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Summary 
The local image representation produced by early stages of visual analysis is uninformative regarding 

spatially extensive textures and surfaces. We know little about the cortical algorithm used to combine 

local information over space, and still less about the area over which it can operate. But such 

operations are vital to support perception of real-world objects and scenes. Here, we deploy a novel 

reverse-correlation technique to measure the extent of spatial pooling for target regions of different 

areas placed either in the central visual field, or more peripherally. Stimuli were large arrays of 

micropatterns, with their contrasts perturbed individually on an interval-by-interval basis. By 

comparing trial-by-trial observer responses with the predictions of computational models, we show that 

substantial regions (up to 13 carrier cycles) of a stimulus can be monitored in parallel by summing 

contrast over area. This summing strategy is very different from the more widely assumed signal 

selection strategy (a MAX operation), and suggests that neural mechanisms representing extensive 

visual textures can be recruited by attention. We also demonstrate that template resolution is much less 

precise in the parafovea than in the fovea, consistent with recent accounts of crowding. 

 

Keywords: reverse correlation; area summation; max operator 

 

1 Introduction 

 
The human visual system is structured 

hierarchically, with spatially local analyses at 

early stages feeding into representations of 

extensive textures, objects and surfaces at later 

stages. But despite extensive work focussing 

on local processes, e.g. in primary visual 

cortex (V1), we know relatively little about the 

later stages of representation. In particular, the 

limits of contrast integration across space, and 

the pooling strategy involved. 

 

For several decades, the psychophysics 

literature has favoured a probability 

summation rule for pooling contrast beyond 

the classical receptive fields typically found in 

V1 (e.g. Mayer and Tyler, 1986; Robson and 

Graham, 1981) and contemporary accounts 

implement this with a MAX operator (Meese 

and Summers, 2012; Pelli, 1985; Tyler and 

Chen, 2000). This detection strategy is 

sometimes referred to as signal selection 

(Meese and Baker, 2011), since the MAX 

operator chooses one signal over several others. 

An alternative strategy is signal combination, 

in which many signals are combined to 

generate an overall response (Meese and Baker, 

2011). In fact, a recent body of work supports 

the signal combination account of spatial 

pooling over the signal selection account 

(Baker and Meese, 2011; Meese and Baker, 

2011; Meese and Summers, 2012, 2007; 

Meese, 2010; Morgenstern and Elder, 2012). 

According to this work, the signal combination 

strategy operates across various visual 

dimensions such as space, time, orientation 

and eye (Meese and Baker, 2013). However, 

although several attempts have been made 

(Baker and Meese, 2011; Meese, 2010), it has 

been difficult to firmly establish the spatial 

extent of the signal combination process using 

conventional contrast detection techniques 

(Baker and Meese, 2011). 

 

We address this problem here by tailoring a 

psychophysical reverse correlation procedure 

to the problem, and developing novel analysis 

techniques. The general approach involves 

comparing the contrasts of discrete stimulus 

elements with observer responses in a contrast 

increment detection task, so as to build up a 

‘map’ of the elements that contribute to the 

observer’s decisions over many trials (see 

Figures 2 & 3). By comparison with simulated 

observers using different decision rules, we 
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infer the strategies used by the human 

observers in our study. Our analysis reveals 

that observers sum contrast over large areas (9-

13 carrier cycles) using a signal combination 

strategy, rather than a signal selection (MAX) 

strategy, and that observers can be very poor at 

ignoring visual data at fixation, even when it is 

uninformative. 

 

1.1 Simulated observers 

 

We first consider the behaviour of two 

canonical model observers in a two-interval-

forced-choice (2IFC) contrast increment 

detection task (see Materials & Methods): the 

‘summing observer’ and the ‘MAXing 

observer’. Each model observer monitored a 

square region of the stimulus (e.g. Figure 1), 

with a width of 1, 3, 9 or 27 elements (defined 

by the white squares in Figure 2). On each trial, 

the summing observer adds the contrast values 

within the target region linearly, and selects 

the interval with the largest total as being the 

one most likely to contain the target. The 

MAXing observer selects the interval with the 

highest single contrast element in the target 

region. This process was repeated for 2000 

trials per condition and observer. To mimic the 

non-determinacy of human observers, we 

added zero-mean Gaussian noise to the 

contrast of each element on every interval of 

every trial. 

 

 
Figure 1: Example stimulus for null (a) and target (b) intervals of a contrast increment detection task. The contrast 

of each element was determined by a Gaussian distribution with a mean of 32% (i.e. it was a fixed contrast 

pedestal, with zero-mean noise added). In the target interval (b), a contrast increment was applied to elements in 

the target region, here a 9x9 element square in the centre of the display. In the experiments, the target increment 

was either 0% or near threshold, so was less salient than in the example above. 

 
The behaviour of the model observers was 

analysed in two ways. First, we performed 

reverse correlation for each individual element 

on the contrast difference between the null and 

target interval and the interval selected by the 

observer. The correlation coefficients are 

plotted in Figure 2 (top row) as correlation 

maps, and are similar to classification images 

(Ahumada, 2002). For both simulated 

observers, correlations were concentrated in 

the target area for small target regions (red, 

green), and became more diffuse as targets 

grew larger (blue, orange). Using this 

technique, the two model observers produced 

similar maps, so there was no way to 

distinguish between the two very different 

decision rules. 

 

A more informative analysis combines 

information across multiple elements, rather 

than treating each element independently. 

Pooling regions of different widths were 

assessed, within which the sum or the MAX 

was correlated with the responses of the 

simulated observer. The strongest correlations 

occurred when the observer rule and the 

analysis rule matched (i.e. the. summing 

analysis, for the summing observer; the 

MAXing analysis, for the MAXing observer), 

and the pooling region equalled the target 

region, as shown by the graphs in Figure 2 

(bottom row). When the rules were 

mismatched, weaker correlations were 

observed, particularly for the summing 

observer paired with the MAXing analysis. 

Thus, by applying this type of analysis to 

human results, we can determine which of the 

two pooling strategies they use, and also derive 

an estimate of the size of the stimulus region 

over which pooling takes place (which may be 

sub-optimal owing to physiological 

limitations). The results of this study have 

previously been reported in abstract form 

(Baker and Meese, 2013). 

(a) (b)
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Figure 2: Data from two model observers, who either summed (a) or MAXed (b) over the target region. The maps 

treat each element independently, and correlate the contrast difference across intervals with the observer’s 

responses, over 2000 trials. Each map was peak-normalized, with the target regions indicated by white squares. 

Luminance at each location indicates how well the element there predicted responses, with correlations <=0 shown 

in black. In the lower graphs in each column, correlations were obtained by either summing or MAXing over a 

range of square windows to infer the width of the observer’s pooling region and the decision rule used (see text). 

 

2 Methods 

 
2.1 Apparatus & Stimuli 

 

All stimuli were presented on a gamma 

corrected NEC MultiSync Pro monitor running 

at 75Hz. Stimuli were generated in Matlab 

running on an Apple computer, and presented 

at 14-bit greyscale resolution by a BITS++ box 

(Cambridge Research Systems, Kent, UK). 

The monitor was viewed from 91cm, such that 

48 monitor pixels subtended one degree of 

visual angle. Throughout, we define contrast as 

Michelson contrast in percent (C% = (Lmax-

Lmin)/(Lmax+Lmin), where L is luminance), often 

expressed in decibels (CdB = 20log10(C%)). 

 

Stimuli were square arrays of 27x27 

‘Battenberg’ micropatterns (see Meese, 2010) 

with a spatial frequency of 2c/deg. In brief, 

these are constructed from a horizontal 

sinusoidal grating, which is contrast modulated 

by a full-wave rectified vertical sinusoidal 

grating at half the carrier spatial frequency. 

This segments the stimulus into vertical 

columns of horizontal stripes. Horizontal 

segmentation occurs naturally at the zero 

crossings of the carrier grating, and is 

accentuated by the contrast differences 

between the elements (carrier cycles). The 

contrast of each element was sampled 

independently on each interval of every trial 

from a Gaussian distribution (in linear contrast 

units) with a standard deviation of 10% (20dB), 

and a mean of 32% (30dB) (this is equivalent 

to a pedestal of 30dB with contrast jitter (“0D 

noise”, see Baker and Meese, 2012) added). 

Example stimuli are shown in Figure 1. On the 

very rare occasions (<0.15% of elements) 

when an element’s contrast exceeded 100% or 

fell below 0% they were fixed at these limiting 

values. 

 

2.2 Procedures 

 

Observers viewed the display from a head-and-

chin rest. The task was a two interval forced 

choice (2IFC) contrast increment detection 

between two noisy Battenberg textures (see 

above). One interval contained the target, the 

other did not, and they were presented in 

random order for 100ms (with an interstimulus 

Summing observer MAXing observer(a) (b)
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interval of 400ms). The observer’s task was to 

indicate using the buttons of a computer 

trackball which interval they believed 

contained the target. Before beginning the 

main experiments, we used a staircase 

procedure to estimate increment thresholds for 

the various conditions. The thresholds from 

this procedure guided our choice of contrasts 

used in the main experiments. No feedback 

was given in any experiment. 

 

In Experiment I there were four target sizes, all 

of which were square, with widths of 1, 3, 9 

and 27 elements. The target regions were 

centrally located. Observers were explicitly 

informed of target spatial extent by a quad of 

continuously present dark dots that framed the 

target area. For each target array size, 

observers completed 20 blocks of 100 trials 

using the method of constant stimuli. There 

were two target contrast levels: 0% and a near-

threshold level informed by the staircase 

procedure described above. For all observers, 

these near-threshold contrasts were 22dB 

(12.6%) for the 1x1 target, and 12dB (4%) for 

the other target sizes. We included the non-

zero target contrast to keep observers on task, 

and the 0% contrast because this produces data 

that is uncontaminated by the presence of a 

physical target (e.g. the observer is comparing 

two statistically identical noise fields in each 

trial). The blocks for different target sizes were 

run separately in a random order, and each 

block lasted around 3 minutes. Each observer 

completed 2000 trials for each target size, split 

between the two target contrast levels. 

 

In Experiment II there were two conditions. In 

the first, a one-element target was offset below 

fixation by three elements. In the second, there 

were two target locations, equidistant above 

and below fixation; the target appeared in both 

locations in every trial. Quads of dark dots 

indicated the locations of the target and 

fixation elements. The target contrast levels 

were 0% and either 20% (26dB; DHB & 

SAW) or 32% (30dB; TSM), based on pilot 

staircase data. These pilot data can be 

considered to be practice sessions, with 

observers completing around 160 trials for 

each target size and location. 

 

We calculated correlations between the 

observer responses and the contrast difference 

across intervals for each trial. To avoid bias, 

the target contrast increments were not 

included in the calculation of contrast 

difference between the null and target intervals. 

Positive differences indicate a higher contrast 

in the target interval and, on average, should  

 
Figure 3: Correlation maps (a-d) and cross-section 

traces (e-h) for observer DHB for four target sizes 

(indicated by the white squares in panels a-d). The 

maps (a-d) are normalized to the maximum value 

for each map, with correlation coefficients <=0 

shown as black. The trace plots (e-h) show absolute 

values (note the different scales for the ordinate 

across the rows). Coloured points are correlation 

values for individual elements, plotted as a function 

of absolute distance from the central fixation 

element (and mirrored about zero). The black trace 

is the average of the individual correlations at each 

location, and the grey curves are fitted Gaussian 

functions with two free parameters. 

 

correspond to ‘correct’ observer responses. 

Because the response data are binary, and the 

contrast differences continuous, the 

appropriate statistic is the point biserial 

correlation. This has an effective maximum 

limit of r≈0.8, because the binary response 

data can never fully predict the continuous 

contrast difference data. The calculations were 

performed on an element-by-element basis to 

produce the correlation maps in Figures 2 & 3, 

and on the sum or MAX over groups of 

elements for the more elaborate analysis (e.g. 

Figure 4). We initially calculated correlations 

for the two target contrast levels separately but, 

since these produced very similar results, we 
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pooled the data across contrast levels to give 

us 2000 trials per correlation. 

 

2.3 Observers 

 

Three observers completed all conditions. 

These were the two authors (DHB, TSM), and 

a psychophysically experienced postdoctoral 

researcher (SAW) who was naïve regarding 

the specific expectations of the study. All 

observers had normal or corrected-to-normal 

visual acuity 

 

3 Results 

 
3.1 Experiment I: monitoring targets of 

different sizes 

 

Example correlation maps for a representative 

human observer (DHB) are shown in Figure 

3a-d, with fits to the data in Figure 3e-h. For 

the small target regions (red, green), 

correlations were strong in the expected 

locations, and weak outside of them, just as for 

the simulated observers (Figure 2). However, 

for the two larger target regions (blue, orange) 

there was a clear clustering of correlation 

coefficients in the centre of the stimulus. This 

suggests that contrast integration occurs over a 

limited range, and is non-uniform over space. 

  

To uncover the decision rule used by human 

observers, we calculated correlation 

coefficients for all three observers for each of 

several pooling windows (various widths) and 

the two decision rules described above. As 

shown in Figure 4, correlations were stronger 

for the summing rule (left panels) than the 

MAXing rule (right panels) in all cases. This 

indicates the existence of summing 

mechanisms that are either pre-wired (in size), 

or constructed according to prevailing 

demands. It argues against peak-picking (akin 

to probability summation) from a population of 

local mechanisms.  

 

Next we asked how spatially extensive the 

pooling is. We estimated this from the location 

of the peak in the correlation functions (Figure 

4a,c,e) for each observer for each stimulus size. 

For the smaller target sizes (red, green), the 

correlations peak at windows of 1 and 3 cycles 

wide, as for the model observers (Figure 2), 

suggesting that the human observers selected a 

pooling region matched to the size of the 

stimulus in these two conditions. For the 9x9 

element region (blue), one observer (DHB) 

appears to have monitored the full target 

region, whereas the other two (SAW, TSM) 

monitored a slightly smaller region, 7 elements 

wide. For the largest target, observers DHB 

and SAW based their responses only on the 

central 9x9 elements, whereas TSM was able 

to sum over 13x13 elements. However, none of 

the three observers could uniformly monitor 

the entire 27x27 element region. Also, note 

that the correlation functions for the largest 

target are much less sharply peaked than those 

for smaller regions or for the model observers 

(Figure 2). This might derive from trial-to-trial 

variability in the size of the pooling regions 

that observers used, perhaps caused by 

switching across pooling mechanisms of 

different sizes and positions, or perhaps 

variations in fixation or attention. 

 

 
Figure 4: Correlation coefficients for 3 observers, 

calculated for different pooling widths monitored by 

the model observer using either a summing (a,c,e) 

or MAXing (b,d,f) rule. Dotted lines indicate the 

location of the peak of each function for the 

summing analysis. The grey shaded region indicates 

the range of r values that are not significant at 

p<0.05 for 2000 observations (Bonferroni corrected 

for 336 multiple comparisons (14 widths * 4 target 

sizes * 2 analysis methods * 3 observers)). Points 

outside of the shaded region indicate statistically 

significant correlations. 

 

3.2 Experiment II: monitoring targets away 

from fixation 

 

We then asked if the stimulus region 

monitored by the observer changed when 

attention was directed to targets away from 

fixation. In Figure 5 we present data from two 

conditions, in which the target was a single 
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element displaced three cycles below fixation 

(purple), or a pair of elements offset above and 

below fixation by the same amount (turquoise). 

For comparison, the equivalent function from 

the first experiment for a single central target 

element is shown in red. We confirmed that 

there were no significant correlations for the 

elements in adjacent horizontal locations, and 

so plot correlations only for the vertical 

column of elements within which the target(s) 

were placed. 

 

 
Figure 5: Correlations between element state and 

observer response for targets at fixation (red) or 

displaced from fixation (purple, turquoise). Dotted 

lines indicate the target locations for the displaced 

conditions. It is clear that inappropriate pooling 

occurred when the target was away from fixation. 

Some observers (DHB, SAW) even produced 

stronger correlations at (e.g. based more of their 

decisions on) the fixated element than at the target 

elements (panels b & d). 

 
For a single displaced element (purple), all 

observers produced maximum correlations at 

the target location (dotted line). However, 

whereas for a centrally placed element (red) 

the adjacent elements showed no (or 

sometimes negative) correlation with 

performance, pooling occurred over a larger 

area for a peripheral element (purple). For 

observer DHB, this broader spatial footprint is 

approximately symmetrical about the target 

element. For SAW there is a hint of an 

additional peak at the fixated location, whereas 

TSM shows an inhibitory trough at fixation, 

and at the adjacent element on the far side to 

the target. These individual differences might 

imply differences in strategy, or in spatial 

uncertainty, between observers. 

 

When targets were placed on both sides of 

fixation, there was even greater variation 

between observers. TSM shows a bimodal 

function (Figure 5f), though the correlations 

are weak (~0.1), and more widely distributed 

in space (turquoise) than for a single central 

element (red). DHB showed a similar pattern 

with stronger correlations, but also showed 

substantial contribution from the central 

fixated location, even though this element was 

uninformative for the task (Figure 5b). 

Observer SAW (Figure 5d) based his 

responses on a broad region centred on the 

fixation point, with by far the strongest 

correlations occurring at and around the 

uninformative element at fixation. 

 

These variations in peripheral strategy are 

surprising, and might suggest that some 

observers are very poor at dividing their 

attention consistently across two spatial 

locations, or at suppressing the influence from 

uninformative locations. Alternatively, it may 

be that small or spatially localised detectors are 

not available in the periphery, and responses 

are based on mechanisms that pool over a 

larger region of space (e.g. for SAW). We note 

that all observers were able to perform the 

detection task effectively, achieving 75% 

(DHB), 67% (SAW) and 79% (TSM) correct 

in the target-present trials. However, as 

detailed in the Methods section, observer TSM 

required a factor of 1.58 (4dB) more target 

contrast relative to the other two observers to 

achieve this level of performance.  

 

4 Discussion 

 
We used a reverse correlation technique to 

estimate the maximum area over which 

observers can combine contrast, and 

demonstrated that this occurs by summing 

linearly over space, rather than merely 

selecting the region of highest contrast 

response. We also show that contrast 

increment detection becomes markedly less 

spatially precise when dissociated from 

fixation, and that some observers are unable to 

ignore an uninformative region around the 

fixation point. We now discuss the 

implications of these findings for our 

understanding of area summation of luminance 

contrast, attentional processing, and the 

classification image technique. 
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4.1 Area summation of contrast involves signal 

combination 

 

A long-standing account (Robson and Graham, 

1981) of the increase in contrast sensitivity 

with stimulus area (area summation) is that the 

improvement in performance owes to 

probability summation over multiple 

independent, spatially localised detectors (see 

Tyler and Chen, 2000; Meese & Summers, 

2012). An alternative explanation supposes 

that local detectors are summed at a later stage 

of processing producing mechanisms with a 

spatially extensive footprint (see Baker and 

Meese, 2011; Meese and Summers, 2007, 

2012; Meese, 2010; Morgenstern and Elder, 

2012). We have compared the predictions of 

these two models in several studies of contrast 

sensitivity (e.g. Baker and Meese, 2011; Meese 

and Summers, 2012, 2007; Meese, 2010; 

Morgenstern and Elder, 2012), all of which 

have favoured the linear summation account. 

The results here provide strong evidence that 

this signal combination strategy also predicts 

observer responses on a trial-by-trial basis 

better than a signal-selection (MAXing) 

strategy (see also Morgenstern and Elder, 

2012). This result does not necessarily exclude 

the possibility that observers can use a 

MAXing strategy when it is appropriate for the 

task. In paradigms such as visual search, this 

may very well be the preferred option. 

However, our results indicate that pooling 

mechanisms that sum contrast are available to 

perception, and can be used in this type of 

experiment.  

 

Previous estimates of the largest available size 

of pooling region have largely come from 

detailed computational modelling of 

psychophysical detection data. Meese & 

Summers (2007) concluded that their observers 

must have been pooling over at least 7 cycles 

of the carrier grating to produce the observed 

levels of empirical area summation. Meese 

(2010) cautiously extended this estimate to 16 

cycles using so-called Battenberg stimuli. 

Using stimuli similar to Meese and Summers 

(2007), but a wider range of spatial frequencies, 

Baker & Meese (2011) estimated pooling 

regions of more than 12 carrier cycles.  

 

The present results permit a more direct 

estimate of maximum pooling widths. 

Assuming a square integration region, our 

observers behaved in a way consistent with 

pooling over widths of up to 9 (DHB, SAW) or 

13 (TSM) cycles (Figure 4) for the largest 

stimuli. We obtained further estimates by 

fitting isotropic 2D Gaussian functions to the 

correlation maps (see Figure 3e-h). For the 

largest target size, best fitting functions 

indicate pooling over a full-width-at-half-

height (2.35*SD) of between 7 (DHB, SAW) 

and 11.4 (TSM) grating cycles, broadly 

consistent with the estimates assuming a hard-

edged square summation field.  

 

Thus, overall, two very different approaches 

(our previous studies above, and the one here) 

both lead to the conclusion that summation can 

extend over a substantial portion of the 

stimulus when the task requires it. Furthermore, 

we note also that the individual differences 

between DHB, SAW and TSM are similar 

across the two studies in which these three 

observers took part. In Baker and Meese 

(Baker and Meese, 2011) and here, TSM 

summed over a larger region than did DHB 

and SAW. This is also consistent with other 

informal observations in our laboratory. What 

remains less clear is why observers are unable 

to extend the summation field even further so 

as to improve performance for the larger 

stimuli. 

 

4.2 Is pooling the same as attention? 

 

In our experiments, observers monitored a 

large array of elements, and were instructed to 

base their responses on some subset of those 

elements. In 50% of trials, no contrast 

increment was applied to the elements 

designated as ‘target’, so the only difference in 

behaviour was due to the instructions. Thus, 

observers can deploy their spatial attention 

according to instructions. This could involve 

attending to multiple V1-type mechanisms 

spread across the stimulus and summing their 

responses (i.e. constructing a pooling 

mechanism by demand), or attending to an 

appropriately sized pre-wired pooling 

mechanism. So what implications might this 

have for our understanding of spatial attention? 

The widespread notion of an attention ‘beam’ 

that can be directed around a stimulus at will 

comes largely from work on visual search 

(reviewed in Carrasco, 2011) and is usually 

conceptualised as monitoring local 

mechanisms at multiple spatial locations. But 

as suggested above, if a range of different 

sized pooling mechanisms were available to 

the observer, one can conceive of attention as 

deploying the mechanism most appropriate to 

the task, e.g. a single large mechanism to 

monitor a wide area. In other words, the ‘beam’ 

becomes ‘defocussed’ for large stimuli, rather 

than moving around in space. Our observation 

that peripheral stimuli are poorly resolved 

(Figure 5) might imply a minimum 
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mechanismsize in the parafovea, consistent 

with poorer peripheral resolution (Baldwin et 

al., 2012), increased positional uncertainty 

(Levi et al., 1987; Michel and Geisler, 2011), 

or some explanations of crowding phenomena 

(e.g. Parkes et al., 2001). The variation in 

observers’ success in dividing their attention 

between two locations (and ignoring 

intermediate ones) is consistent with the lack 

of consensus on human ability to do this 

successfully (Jans et al., 2010). However, it 

could be that with training and/or feedback, 

observers might improve at this task. 

 

Throughout, we have discussed the width of 

pooling (or attention) in terms of cycles of the 

carrier grating. Although here we used only a 

single spatial frequency, our previous work 

(Baker and Meese, 2011) has indicated that 

area summation could be invariant of the 

carrier frequency when expressed in terms of 

cycles (see also Howell and Hess, 1978), as is 

also the case for retinal inhomogeneity 

(Baldwin et al., 2012; Pointer and Hess, 1989; 

Robson and Graham, 1981). Since natural 

scenes are broadband (Field, 1987), predicting 

which combination of mechanisms will govern 

performance in everyday environments is not 

straightforward. We anticipate that advances in 

this area will require combining multiscale 

filter models (e.g. Georgeson et al., 2007) with 

detailed formal models of attention (e.g. 

Gobell et al., 2004). 

 

4.3 Comparison with classification image (CI) 

studies 

 

The reverse correlation technique used here to 

produce the correlation maps (e.g. Figure 3) is 

related to the CI technique (Ahumada, 2002; 

Morgenstern and Elder, 2012; Murray, 2011). 

We also calculated CIs for our experiment by 

averaging the contrasts of the intervals selected 

by the observers as containing the target, and 

subtracting the averaged contrasts from the 

other (nonselected) intervals. When peak-

normalized, these were almost 

indistinguishable from our correlation maps 

(i.e. Figure 3), revealing a close similarity 

between the two methods (not shown). 

However, calculating correlation coefficients is 

more flexible, as it can be easily extended to 

compare different models and decision rules, 

as we have done (e.g. Figure 4). 

 

We think that our approach here is valuable for 

two reasons. First, our use of contrast jitter 

instead of white pixel noise means that larger 

templates can be measured without using 

extremely large pixel sizes (or requiring 

implausible numbers of trials for small pixel 

sizes). Second, the testing of model hypotheses 

on a trial-by-trial basis is very powerful (see 

also Morgenstern and Elder, 2012; Neri, 2011), 

and offers important insights beyond the visual 

representation of the observer’s template 

produced by standard CI techniques (reviewed 

in Murray, 2011). We note that a recent study 

(Morgenstern and Elder, 2012) also used a 

classification image method to ask related 

questions about spatial pooling strategies. This 

work, which used traditional white pixel noise, 

also found evidence for signal combination 

over signal selection, and provided estimates 

of the local filters used for detection, but did 

not attempt to estimate of the size of the 

pooling region. 

 

5 Conclusions 

 
We have presented a new multivariate 

technique for measuring the extent of spatial 

pooling. Reverse-correlation shows that 

pooling extends to around 9-13 carrier cycles, 

and can be precisely limited to small target 

areas in the central visual field. However, 

spatial precision is much poorer for larger 

stimuli, and for small stimuli placed in the 

parafovea. These findings prompt new 

metaphors for spatial attention, and indicate 

that large aggregating mechanisms are 

available to top-down monitoring in basic 

detection tasks. 
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