AZ11645373, a human P2X7 selective antagonist, and P2X7-specific 

siRNA, leading to the conclusion that functional expression of the P2X7 receptor 

contributes in mediating ATP-induced Ca2+ signaling in human DP-MSC (Peng et al., 

2016).  

 

P2Y receptors 

BM-MSC.  Ferrari et al performed RT-PCR analysis of the P2Y receptors in human BM-

MSC and showed mRNA expression for all eight P2Y receptors (Ferrari et al., 2011). 

Several groups examined protein expressio of the P2Y receptors in human BM-MSC and 
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the results are not completely consistent. An early study, using western blotting, showed 

protein expression for P2Y2, P2Y6 and P2Y11, but not P2Y1, P2Y4 and P2Y12 (Riddle et 

al., 2007). Ferrari et al, also using western blotting, confirmed the protein expression for 

P2Y2 and P2Y11, and, additionally. they reported P2Y1 protein expresssion (Ferrari et al., 

2011). A more recent study, using immunocytochemistry, has demonstrated the P2Y1 

protein expression in human BM-MSC (Noronha-Matos et al., 2014).   

 There are several lines of evidence to support functional expression of the P2Y1 

receptor and its role in extracellular nucleotide-induced Ca2+ signaling in human BM-

MSC. First of all, in a very early study, Kawano et al observed spontaneous Ca2+ 

oscillations in a subset of human BM-MSC (Kawano et al., 2002). In the follow-up study, 

they showed that Ca2+ oscillations promoted nuclear translocation of nuclear factor of 

activated T cells (NFAT) (Kawano et al., 2006). Moreover, such spontaneous Ca2+ 

oscillations were lost upon inhibition by U73122, a PLCȕ inhibitor, overexpression of an 

IP3-binding protein to remove intracellular IP3, PPADS, BzATP or adenosine 3'-phosphate 

5'-phosphosulfate. These results led the authors to propose an autocrine/paracrine Ca2+ 

signaling mechanism including ATP release and subsequent activation of the P2Y1-GĮ,q-

PLC-IP3R signaling pathway (Kawano et al., 2006). Secondly, as shown in two separate 

studies, ADP, a P2Y1 selective agonist, and its metabolically stable analogue, ADPȕS, 

elicited an increase in the [Ca2+] i (Ferrari et al., 2011; Noronha-Matos et al., 2014). 

Thirdly, in addition to the above-discussed inward currents, ATP also induced outward 

K+ currents in a subset of human BM-MSC that exhibited strong dependence of the 

intracellular Ca2+ level as well as membrane potential (Coppi et al., 2007).  Such Ca2+-

dependent K+ outward currents were prevented by PPADS and MRS2179, a P2Y1 

selective antagonist, indicating that Ca2+ release after activaiton of the P2Y1-GĮ,q-PLC-

IP3R signalling pathway triggers ATP-induced K+ outward currents. Finally, as discussed 

further below, ATP-stimulated adipogenic differentiation of human BM-MSC was 

inhibited by MRS2279, another P2Y1 specific antagonist (Ciciarello et al., 2013).  

 In addition to the P2Y1 receptor, ATP also activates the P2Y2 and P2Y11 receptors. 

UTP prefers the P2Y2, P2Y4 and P2Y6 receptors. Both ATP and UTP were potent in 

inducing an increase in the [Ca2+] i in human BM-MSC in extracellular Ca2+-free solution 
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as well as in extracellular Ca2+-containing solutions (Ferrari et al., 2011), indicating 

functional expression of other P2Y receptor(s) besides the P2Y1 receptor. Different 

studies, mainly using selective agonists and/or antagonists, support functional expression 

of the P2Y4, P2Y6 or P2Y11 receptor in human BM-MSC. A recent study has shown that 

INS45973, an agonist at the P2Y2 and P2Y4 receptors, stimulated adipogenic 

differentiation, whereas MRS2768, a P2Y2 agonist, was ineffective (Ciciarello et al., 

2013). This finding is in support of functional expression of the P2Y4 but not P2Y2 

receptor.  The study by Ferrari et al showed that UDP, an agonist favoring the P2Y6 

receptor, induced an increase in the [Ca2+] i in extracellular Ca2+-containing solutions, 

indicating functional expression of the P2Y6 receptor (Ferrari et al., 2011). Ferrari et al 

also showed that BzATP, which preferentially activates the P2Y11 receptor among the P2Y 

receptors, elicited a transient increase in the [Ca2+] i in extracellular Ca2+-free solutions as 

well as in extracellular Ca2+-containing solutions in the presence of KN62 (Ferrari et al., 

2011). Functional expression of the P2Y11 receptor in human BM-MSC has been further 

supported by the study investigating NAD-induced Ca2+ signalling (Fruscione et al., 

2010). NAD induced a biphasic increase in the [Ca2+] i in extracellular Ca2+-containing 

solutions. Both transient and sustained components of NAD-induced Ca2+ response were 

abolished by NF157, a selective P2Y11 antagonist, and P2Y11-specific siRNA, but they 

were not affected with oxATP or KN62 (Fruscione et al., 2010). Further characterization 

suggests that NAD activates the P2Y11-GĮ,s-AC-cAMP signalling pathway that leads to 

Ca2+ influx and ER Ca2+ release via the L-type voltage-gated Ca2+ channel and ryanodine 

receptor, respectively (Fruscione et al., 2010). UDP-glucose, a P2Y14 selective agonist, 

induced an increase in the [Ca2+] i in extracellular Ca2+-containing solutions (Ferrari et al., 

2011). As introduced above, the P2Y14 receptor is coupled to the GĮ,i-AC-cAMP 

signalling pathway, and the downstream Ca2+ signalling mechanism underlying UDP-

glucose-induced increase in the [Ca2+] i remains unclear. Currently, there is no information 

regarding functional expression of the P2Y12 and P2Y13 receptors in human BM-MSC.   

 In contrast with in human BM-MSC, there is clear evidence to show functional 

expression of the P2Y2 and P2Y13 receptors in rodent BM-MSC. An early study 

demonstrated P2Y2 mRNA and protein expression in rat BM-MSC (Ichikawa and Gemba, 
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2009). In the same study, ATP and UTP were shown to be equally potent in inducing an 

increase in the [Ca2+] i in extracellular Ca2+-containing and Ca2+-free solutions, whereas 

ADP and UDP were ineffective. Furthermore, ATP-induced increase in the [Ca2+] i was 

inhibited by suramin, but not PPADS. The overall pharmacological profile of the Ca2+ 

responses favors functional expression of the P2Y2 receptor (Ichikawa and Gemba, 2009). 

Consistently, as discussed further below, a recent study has shown that UTP-induced 

regulation of osteogenic and adipogenic differentiation of rat BM-MSC was prevented by 

P2Y2-specific siRNA, but not P2Y4-specific siRNA or MRS2578, the P2Y6 selective 

antagonist (Li et al., 2016). There were remarkable differences in adipogenic and 

osteogenic differentiation of BM-MSC from the wild-type (WT) and P2Y13 knockout 

(KO) mice, indicating functional expression of the P2Y13 receptor in mouse BM-MSC 

(Biver et al., 2013). 

 

AT-MSC. Expression of the P2Y receptors in human AT-MSC was studied (Zippel et al., 

2012). All the P2Y receptors were detected at the mRNA level, and the P2Y1, P2Y2, P2Y4 

and P2Y11 were further demonstrated at the protein level, using western blotting. UTP 

and 2-methylthio-ADP, an agonist at the P2Y1 and P2Y11-P2Y13 receptors, elevated the 

[Ca2+] i, whereas NF546, a P2Y11 selective agonist, did not. ATP-induced increase in the 

[Ca2+] i was reduced by the P2X receptor antagonist NF279 inhibitor as discussed above, 

and was also attenuated by pertussis toxin (PTX), the GĮ,i inhibitor, supporting 

involvement of the GĮ,i-coupled P2Y receptors. Moreover, ATP and UDP-glucose 

suppressed adipogenic differentiation (Zippel et al., 2012). These results provide evidence 

to support functional expression of the P2Y receptors including P2Y14, but not P2Y11. 

However, the P2Y receptors that mediate ATP- and UTP-induced Ca2+ signaling in human 

AT-MSC remain not fully understood.  

 

DP-MSC. The role of the P2Y1, P2Y2 and P2Y11 receptors in mediating ATP-induced 

Ca2+ signalling in human DP-MSC has been investigated in our recent study (Peng et al., 

2016). While mRNA expression for P2Y1 and P2Y11 was consistently observed in human 

DP-MSC from different donors, P2Y2 mRNA transcript was undetectable or at a very low 
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level (Peng et al., 2016). ATP, ADP and BzATP were all effective in evoking an increase 

in the [Ca2+] i in extracellular Ca2+-free solutions as well as in extracellular Ca2+-

containing solutions. Furthermore, ATP-induced increase in the [Ca2+] i was attenuated by 

P2Y1-specific siRNA or P2Y11-specific siRNA. ADP-induced increase in the [Ca2+] i was 

also diminished by P2Y1-specific siRNA. These results support functional expression of 

the P2Y1 and P2Y11 receptors and their contribution in mediating ATP-induced Ca2+ 

signaling (Peng et al., 2016). Furthermore, our study has identified Orai1 and Stim1 as 

critical molecular constituents of the CRAC channel and demonstrated Orai1 channel-

mediated Ca2+ influx is an important downstream mechanism in ATP-induced Ca2+ 

signalling in human DP-MSC (Peng et al., 2016). 

 

In summary, all studies have consistently shown that extracellular ATP and other 

nucleotides evoke an increase in the [Ca2+] i in MSC, regardless of species and tissues.  

In terms of the expression of P2X receptors, the results indicate no expression of the P2X2 

receptor, and a majority of studies support functional expression of the P2X7 receptor as 

a mechanism mediating ATP-induced Ca2+ influx. It remains less understood with regards 

to the other P2X receptors. Emerging evidence also supports functional expression of 

multiple P2Y receptors in MSC, including P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y13 and 

P2Y14, but it is important to point out that there are noticeable variations in the expression 

profile of the P2Y receptors and their contribution in extracellular nucleotide-evoked Ca2+ 

signaling described in the literature, which depend on the species, particularly the tissues, 

from which MSC were derived.  

 

Extracellular nucleotide regulation of MSC functions and roles of the P2 receptors  

As introduced above, extracellular nucleotides, particularly ATP, are highly likely to 

present in the stem cell niche, and released from MSC spontaneously or in response to 

mechanical or chemical stimulation under in vitro and in vivo conditions. Our knowledge 

is still limited regarding whether nucleotides act as extracellular signals in maintaining 

MSC in the self-renewal and undifferentiated state. However, recent studies show that 

ATP and other extracellular nucleotides exert prominent regulation of MSC proliferation, 
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viability, migration and differentiation into multiple lineages, and also accumulated clear 

evidence to further support important roles for the P2X and P2Y receptors in mediating 

such functional regulation.  

 

Proliferation and viability  

Several studies have evaluated the effects of ATP and NAD, released endogenously or 

applied exogenously, on BM-MSC proliferation and viability (Coppi et al., 2007; Ferrari 

et al., 2011; Fruscione et al., 2011; Li et al., 2015; Li et al., 2016; Riddle et al., 2007). 

Riddle et al showed that exposure to oscillatory fluid flow resulted in greater human BM-

MSC proliferation, using 5-bromo-2 -́deoxyuridine (BrdU) labelling assay (Riddle et al., 

2007). Exposure of cells to fluid flow induced vesicular ATP release, an increase in the 

[Ca2+] i, activation of Ca2+-sensitive calcineurin, and nuclear translocation of NFAT, 

particularly NFATc1, all of which were prevented by apyrase.  Treatment of cells 

cultured under static conditions with ATP also gave rise to activation of calcineurin, 

nuclear translocation of NFATc1, and increased proliferation.  In contrast, treatment 

with ATP metabolites, ADP, AMP and adenosine, or other nucleotides, including UTP, 

failed to affect cell proliferation. These results support a specific role for extracellular 

ATP in mediating fluid flow-induced increase in cell proliferation. As discussed above, 

this study demonstrated protein expression for the P2X7, P2Y2, P2Y4 and P2Y11 receptors.  

However, it was not established whether or which of these receptors mediated the increase 

in cell proliferation in response to fluid flow or ATP. A separate study, using luminescence 

assay, found that the ATP content was significantly higher in the culture medium in the 

presence of human BM-MSC, suggesting spontaneous release of ATP (Coppi et al., 2007). 

In addition, the number of cells after 5 days in culture was increased by inclusion of 

PPADS or the P2Y1 antagonist MRS2179 in the culture medium, and decreased by 

addition of ATP (10 µM).  These results suggest that ATP inhibits cell proliferation at 

least in part via activation of the P2Y1 receptor. Ferrari et al profiled the gene expression 

in human BM-MSC with or without treatment with 1 mM ATP for 24 hours (Ferrari et al., 

2011). ATP up-regulated the expression of growth arrest genes and cell cycle inhibitors, 

and down-regulated the expression of genes related to cell cycle, DNA replication and 
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repair, cell division and chromosome segregation. Consistently, they showed that 

pretreatment of human BM-MSC with 1 mM ATP for 24-72 hours inhibited cell 

proliferation, assessed after cells were cultured for 5 days, but pretreatment with ATP at 

lower concentrations (1-100 µM) was without effect (Ferrari et al., 2011). Fruscione et al 

showed, using thiazol blue tetrazolium bromide (MTT) cell viability assay, that the 

number of human BM-MSC was increased after they were cultured in the presence of 

NAD for 72 hours (Fruscione et al., 2011). Such effect was not observed for cells cultured 

in the presence of AMP, ADP-ribose and other NAD metabolites. The number of cells 

was decreased after they were treated with connexin43-specific siRNA to reduce 

connexin43-mediated NAD release or cultured in the presence of NADase to remove 

endogenously released NAD. Similar increase or decrease in the number of cells, induced 

by treatment with NAD and NADase respectively, was also observed, using 3H-thymidine 

incorporation assay. The study also analyzed cell death, by combining annexin and/or 

propidium iodide staining with fluorescence activated cell sorting (Fruscione et al., 2011). 

Treatment with NAD reduced the percentage of apoptotic cell without changing the 

percentage of dead cells, whereas treatment with NADase increased the percentage of 

dead cells without altering the percentage of apoptotic cells. Taken together, these results 

suggest that NAD stimulates proliferation and reduces apoptotic death (Fruscione et al., 

2011). Further investigation supports that the P2Y11-GĮ,i-AC-cAMP signalling pathway 

is important in mediating NAD-induced stimulation of cell proliferation (Fruscione et al., 

2011).  The same study observed no effect of treating cells with ATP up to 50 µM on 

cell proliferation (Fruscione et al., 2011).  As discussed above, ATP and UTP induced 

an increase in the [Ca2+] i in rat BM-MSC via the P2Y2 receptor (Ichikawa and Gemba, 

2009).  The sensitivity to UTP was dependent of the cell density with EC50 values of 28, 

11 and 5 µM at low, medium and high density, respectively, and the amplitude of UTP-

induced increase in the [Ca2+] i was much greater in cells at high density. In addition, UTP 

induced Ca2+ oscillations in cells but only at medium density, which depended on the 

store-operated Ca2+ entry. As the cell density increased, the P2Y2 mRNA level was 

increased. Furthermore, the percentage of proliferating cell nuclear antigen-positive cells, 

as identified using immunocytochemistry, was 93% at low density, which was reduced by 
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about half at medium density and further down to nearly zero at high density. These results 

were interpreted to suggest cell density-dependent changes in the P2Y2 expression and 

intracellular Ca2+ mobilization that may relate to cell cycle progression. Two recent 

studies from the same group have reported that BzATP and UTP, both applied at 5-125 

µM, did not alter the number of rat BM-MSC after they were cultured for 7 days, 

evaluated using cell counting kit-8 (CCK-8) assay (Li et al., 2015; Li et al., 2016).  

Cell proliferation and viability of MSC from other tissues have also been examined. 

Human DP-MSC proliferated in the presence of ATP at 0.3-300 µM for 72 hours in a 

similar rate as they did in the absence of ATP, as shown in our recent study based on both 

cell counting and MTT assay (Peng et al., 2016). A recent study, using MTT assay, has 

documented that the human PDL-MSC viability was considerably reduced after cultured 

in the presence of BzATP at 30-300 µM for 48 hours (Trubiani et al., 2014). As discussed 

below, this study has shown functional expression of the P2X7 receptor, but it was not 

clear whether the P2X7 receptor is critical in BzATP-induced reduction in the cell 

viability.    

 In summary, studies have shown extracellular nucleotide regulation of MSC 

proliferation and viability and a significant role for the P2Y1 and P2Y11 receptor in the 

regulation of BM-MSC proliferation by ATP and NAD respectively. However, the effects 

of extracellular nucleotides on MSC proliferation and viability are highly variable, and 

even ATP-induced effects are noticeably different.  These discrepancies may associate 

with MSC used, due to factors like the donor age and tissue origin, which as discussed 

above express the P2X and P2Y receptors at different levels, and may also relate to the 

experimental conditions, such as concentration, treatment duration and assays used.  

    

Cell migration 

Studies have drawn attention to whether extracellular nucleotides regulate MSC 

migration and their homing ability in vivo (Ferrari et al., 2011; Fruscione et al., 2011; 

Peng et al., 2016).  Ferrari et al showed, using trans-well migration assay, that addition 

of ATP to the upper chamber enhanced human BM-MSC migration (Ferrari et al., 2011). 

When added to the lower chamber as a chemotactic stimulus, ATP had no effect but 
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increased the chemotactic activity of chemokine CXCL-12. In contrast, UTP induced no 

effect. In addition, pretreatment with 1 mM ATP enhanced the homing rate of human BM-

MSC, assessed 16 hours after injected into immunocompromised mice (Ferrari et al., 

2011). However, the P2 receptor(s) that mediate(s) ATP-induced stimulation of cell 

migration was (were) not identified.  Fruscione et al examined NAD regulation of 

human BM-MSC migration, also using trans-well assay (Fruscione et al., 2011). 

Pretreatment with NAD stimulated cell migration, whereas pretreatment with NADase 

was without effect. NAD also enhanced cell migration when added to the lower chamber. 

NAD-induced increase in cell migration was prevented by the P2Y11 antagonist NF157 

and ddA, an inhibitor of membrane-associated AC, supporting a key role of the P2Y11-

GĮ,i-AC-cAMP signalling pathway (Fruscione et al., 2011). The same study also showed 

that pretreatment with ATP (1-10 µM) or addition of ATP in the lower chamber stimulated 

cell migration. Again, the molecular identity of the P2 receptor(s) involved in ATP-

induced stimulation of cell migration was not clearly defined (Fruscione et al., 2011).  

Our recent study has shown that human DP-MSC migration was accelerated in the 

presence of ATP at 30 µM but not 3 µM, assessed at 24, 48 and 72 hours mainly using 

wound healing assay (Peng et al., 2016). ATP-induced stimulation of cell migration was 

inhibited by PPADS, the human P2X7 antagonist AZ1164373, or specific siRNA 

targeting the P2X7, P2Y1 or P2Y11 receptor, but not CGS15943, a generic antagonist for 

adenosine receptors. These results suggest engagement of these three P2 receptors but not 

the adenosine receptors. Our study has also shown that activation of the Orai1 CRAC 

channel as an important downstream mechanism mediates ATP-induced stimulation of 

cell migration (Peng et al., 2016). 

In summary, studies have gathered consistent evidence to demonstrate that both ATP 

and NAD stimulate human MSC migration. While activation of the P2Y11-GĮ,i-AC-cAMP 

signalling pathway is critical for NAD-induced stimulation of human BM-MSC, several 

P2 receptors, including the P2X7, P2Y1 and P2Y11 receptors, participate in ATP-induced 

stimulation of human DP-MSC. 

 

Adipogenic differentiation 
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MSC are well-documented to commit differentiation to adipocyte. There is evidence to 

show substantial changes in the expression of both P2X and P2Y receptors during 

adipogenic differentiation. Two recent studies from the same group have shown that after 

rat BM-MSC were cultured in adipogenic medium for 7 day, the P2X7 mRNA and protein 

expression was down-regulated (Li et al., 2015) and by contrast the P2Y2 mRNA 

expression was up-regulated (Li et al., 2016).  Zippel et al reported that the mRNA 

expression was increased for P2X6 and P2Y11 and decreased for P2Y4 and P2Y14 after 

adipogenic differentiation of human AT-MSC (Zippel et al., 2012). The change in 

expression for P2X6, P2Y4 and P2Y11 was also demonstrated at the protein level, using 

western blotting. Furthermore, after adipogenic differentiation, the increases in the [Ca2+] i 

induced by ATP and 2-MeSADP remained unchanged, but UTP-induced increase in the 

[Ca2+] i was lost, which is consistent with down-regulation expression of the P2Y4 receptor 

(Zippel et al., 2012).   

Numerous genes are known to express or their expression is up-regulated during 

adipogenic differentiation, including peroxisome proliferator-activated receptor  

(PPAR), fatty acid binding protein 4 (FABP4), adiponectin and adipsin. Increased 

expression of these adipogenic genes leads to generation of lipid droplets, which is 

characteristic of adipocytes and can be visualized by Oil red O staining.  A recent study 

has shown that treatment of rat BM-MSC with 125 µM BzATP during 7 day culture in 

basal medium reduced the expression of PPAR, FABP4 and adipsin, and lipid droplet 

formation.  BzATP-induced decrease in the expression of these adipogenic genes was 

attenuated by the P2X7 selective antagonist BBG and P2X7-specific siRNA, 

demonstrating the importance of P2X7 receptor in the down-regulation of adipogenic 

differentiation (Li et al., 2015).  BzATP also reduced expression of the aforementioned 

adipogenic genes and lipid droplet formation in rat BM-MSC under adipogenic 

differentiation conditions. The study has further shown that in ovariectomized mice, a 

model of osteoporosis, the number of bone marrow adipocytes was reduced by 

intraperitoneal administration of BzATP, suggesting that activation of the P2X7 receptor 

suppresses adipogenic differentiation of BM-MSC in vivo. In addition, the study has 

examined the role of mitogen-activated protein kinases (MAPK) signalling in BzATP-
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induced down-regulation of adipogenic differentiation. Treatment with BzATP initially 

(5-10 min) stimulated and subsequently (20-60 min) inhibited the activity of extracellular 

signal-regulated kinase (ERK). The same treatment induced persistent activation of c-Jun 

NH2-terminal kinase (JNK) but no effect on the p38 activity. Both BzATP-induced 

activation of ERK and JNK and reduction in the expression of PPAR, FABP4 and adipsin 

were completely inhibited by UO126, an inhibitor of the ERK signalling, and SP600125, 

an inhibitor of the JNK signalling. These results suggest that the ERK and JNK MAPK 

signalling pathways play a crucial role in P2X7 receptor-mediated down-regulation of 

MSC adipogenic differentiation (Li et al., 2015). 

Studies using agonists and antagonists provide evidence to show that various P2Y 

receptors play a significant role in extracellular nucleotide regulation of adipogenic gene 

expression and lipid droplet formation during adipogenic differentiation of MSC.  

Ciciarello et al showed that treatment of human BM-MSC with 1 mM ATP for 24 hours, 

prior to adipogenic differentiation, enhanced the PPAR expression and also fat droplet 

formation, examined two and three weeks after adipogenic differentiation (Ciciarello et 

al., 2013). ATP-induced increase in the PPAR expression was inhibited by the P2Y1 

antagonist MRS2279, but not by the P2Y6 antagonist MRS2578, P2Y11 antagonist NF340, 

P2Y12 antagonist ARC66096 or P2X7 antagonist KN62. Pretreatment with UTP or 

INS45973, an agonist at the P2Y2 and P2Y4 receptors, resulted in a similar effect on the 

PPAR expression, whereas the P2Y2 selective agonist MRS2768 was ineffective. These 

results have been interpreted to support a critical role for the P2Y1 and P2Y4 receptors in 

regulation of adipogenic differentiation of human BM-MSC by ATP and UTP, 

respectively (Ciciarello et al., 2013).  However, ATP-induced increase in the PPAR 

expression was also inhibited by the GĮ,i inhibitor PTX (Ciciarello et al., 2013) , 

suggesting involvement of the GĮ,i-coupled P2Y receptors.  In support of no significant 

role for the P2Y11 receptor in adipogenic differentiation, an earlier study showed that 

during adipogenic differentiation of human BM-MSC, activation or inhibition of NAD-

induced P2Y11-mediated signaling resulted in no effect on the expression of PPAR, 

FABP4 and adiponectin, and lipid droplet formation (Fruscione et al., 2010).  A recent 

study using BM-MSC derived from the WT and P2Y13-KO mice has shown that P2Y13 
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deficiency led to earlier expression of PPAR isoform 2 (PPAR2), an early adipogenic 

gene, elevated expression of adipsin, and lipid droplet formation (Biver et al., 2013).  

Furthermore, there was an increase in the number of bone marrow adipocytes in the 

P2Y13-KO mice. These results have disclosed an important role for the P2Y13 receptor in 

suppressing adipogenic differentiation of mouse BM-MSC (Biver et al., 2013). A more 

recent study has investigated the effect of UTP (5-125 µM) on adipogenic differentiation 

of rat BM-MSC (Li et al., 2016). Inclusion of UTP in adipogenic medium enhanced the 

mRNA expression of PPAR, FABP4 and adipsin, and fat droplet formation. UTP-

induced increase in the expression of adipogenic genes was inhibited by P2Y2-specific 

siRNA, but not P2Y4-specific siRNA or the P2Y6 antagonist MRS2578, suggesting strong 

dependence of the P2Y2 receptor (Li et al., 2016).  Like BzATP as discussed above, 

initial treatment with UTP (5-10 min) activated, but prolonged treatment (20-60 min) 

inhibited, the ERK signaling. However, treatment with UTP resulted in no effect on the 

JNK and p38 MAPK signaling. UTP-induced ERK activation was prevented by P2Y2-

specific siRNA. The ERK activity in both control and UTP-treated cells was completely 

abolished upon treatment with the ERK signaling inhibitor UO126. When UO126 was 

added to adipogenic medium, UTP-induced increase in the expression of adipogenic 

genes was completely inhibited on the first day, but was persistently observed after 

treatment with UO126 for 3 and 7 days (Li et al., 2016). These results indicate that the 

ERK signalling pathway is involved in the early stage of UTP up-regulation of adipogenic 

differentiation.  

Inclusion of PPADS during adipogenic differentiation of human AT-MSC attenuated 

lipid droplet formation, and such an inhibition was mitigated by co-application of 

exogenous UTP but not ATP, suggesting involvement of the P2Y4 but not P2Y2 receptor 

(Zippel et al., 2012), which is different from the finding from the above-discussed study 

of human BM-MSC by Ciciarello et al (Ciciarello et al., 2013). Application of UTP, 

BzATP or ADP alone was without effect on lipid droplet formation. However, application 

of ATP alone reduced and, in contrast, treatment with apyrase enhanced, lipid droplet 

formation, suggesting that endogenously released ATP or its metabolites inhibit 

adipogenic differentiation. Like ATP, UDP-glucose reduced lipid droplet formation. 
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These observations, together with down-regulated P2Y14 expression during adipogenic 

differentiation discussed above, supports the notion that activation of the P2Y14 receptor 

inhibits adipogenic differentiation of human AT-MSC (Zippel et al., 2012). 

To summarize, studies provide evidence to show extracellular nucleotide regulation 

of adipogenic differentiation of MSC via activation of different P2 receptors. Activation 

of the P2X7, P2Y13 or P2Y14 receptor down-regulates, whereas activation of the P2Y1, 

P2Y2 or P2Y4 receptor up-regulates, adipogenic differentiation.  

 

Osteogenic differentiation 

The bone-forming cell, osteoblast, is also differentiated from MSC. As during adipogenic 

differentiation discussed above, studies have documented changes in the expression of 

the P2X and P2Y receptors during osteogenic differentiation of MSC. Again, there are 

substantial variations in the reported results. During osteogenic differentiation of human 

BM-MSC, the protein expression was decreased for P2X7 and P2Y1, increased for P2Y2 

and P2Y4, and remained unaltered for P2Y6 (NoronhaǦMatos et al., 2012). However, 

during osteogenic differentiation of rat BM-MSC, the P2X7 mRNA expression was 

elevated (Li et al., 2015) but the P2Y2 mRNA expression was reduced (Li et al., 2016). 

The P2Y13 mRNA expression was up-regulated during osteogenic differentiation of 

mouse BM-MSC (Biver et al., 2013).  After osteogenic differentiation of human AT-

MSC, the mRNA and protein expression was down-regulated for P2X6, P2X7, P2Y1, 

P2Y2 and P2Y4 and up-regulated for P2X5, and the P2Y14 mRNA expression was also 

decreased (Zippel et al., 2012).   

 It is well-documented that during osteogenic differentiation, a number of genes 

including alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), osterix, 

osteocalcin and osteopontin, are expressed or their expression is up-regulated.  

Osteoblast is responsible for bone extracellular matrix production and mineralization. 

These genotypes and phenotypes have been commonly used to indicate osteogenic 

differentiation of MSC. Treatment of human BM-MSC with ATP or shockwave, a 

mechanical stimulus inducing endogenous ATP release, increased the ALP activity, 

osteocalcin protein expression, and matrix mineralization (Sun et al., 2013). These effects 
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were strongly reduced or completely abolished by PPADS, the human P2X7 antagonist 

KN62 and P2X7-specific siRNA. Shockwave-induced effects were also prevented by 

apyrase, supporting a role for endogenous ATP release.  In addition, both ATP and 

shockwave induced robust increases in the expression of c-Fos and c-Jun.  Furthermore, 

all these effects were inhibited by SB203850, an inhibitor of the p38 MAPK signalling 

(Sun et al., 2013).  These findings have led to the conclusion that activation of the P2X7 

receptor triggers the p38 MARK signalling pathway to induce the expression of c-Fos 

and c-Jun, which together form the transcription factor activating protein-1 to up-regulate 

the expression of osteogenic genes (Sun et al., 2013). Similarly, treatment of human BM-

MSC with BzATP enhanced the ALP activity, Runx2 expression, and matrix 

mineralization (Noronha-Matos et al., 2014). BzATP-induced up-regulation of 

osteogenic differentiation was inhibited by H1152, a Rho kinase inhibitor as well as the 

human P2X7 antagonist A438079 (Noronha-Matos et al., 2014). Treatment of rat BM-

MSC with BzATP under basal and osteogenic differentiation conditions upregulated the 

mRNA and protein expression of Runx2, ALP and osteopontin (Li et al., 2015). These 

effects were inhibited by the P2X7 antagonist BBG. As discussed above, BzATP induced 

activation of the ERK and JNK but not p38 MAPK signalling pathways in rat BM-MSC, 

and BzATP-induced increase in the expression of the osteogenic genes was prevented by 

the ERK signalling inhibitor U0126 and the JNK signalling inhibitor SP600125. Taken 

together, these studies support the idea that activation of the P2X7 receptor triggers the 

Rho and/or MAPK downstream signalling pathways to up-regulate osteogenic 

differentiation of BM-MSC (Li et al., 2015). 

There is evidence to support a role for the P2Y receptors in extracellular nucleotide 

regulation of osteogenic differentiation. UTP, UTPS, the non-hydrolysable UTP 

analogue, UDP, and PSB0474, a metabolically stable P2Y6 agonist, were potent in 

inducing an increase in the ALP activity in human BM-MSC (NoronhaǦMatos et al., 

2012).  Enhancement in osteogenic differentiation induced by these agonists was 

inhibited by PPADS and the P2Y6 antagonist MRS2578 (NoronhaǦMatos et al., 2012). 

These results support a critical role for the P2Y6 receptor. However, treatment with UTP 

of rat BM-MSC down-regulated the expression of Runx2, ALP and osteopontin (Li et al., 
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2016). Such down-regulation in the expression of osteogenic genes was attenuated by 

P2Y2-specific siRNA, but not P2Y4-siRNA or the P2Y6 antagonist MRS2578, indicating 

main involvement of the P2Y2 receptor (Li et al., 2016). Furthermore, UTP-induced 

inhibition of osteogenic differentiation was prevented during the first 24 hour treatment 

with the ERK signalling inhibitor UO126, but was unabated after treatment with UO126 

was extended to 3 and 7 days (Li et al., 2016).  This result suggests that the ERK 

signalling pathway is mainly involved in the early stage of UTP down-regulation of 

adipogenic differentiation. Activation of the P2Y13 receptor in mouse BM-MSC by ADP 

up-regulated the expression of ALP and osterix and, BM-MSC from the P2Y13-KO mouse 

exhibited preferential adipogenic differentiation, consistently highlighting that activation 

of the P2Y13 receptor is necessary for commitment of BM-MSC to osteogenic 

differentiation (Biver et al., 2013).   

An early study by Zippel et al showed that treatment of human AT-MSC with 

suramin, PPADS or apyrase during osteogenic differentiation inhibited matrix 

mineralization (Zippel et al., 2012). Such an inhibition was reversed by co-application of 

ATP but not UTP, excluding a major role for the P2Y2 or P2Y4 receptor. However, it was 

not clearly established which P2 receptor(s) mediate(s) the inhibition of osteogenic 

differentiation by suramin and PPADS (Zippel et al., 2012).  

In summary, it is evident that extracellular nucleotide regulation of osteogenic 

differentiation of MSC via activation of the P2X and/or P2Y receptors. More specifically, 

activation of the P2X7, P2Y6 or P2Y13 receptor up-regulates, and activation of the P2Y2 

receptor down-regulates, osteogenic differentiation. Of notice, activation of the P2X7, 

P2Y2 and P2Y13 receptors results in an opposite regulation of adipogenic and osteogenic 

differentiation, which is not surprising considering that MSC differentiation into 

adipocyte and osteoblast often shows mutual exclusion (Chen et al., 2016). 

 

Chondrogenic differentiation 

Chondrocyte represents the third lineage of MSC differentiation. Our current knowledge 

with regards to extracellular regulation of chondrogenic differentiation of MSC is limited. 

The expression of chondrogenic genes such as aggrecan, type II collagen and SOX9 is 
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up-regulated during chondrogenic differentiation. A previous study using ATD5, a pre-

chondrogenic cell that can differentiate into chondrocytes, showed an important role for 

ATP oscillations in pre-chondrogenic condensation, which were driven by intracellular 

Ca2+ oscillations (Kwon, 2012). Similar ATP oscillations and increase in the expression 

of the above-described chondrogenic genes were observed in the micromass culture of 

mouse BM-MSC during chondrogenic differentiations, which were lost by treatment with 

the P2X4 antagonist 5-BDBD (Kwon, 2012). These results support ATP-induced P2X4 

receptor-mediated Ca2+ influx is required in the ATP oscillations and chondrogenic 

differentiation of mouse MSC (Kwon, 2012).  

 

Neuronal differentiation 

Astrocyte, one type of glial cells in the central nervous system, is well-known to release 

ATP, which is critical for Ca2+ wave propagation among astrocytes and modulation of 

synaptic transmission (Haydon and Carmignoto, 2006). A recent study has examined the 

effects of ATP released from astrocytes or exogenously applied on neuronal 

differentiation of human BM-MSC (Tu et al., 2014). ATP release was induced by 470 

mm light activation of astrocytes expressing the light-sensitive channelrhodopsin-2 

(ChR2). After co-cultured with ChR2-expressing astrocytes in the neurobasal medium for 

3 weeks, during which cells were exposed to light for 30 min every 3 days, the percentage 

of MSC expressing Tuj1 and neuN, two neuronal markers, identified by 

immunocytochemistry, was increased by approximately 3-fold and 4-fold, respectively. 

The increase in the percentage of Tuj1-positive cells was prevented by TNP-ATP at 30 

µM, a concentration that as discussed above inhibits multiple P2X receptors.  An 

increase in the mRNA expression of Tuj1 and Pax6, a transcriptional factor, was also 

observed in human BM-MSC after cultured for 3 weeks in the neurobasal medium that 

was either conditioned by light-activated ChR2-expressing astrocytes or supplemented 

with ATP (10 µM).  ATP-induced increase in the expression of Tuj1 and Pax6 was 

inhibited by TNP-ATP. These results suggest that extracellular ATP promotes neuronal 

differentiation of human BM-MSC. ATP (10 µM) also increased the expression of ȕ-

catenin and FZD8, two target genes for the Wnt/ȕ-catenin signalling, as well as inducing 
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nuclear translocation of ȕ-catenin. ATP-induced increase in the expression of ȕ-catenin 

and FZD8 was abolished by TNP-ATP. These results support that the P2X receptors and 

Wnt/ȕ-catenin signalling are engaged in ATP-induced up-regulation of neuronal 

differentiation of human BM-MSC. However, the P2X receptors and the signalling 

pathway(s) linking the P2X receptor activation to the Wnt/ȕ-catenin signalling remain 

unknown. This study has further examined neuronal differentiation of human BM-MSC 

in vivo and contribution in protecting brain damage resulting from middle cerebral artery 

occlusion (MCAO), a widely-used model of ischemic stroke. Rats were transplanted with 

human BM-MSC alone or together with astrocytes expressing ChR2 or YFP in striatum 

2 days after MCAO, and received light stimulation one day later.  Immunostaining 

confirmed the presence of human BM-MSC in the close vicinity of co-transplanted rat 

astrocytes in the ischemic brain. The percentage of Tuj1-positive cells determined 2 

weeks after MCAO was much higher in the ischemic brain co-transplanted with human 

BM-MSC and rat ChR2-expressing astrocytes.  Moreover, MCAO-induced infarct 

volume and neurological impairment were reduced in rats that were co-transplanted with 

human BM-MSC and rat ChR2-expressing astrocytes and received light stimulation. 

These results show that astrocyte derived ATP can stimulate neuronal differentiation of 

human BM-MSC in vivo and provide the proof of concept that ATP stimulation of 

neuronal differentiation of human BM-MSC is useful in treating ischemic stroke-induced 

neurological deficits.  

 

Glial differentiation 

There is evidence to suggest that rat AT-MSC can differentiate into cells with Schwann 

cell (SC) phenotypes, such as expression of glial markers and growth factors, and an 

ability to produce myelin and induce neurite outgrowth in vitro and enhance nerve 

regeneration in vivo, and a recent study has examined the expression of P2X receptors 

after rat AT-MSC were differentiated into SC-like cells (Faroni et al., 2013). As discussed 

above, in rat AT-MSC, P2X4 and P2X7 at the protein level were not detected but became 

readily detected after differentiation into SC-like cells.  Consistently, ATP-induced 

increase in the [Ca2+] i in SC-like cells were sensitive to inhibition by the P2X7 antagonist 
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AZ10606120, which was not observed in AT-MSC. ATP was also more potent, with EC50 

reduced from ~100 µM in AT-MSC to below 30 µM in SC-like cells. Furthermore, in 

patch-clamp recording, both ATP and BzATP concentration-dependently induced non-

sensitizing currents in SC-cells and BzATP was potent more than ATP (Faroni et al., 2013).  

ATP-induced currents were abolished by the P2X7 antagonist AZ10606120. All these 

results provide consistent evidence to indicate functional expression of the P2X7 receptor 

in SC-like cells. It is long known that the P2X7 receptor as a cytolytic receptor because 

sustained activation of the P2X7 receptor causes cell death (Jiang, 2009; Virginio et al., 

1999). Exposure of SC-like cells to 5 mM ATP for 1 hour induced cell death as determined 

by lactate dehydrogenase release cytotoxicity assay and EthD-1 staining viability assay 

(Faroni et al., 2013). ATP-induced SC-like cell death was prevented by AZ10606120. 

These results further support up-regulation of the P2X7 receptor expression during 

Schwann cell differentiation of AT-MSC (Faroni et al., 2013). However, it remains 

unclear whether extracellular nucleotides regulate glial differentiation of MSC and 

whether up-regulation of the P2X7 receptor expression is causatively involved in the 

regulation of glial differentiation.  

 

Concluding remarks and perspectives 

It is evident from the discussion above that studies in the past few years have significantly 

enriched our knowledge with respect to expression of the P2X and P2Y receptors in MSC, 

and also provided evidence to support a role for these receptors in mediating the 

regulation of MSC viability, proliferation, migration and differentiation by extracellular 

nucleotides, particularly ATP and UTP.  However, it is also obvious that substantial 

discrepancies exist in the findings from studies examining MSC from different species 

and tissues, even MSC from the same type species and tissue. More investigations are 

clearly required to gain a better understanding of extracellular nucleotide regulation of 

MSC functions and the role of the P2X and P2Y receptors in such functional regulation. 

Currently, it is completely unclear whether extracellular nucleotides are important in 

maintaining MSC stemness, namely, MSC in the self-renewal and undifferentiated state, 

and if they are, it is important to determine the role of the P2X and P2Y receptors.  
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Ca2+ is a ubiquitous intracellular messenger that plays a crucial role in a vast range 

of cell functions (Berridge et al., 2003). As discussed above, extracellular nucleotides, via 

activation of the P2X and P2Y receptors, induce extracellular Ca2+ influx and/or 

intracellular Ca2+ release, which can form specific Ca2+ signatures with distinct spatial 

and temporal dynamics. Further efforts are warranted to investigate whether the increase 

in the [Ca2+] i or the Ca2+ signature is more critical in the regulation of MSC proliferation, 

migration and differentiation by extracellular nucleotides. Moreover, previous studies 

have shown that diverse Ca2+-dependent downstream signaling pathways are important 

in driving cell functions (Agell et al., 2002; Argentaro et al., 2003; Preß et al., 2015; 

Stoeckl et al., 2013; Zayzafoon, 2006). Indeed, as discussed above, emerging evidence 

supports that activation of the P2X7 and P2Y receptors triggers the Rho and/or MAPK 

signaling pathways in the regulation of adipogenic and osteogenic differentiation of MSC. 

More remain to be learnt in terms of the Ca2+-dependent signaling mechanisms in 

extracellular nucleotide regulation of MSC functions. A clear understanding of 

extracellular nucleotide-induced purinergic signaling in MSC functions should be 

rewarding in improving the applications of MSC in regenerative medicine.  
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Table 1 Summary of expression of P2X and P2Y receptors in MSC and change in their expression during differentiation 

Receptor Cell preparations Examination methods Change in expression during 
differentiation 

References 

P2X1 Human BM-MSC  
Human UC-MSC  

RT-PCR; WB 
RT-PCR 

 (Ferrari et al., 2011) 
(Tu et al., 2014) 

P2X3 Human BM-MSC  
Human AT-MSC  
Rat AT-MSC 

RT-PCR 
RT-PCR  
RT-PCR 

 (Ferrari et al., 2011) 
(Zippel et al., 2012) 
(Faroni et al., 2013) 

P2X4 Human BM-MSC 
Human AT-MSC 
Human UC-MSC 
Human DP-MSC  
Rat AT-MSC  

RT-PCR; WB 
RT-PCR 
RT-PCR 
RT-PCR 
RT-PCR 

 (Ferrari et al., 2011) 
(Zippel et al., 2012) 
(Tu et al., 2014) 
(Peng et al., 2016) 
(Faroni et al., 2013) 

P2X5 Human BM-MSC 
Human AT-MSC 
Human UC-MSC 

RT-PCR 
RT-PCR; WB  
RT-PCR 

 
 Osteogenesis 

(Ferrari et al., 2011) 
(Zippel et al., 2012) 
(Tu et al., 2014) 

P2X6 Human BM-MSC 
Human AT-MSC 
Human UC-MSC 
Human DP-MSC 

RT-PCR 
RT-PCR; WB  
RT-PCR 
RT-PCR 

 
 Adipogenesis;  osteogenesis 

(Ferrari et al., 2011) 
(Zippel et al., 2012) 
(Tu et al., 2014) 
(Peng et al., 2016) 

P2X7 Human BM-MSC* 
 
 
Human BM-MSC 
 

WB 
IS; Ca2+ imaging 
IS; Ca2+ imaging; dye uptake 
RT-PCR; WB; Ca2+ imaging  
RT-PCR; WB 

 
 Osteogenesis 
 
 
 Osteogenesis 

(Riddle et al., 2007) 
(NoronhaǦMatos et al., 2012) 
(Noronha-Matos et al., 2014) 
(Ferrari et al., 2011) 
(Sun et al., 2013) 
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Human AT-MSC 
Human UC-MSC 
Human DP-MSC 
Human PDL-MSC 
Rat BM-MSC* 

RT-PCR; WB 
RT-PCR 
RT-PCR; Ca2+ imaging 
RT-PCR; WB; IS; Ca2+ imaging 
RT-PCR; WB; IS 

 Osteogenesis 
              
              
 
 Adipogenesis;osteogenesis 

(Zippel et al., 2012) 
(Tu et al., 2014) 
(Peng et al., 2016) 
(Trubiani et al., 2014) 
(Li et al., 2015) 

P2Y1 Human BM-MSC 
 
 
Human BM-MSC* 
 
Human AT-MSC 
Human DP-MSC 

Ca2+ imaging  
Patch-clamp current recording 
RT-PCR; WB; Ca2+ imaging 
IS; Ca2+ imaging 
IS; Ca2+ imaging 
RT-PCR; WB; Ca2+ imaging 
RT-PCR; Ca2+ imaging 

 
 
 
 Osteogenesis 
             
 Osteogenesis 

(Kawano et al., 2006) 
(Coppi et al., 2007) 
(Ferrari et al., 2011) 
(NoronhaǦMatos et al., 2012) 
(Noronha-Matos et al., 2014) 
(Zippel et al., 2012) 
(Peng et al., 2016) 

P2Y2 Human BM-MSC* 
 
Human BM-MSC 
Human AT-MSC 
Rat BM-MSC* 

WB 
IS 
RT-PCR; WB 
RT-PCR; WB  
RT-PCR; IS; Ca2+ imaging 
RT-PCR; IS 

 
 Osteogenesis 
 
 Osteogenesis 
 
 Adipogenesis;  osteogenesis   

(Riddle et al., 2007) 
(NoronhaǦMatos et al., 2012) 
(Ferrari et al., 2011) 
(Zippel et al., 2012) 
(Ichikawa and Gemba, 2009) 
(Li et al., 2016) 

P2Y4 Human BM-MSC* 
Human BM-MSC 
Human AT-MSC 

IS 
RT-PCR 
RT-PCR; WB 

 Osteogenesis 
              
 Adipogenesis; osteogenesis 

(NoronhaǦMatos et al., 2012) 
(Ferrari et al., 2011) 
(Zippel et al., 2012) 

P2Y6 Human BM-MSC* 
Human BM-MSC 
 
Human AT-MSC 

WB 
IS; Ca2+ imaging 
RT-PCR; Ca2+ imaging 
RT-PCR 

 
 
 

(Riddle et al., 2007) 
(NoronhaǦMatos et al., 2012) 
(Ferrari et al., 2011) 
(Zippel et al., 2012) 

P2Y11 Human BM-MSC* WB  (Riddle et al., 2007) 
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Abbreviations: MSC, mesenchymal stem cells (*MSC, mesenchymal stromal cells used in the original studies); BM, bone marrow; AT, 
adipose tissues; UC, umbilical cord; DP, dental pulp; PDL, periodontal ligament; RT-PCR, reverse transcription-polymerase chain reaction; 
WB, western blotting; IS, immuno-staining; , up-regulated expression; , down-regulated expression. 

 

 

 

 

 

 

 

Human BM-MSC 
 
Human AT-MSC 
Human DP-MSC 

RT-PCR; WB; Ca2+ imaging 
RT-PCR; Ca2+ imaging 
RT-PCR; WB 
RT-PCR; Ca2+ imaging 

 
 
 Adipogenesis 

(Ferrari et al., 2011) 
(Fruscione et al., 2011) 
(Zippel et al., 2012) 
(Peng et al., 2016) 

P2Y12 Human BM-MSC 
Human AT-MSC 

RT-PCR 
RT-PCR 

 (Ferrari et al., 2011) 
(Zippel et al., 2012) 

P2Y13 Human BM-MSC 
Human AT-MSC 
Mouse BM-MSC 

RT-PCR  
RT-PCR 
RT-PCR  

 
 
 Osteogenesis 

(Ferrari et al., 2011) 
(Zippel et al., 2012) 
(Biver et al., 2013) 

P2Y14 Human BM-MSC 
Human AT-MSC 

RT-PCR 
RT-PCR 

 
 Adipogenesis; osteogenesis 

(Ferrari et al., 2011) 
(Zippel et al., 2012) 
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