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Abstract: We show that music is represented by fluctuations away from the minimum path through
statistical space. Our key idea is to envision music as the evolution of a non-equilibrium system
and to construct probability distribution functions (PDFs) from musical instrument digital interface
(MIDI) files of classical compositions. Classical music is then viewed through the lens of generalized
position and velocity, based on the Fisher metric. Through these statistical tools we discuss a way to
quantitatively discriminate between music and noise.
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1. Introduction

Music plays an intricate part of human life. As a result there is a large body of work devoted to
the analysis of music. Going back to the Greeks, “Pythagoras was the first to discover the fundamental
connection between mathematics and music” [1]. Since then countless works have been published
revealing the structure of music through mathematical language, e.g., see [2–5]. The application
of information theory has also been applied to music often with the goal of equating a measure of
uncertainty inherent in the Shannon information with uncertainty in a musical composition [6–9].

Of particular interest here are the various power laws that have been found in different measures
of music. In particular, Voss and Clarke [10] examined the output voltage of sound recordings and
found that different aspects of recordings followed power laws. For example, the loudness of music
and speech follows a power law but the voltage (time signal itself) does not. Power laws have been
found in music using both continuous signals such as Voss and Clarke or Serrà et al. [11], or through
digitized music [12–14]. Here we show that using digitized music, through musical instrument digital
interface (MIDI) files, classical compositions also follow approximate power laws in a statistical space,
despite mathematically having a time dependent exponent.

The concept of a minimum path, or geodesic through a given space is found in many branches
of physics [15–18]. Music may be included in this list by its deviation from the minimum path in
statistical space. This is manifested by power laws which are generated through the periodic forcing
in statistical space.

Here we refer to the information gained from observing state x knowing the distribution p(x)
by I = � log p(x) [19]. The information variation is then produced from the temporal change in
probability distribution functions (PDFs) and is utilized in this work to quantify the generalized
fluctuating energy and velocity associated with information variation in a metric space parametrized
by time. The total distance traveled in this metric space represents total accumulative information
transfer in time and is quantified by information length L. Similarly, the action J of the music
is computed from the time integral of the energy of the music by using the square of the velocity
as energy. These measures are simply the generalizations of the thermodynamic length originally

Entropy 2016, 18, 258; doi:10.3390/e18070258 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy


Entropy 2016, 18, 258 2 of 13

developed by Weinhold [20] and Rupiener [21] and first extended out of equilibrium by Salamon and
Berry [22]. By focusing on several compositions to highlight our results, we will show that: (i) both
L and J increase with time T as a power law, its index approaching unity in time for almost all
compositions; (ii) J � L2/T exhibits a power law µ T1+m, where m signifies the deviation from the
minimum path; (iii) By comparing musical compositions with results obtained from Gaussian white
and colored noise, we show that music experiences the analogue of periodic forcing in statistical
space while noise does not. This periodic forcing is manifested through the change in velocity in
statistical space, the variance of which is exactly the term which accounts for the deviation from
the minimum path. Meaning noise can be quantitatively differentiated from music through velocity
in statistical space. These results highlight the organization of music into “regularity” (an almost
constant information flow) and deviations away from this constant flow. The remainder of this paper
is organized as follows: Section 2 introduces L and J . Section 3 presents how PDFs are constructed
from MIDI files. Our results are presented in Section 4 and conclusions are in Section 5.

2. Information Variation (L and J )

In understanding the evolution of a non-equilibrium system, a key physical quantity is the
temporal variation in the PDF of state x, i.e., p(x, t), where x belongs to the state space W. The
information gained from observing state p(x, t) can be measured through the information measure,
� log p(x, t) [23]. Due to the conservation of probability,

�
Z

W
dx p(x, t)

∂ log p(x, t)
∂t

= 0. (1)

Thus the first moment of the information is always zero. The second moment, which is
equivalent to h� ∂2 log p(x,t)

∂t2 i, is not zero. This means we quantify the variation in information through
the second moment as (c.f. [24]) defined through the Fisher metric

L =
Z T

0
dt

s
Z

dx
1

p(x, t)

✓
∂p(x, t)

∂t

◆2

= 2
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0
dt

s
Z

dx
✓

∂q(x, t)
∂t

◆2

=
Z T

0
v(t) dt =

Z
dL. (2)

Thus

v(t) = 2

s
Z

dx
✓

∂q(x, t)
∂t

◆2
, (3)

represents the effective velocity through statistical space from t = 0, to t = T, while E(t) = v(t)2 is
the associated energy given by the square of this velocity [22]. The second line follows from replacing
p(x, t) = q(x, t)2 (see [29]), which is needed to avoid un-physical values when p(x, t) = 0 for some
x and t (as the system may have explored only a small portion of its state space). For the discrete
non-equilibrium case see [30] and for applications in Quantum Mechanics, see [29] and [31]. In the
case where control parameters li’s (i = 1, 2, 3, ...) of a system are known as a function of time (e.g.,
near equilibrium), Equation (2) can be recast in the form of the metric tensor gij (see, e.g., [25–27])

gij =
Z

dx p(x, l(t))
∂ log p(x, l(t))

∂li
∂ log p(x, l(t))

∂lj , (4)

as

E(t) = v(t)2 = Â
i,j

dli

dt
gij

dlj

dt
. (5)
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gij in Equation (5) is the metric tensor that gives the Riemannian metric [28] in the parameter space
l’s. Since often the control parameters of a system are not known, it is much more convenient to use
Equation (2) directly in terms of PDFs. In terms of E(t), we measure the total accumulated energy
between t = 0 and t = T by the information action J ,

J =
Z T

0
dt E(t) =

Z T

0
dt v(t)2 . (6)

We note that the distance L is dimensionless while J has the dimension of the inverse time.
Equations (2) and (6) quantify the accumulative information variation and are analogous to the
relations for the distance and the action for a particle with unit mass in classical mechanics, which will
be expanded on in Section 4.2. For the analysis of classical music, we will use discrete approximations
of Equations (2) and (6),

L = 2
N

Â
i=2

Dt

s

Â
x

✓
Dqi
Dt

◆2
, (7)

J = 4
N

Â
i=2

Dt Â
x

✓
Dqi
Dt

◆2
. (8)

Whether we are talking about the discrete or continuous versions of L and J are being used
will be clear from the context. To highlight the relationship between J and L, we use u = 1 in the
following Cauchy–Schwartz inequality

Z T

0
E(t) dt

Z T

0
u2dt �

✓Z T

0
v(t) u dt

◆2
, (9)

which gives the well known result, J � L2/T. Note that the minimum value of J �L2/T would be
achieved for geodesics in statistical space. This minimum value, J = L2/T is achieved only when
v(t) is constant [32] in Equations (2) and (6). In the case of constant v(t), the evolution of the system
can be viewed as a “free” motion. To quantify the difference between J and L2/T, it is useful to
consider the time average of v(t) and E(t) [33] as follows:

hv(t)iT =
1
T

Z T

0
dt v(t) , hE(t)iT =

1
T

Z T

0
dt E(t). (10)

This lets us write a time averaged variance of the velocity,

VT = hv(t)2iT � hv(t)i2
T ,

= hE(t)iT � hv(t)i2
T . (11)

Relating Equation (11) to Equations (2) and (6),

J � L2

T
= T

⇣
hE(t)iT � hv(t)i2

T

⌘
,

⇡ T1+m, (12)

where typically m ⌧ 1. the deviation away from the minimum path is given by fluctuations in the
time averaged velocity. Alternatively, put another way, the time averaged variance of the system is
related to the distance it travels.

Equation (11) also allows us to understand the evolution of J and L in relation to one another for
the evolution of a musical composition. One may expect for example that T1+m ! T, if m decreases
in time. While this is true, it is not the complete story. Upon closer examination of the velocity in
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Section 4.2 we will see that the key characteristic between music, and noise, is that music experiences
periodic forcing while noise experiences a continuous distribution of forcing. The detailed analysis
on L, J and J /T � (L/T)2 for famous classical compositions are presented in Section 4.

3. Music as a Non-Equilibrium System

To frame music in the context of generalized distances and energies we envision a composition
(such as Vivaldi’s Concerto Summer) as a non-equilibrium system where each note represents a state
x of the system. As a piece of music evolves, each instrument transitions between states, while the
simultaneous occupation of a set of states by all instruments in a single time step creates the sound we
hear. In western music, the musical scale is often divided into 11 octaves where each note belonging to
an octave has a 2 : 1 or 1 : 2 relationship between its frequency and the frequency of the corresponding
note in the octave below or above it. Octaves are then made up of semitones or half notes. These
semitones will be used as the states of the system. The states a composition occupies are used to
construct the probability over all instruments p(x, t) of a note being played in a coarse grained time
interval, Dt. The time dependence of p(x, t) creates the variation in information.

In defining the state x of a note belonging to p(x, t), we utilise MIDI files as they contain detailed
information about the composition. Specifically, the MIDI file format represents a piece of sheet music
as a series of numbers that are used by a computer in recreating a given composition (each MIDI file
used here is freely available at [34]). Each note from octave 0 to octave 10 is given a MIDI number.
Using a MIDI file our state space is then characterized by 129 states. States 0 to 127 correspond to each
possible note while the state 128 represents a rest (i.e., no note being played). These MIDI numbers
and their corresponding notes are shown in Table 1.

Table 1. Each MIDI number corresponds to an octave listed in the left column and a note, listed on
the top row (# indicates sharps).

Octave Notes

Number C C# D D# E F F# G G# A A# B

0 0 1 2 3 4 5 6 7 8 9 10 11
1 12 13 14 15 16 17 18 19 20 21 22 23
2 24 25 26 27 28 29 30 31 32 33 34 35
3 36 37 38 39 40 41 42 43 44 45 46 47
4 48 49 50 51 52 53 54 55 56 57 58 59
5 60 61 62 63 64 65 66 67 68 69 70 71
6 72 73 74 75 76 77 78 79 80 81 82 83
7 84 85 86 87 88 89 90 91 92 93 94 95
8 96 97 98 99 100 101 102 103 104 105 106 107
9 108 109 110 111 112 113 114 115 116 117 118 119

10 120 121 122 123 124 125 126 127 – – – –

The “tick” is the time unit used by the MIDI format. One tick is equivalent to a certain
number of milliseconds, specified in the header of each MIDI file. In this work we use Dt = seconds

tick
as specified in the header. These are all on the order of Dt ⇡ 1 ⇥ 10�3 s. However it should be
noted the choice of Dt is a free parameter and is the coarse graining scale of the system. The limiting
factor is the size of errors one desires between

��� 1
p(x,t)

Dp(x,t)
Dt � 4 Dq(x,t)

Dt

��� where k · k is some norm and
Dp = p(x, iDt)� p(x, (i � 1)Dt), Dq = q(x, iDt)� q(x, (i � 1)Dt). For all subsequent analysis we use
the discrete version of L and J , Equations (7) and (8).

To then generate a PDF, we measure the number of occurrences of each MIDI number over all
instruments for one time step of a given composition. Normalizing this frequentist approach at each
time step, generates a sequence of discrete PDFs which can be analysed using Equations (7) and (8).

To compare our results for music, we will also calculate L and J from Gaussian white and
“colored” noise. The white noise signal z(t), 0  t  T will have mean, hz(t)i = 0 and variance,
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hz(t)z(t0)i = Dd(t � t0), where D is the noise intensity [35]. The colored noise will be a realization
of an Ornstein–Uhlenbeck [36] process with finite correlation time t, through the algorithm due
to Bartosch [37]. A realization is characterized through the mean and variance, hx(t)i = 0 and
hx(t)x(t0)i = s2e�|t0�t|/t respectively.

Since we want to compare this to MIDI files which are made up from 129 disjoint states, the
minimum and maximum of a realization of noise is broken up into 129 equal states Bi, i = 1, 2, . . . , 129.
B1 corresponds to note 0 and B128 is note 127 while B129 represents a rest. Thus, from a signal of a
given length, we can calculate p(x, t) just as we do for musical compositions. In the white noise
example we use Vivaldi’s Summer as our reference by generating noise signals of equal length and
using the time step Dt from this composition.

4. Results

We compute PDFs and analyse a collection of famous classical compositions with four being
shown in greater detail. These compositions are typical examples from the overall collection,
the rest of which are shown in the Supplementary Materials. These “selected” compositions are
Vivaldi’s Summer, Beethoven’s Ninth Symphony 2nd movement, Mozart’s violin Concerto No. 3,
and Tchaikovsky’s 1812 Overture. Every composition will be seen to follow an approximate power
law with periodic forcing. What makes this particularly interesting is that each PDF that generates
these simple relationships is strongly intermittent as can be seen in a typical example of p(x, t),
see in Figure S1.

4.1. Power Law Scalings

Using the PDFs generated from four typical compositions we calculate L and J as a function of
time and plot them in Figure 1.
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Figure 1. (a) L, (b) J for each selected composition, Mozart’s violin Concerto No. 3, Vivaldi’s Summer,
Beethoven’s 9th symphony 2nd Mov and Tchaikovsky’s 1812 Overture.

Detailed features can be seen in Figure 2 which shows results for different compositions
separately in log–log scales. log–log scaling for the rest of the compositions can be seen in Figure S2.
Power law indices of L and J are thus determined by linear fitting, as shown using dashed lines and
are summarized along with all the other compositions in Table 2. The quality of a linear fit is measured
using the standard R-squared value. All R-squared values in Table 2 are close to one, meaning power
laws are very good approximations to J and L.
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Figure 2. log–log plots for J blue and L red. (a) Mozart’s Violin Concerto; (b) Beethoven’s Ninth;
(c) Vivaldi’s Summer and (d) Tchaikovsky 1812 Overture. Lines of best fit are offset and shown with
dashed lines. Mozart and Tchaikovsky have a single scaling for the length of the composition, while
Vivaldi and Beethoven have two distinct scaling rejoins.

Table 2. Coefficients cL, cJ , exponents ML and MJ for all compositions along with the corresponding
R2 values. Every composition except Brahms’ string quartet and Vivaldi’s Summer are near one, or
evolve to an exponent around one. This signifies a constant flow of information.

T0 (s) Composition
logL logJ

cL ML R2 cJ MJ R2

0.784 Mozart’s violin Concerto No. 3 2.61 1.043 0.998 1.37 ⇥ 103 1.088 0.996

7.39
Vivaldi’s Summer

3.30 1.054 0.996 2.73 ⇥ 103 1.033 0.991
49.4 0.9562 1.399 0.991 0.644 ⇥ 103 1.388 0.981

8.46
Beethoven’s 9th Symphony 2nd movement

1.09 1.476 0.999 0.472 ⇥ 103 1.724 0.996
40.37 2.9134 0.980 0.999 6.91 ⇥ 103 0.981 0.999

0.889 Tchaikovsky’s 1812 Overture 8.37 1.177 0.987 8.61 ⇥ 103 1.018 0.991

0.460 Mozart piano Concerto No. 3 12.4 1.136 0.992 4.81 ⇥ 103 1.159 0.993

0.640 Brahms’ string quartet Op.51 2.02 1.240 0.989 609.63 1.257 0.985

0.286 Bach Brandenburg Concerto No. 3 1st movement 6.77 0.990 0.999 1.83 ⇥ 103 0.969 0.997

2.72
Bach Brandenburg Concerto No. 3 2nd movement

3.77 1.245 0.996 0.597 ⇥ 103 1.48 0.993
33.11 9.26 0.964 0.999 2.54 ⇥ 103 0.95 0.999

0.368 Liszt Ballade No. 2 7.16 1.000 0.996 2.38 ⇥ 103 0.999 0.998

0.8702 Chopin Ballade in F Minor, Op. 52 9.72 1.049 0.987 4.71 ⇥ 103 1.05 0.986

1.002 White noise 1.11 ⇥ 103 1.00 1.00 1.25 ⇥ 106 1.00 1.00

1.002 correlated noise, t = 20 505.7 1.00 1.00 2.9 ⇥ 105 1.00 1.00

1.002 correlated noise, t = 112 354.73 0.994 1.00 1.78 ⇥ 105 0.989 1.00
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All compositions after an initial transient phase follow power law relations as we expect from
Equation (11). Furthermore, L and J for every composition other than Vivaldi’s Summer and Brahms’
string quartet evolve to become approximately ML ⇡ MJ ⇡ 1. Where ML = MJ = 1 means there
is a constant rate of information change, as the system evolves. The constant flow of information and
energy is equivalent to the system taking the minimum path through statistical space [32]. Vivaldi
and Brahms are exceptions with slopes for L and J that are farther from one.

To compare the power law behaviour of music to noise, Figure 3 shows the log–log plot of L
and J for a realization of noise, There is again a power law relation, though this is almost exactly
linear in time. Starting around one second, each realization follows the same minimum through
statistical space.
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log T

4

6
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12
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16

18

lo
g(
L
),
lo
g(
J
)

log(L)
log(J )

Figure 3. log–log plots of J with the dashed line and L with the solid line for white noise. Using
non-zero correlation times such as, t = 20 lead to the same results. See Table 2 for exact coefficients.

Since both L and J follow power law relations,

L = cLTML , J = cJ TMJ . (13)

For short correlated noise ML = MJ = 1 meaning J � L2/T takes on a simple form,

J � L2/T ⇡ T
⇣

cJ � c2
L

⌘
= 0. (14)

We check that cJ � c2
L ⇠ 0, as can be seen in Table 2. In contrast, the values of cJ and cL

for music significantly deviate from zero (see Table 2). The deviation of L and J in time from an
exact linear increase is then proposed as a defining characteristic of music. Taking a closer look at
J �L2/T the same data as Figure 1 is used for Figure 4. Specifically, Figure 4 shows the log–log plots
of J �L2/T in black, from the initial time where J 6= L2/T. Each composition has three main phases
of its evolution, initially following the minimum path J = L2/T. This is often caused by single
notes being played at the beginning of compositions. Next there is an initial transient phase where
J � L2/T undergoes large fluctuations before the system settles into its power law behaviour. The
third phase is when again to a very good approximation there is a balance between the cumulative
kinetic energy used and the distance traveled through statistical space as measured by J � L2/T.
Each least squares fit is shown with dashed red lines, and the initial time T0 of each fitting is shown
in Table 3. Though the true exponents of J �L2/T from Equation (11) are one plus a time dependent
term, we differentiate the exponents from fitting as 1 + m. Since we are interested in the variation of
the exponent away from one, Table 3 gives values of m along with the R2 for each fit.

Each plot quantitatively shows that J � L2/T for every composition except Vivaldi increases
linearly with time to leading order, with a small exponent m. The lines of best fit in Figure 4 for
the select pieces are given along with the rest of the compositions in Table 3 where Brahms is also
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seen to have a larger exponent. The two different values of exponent m are shown in Table 3 for
Beethoven’s ninth symphony, 2nd movement and Bach’s Brandenburg Concerto No. 3 2nd movement
which have two distinct scaling regions. It has been theorized by Levetin [38] and others that a
reason we find music so interesting is the relationship between its predictability and its randomness.
J � L2/T deviating from the minimum path can be thought of an example of this dichotomy, only
here the organization in music is represented by the fluctuations away from this minimum path. The
differences between noise and music, are made more concrete in the following section.
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Figure 4. log–log plots of Equation (11) against T. (a) Beethoven’s Ninth; (b) Mozart’s Violin Concerto;
(c) Tchaikovsky 1812 Overture and (d) Vivaldi’s Summer. Each plot follows an approximate power law.
Lines of best fit are offset and shown with dashed lines.

Table 3. T0 is the initial time for the fitting of log
�
J � L2/T

�
shown with red dashed lines for the

selected pieces. m is the exponent minus one, which are all small towards the end of the evolutions.
R2 shows that each linear fits are good approximation to the function.

Composer T0 (s) m R2

Beethoven’s Symphony No.9 1st Mov T0 = 8.4743/40.3 0.7164/�0.0166 0.995/0.9983
Mozart’s violin Concerto No. 3 T0 = 5.75 0.0876 0.9969
Tchaikovsky’s 1812 Overture T0 = 0.8898 0.0180 0.9920
Vivaldi’s Summer T0 = 7.35 0.2505 0.9909
Mozart’s piano Concerto No. 3 T0 = 0.46 0.154 0.9935
Brahm’s string quartet Op. 51 T0 = 0.64 0.253 0.985
Bach Brandenburg Concerto No. 3 1st Mov T0 = 0.286 �0.032 0.996
Bach Brandenburg Concerto No. 3 2nd Mov T0 = 02424/19.11 0.516/�0.052 0.9927/0.999
Liszt Ballade No. 2 T0 = 0.3690 0.0001 0.9975
Beethoven’s string quartet No. 1 Op. 18 T0 = 0.689 �0.0123 0.9967
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4.2. Velocity

Power law scalings determined in Section 4.1 are approximately leading order behaviors. Just
looking at the leading order terms only allows one to discriminate between white noise and colored
noise/classical music, due to white noise following the minimum path through statistical space.
To differentiate between highly correlated Gaussian colored noise and music, the velocity through
statistical space must be considered. Given the trajectory of a particle, if its velocity changes, then we
know through Newton’s laws that a force must have acted upon it. In statistical space, if we assume
a generalized version, then the change in velocity of a trajectory is indicative of a force acting on
it. Figure 5a–d shows the velocity Equation (3) for the four featured compositions. Comparing the
velocity to that of noise Figure 5e–f, we see that music appears to have a more varied velocity profile
while noise tends to fall into bands.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Velocity for Vivaldi’s Summer (a); Tchaikovsky’s 1812 Overture (b); Mozart’s violin Concerto
No. 3 (c); Beethoven’s ninth symphony, 2nd movement (d); white noise (e) and correlated noise with,
t = 112 s (f).



Entropy 2016, 18, 258 10 of 13

By taking the Fourier series of v(t), F[v(t)] =
R

v(t)e�i2p f tdt and then looking at the power
spectrum, S(v(t)) = |F[v(t)]|2, any periodicities in the compositions can be visualized. All
musical compositions show strong periodic signals in their velocity profiles Figure 6a–d, while noise
shows a continuous distribution of velocities Figure 6e–f. The periodic nature of the velocities in
classical music has been observed in every composition analyzed, see supplementary information for
more examples.
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Figure 6. Power for Vivaldi’s Summer (a); Tchaikovsky’s 1812 Overture (b); Mozart’s violin Concerto
No. 3 (c); Beethoven’s ninth symphony; 2nd movement (d); white noise (e) and correlated noise with,
t = 112 s (f).
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5. Conclusions

By interpreting music in term of a flow of information, we showed that through the lens of
generalized distance and energy in statistical space classical music takes on the simple form of an
approximate power law. This was computed through PDFs derived from famous classical composers
(Mozart, Vivaldi, Tchaikovsky and Beethoven, etc.). This simple relation holds in spite of all PDFs
being strongly intermittent Figure S1. From the temporal variation of PDFs, we identified the velocity
associated with each piece of music and computed the information length L which represents the total
accumulative change in information. Similarly, the action J of a musical composition was computed
from the time integral of the energy of the music by using the square of the velocity as energy.

These generalized terms lead to an analogy with classical mechanics, in that the evolution of
probability distributions across a statistical space can be thought of as a particle under the influence
of a potential. White noise is then analogous to a “free” particle in that it has constant velocity,
and thus does not experience a potential. This constant velocity manifests itself in a constant rate
of information flow and energy. Noise with finite but short correlations were also found to follow
the minimum path, though increasing the correlation time leads to small deviations from a geodesic.
Music on the other hand is only approximately constant in information and energy and experiences
periodic forcing which manifests in the velocity through statistical space. An interesting observation
is that dynamical aspects of a system seem reversed in statistical space. The orderless structure of a
white noise signal is constant in statistical space. Music has more apparent “structure” when listening
to it, yet this translates into a deviation from a constant evolution through statistical space.

This deviation from constant velocity was shown to lead to an interesting approximate power
law with respect to time T in TVT = J � L2/T µ T1+m where |m| < 1. Because m is not zero for
music as it was for noise we looked at the velocity of each composition. v(t) is shown to have strong
periodic components which illustrate the ordered structure inherent in music but absent in noise. This
approach then leads to a quantitative metric for measuring how closely something resembles noise
or music, by computing |m|.

These results are reminiscent of the dichotomy of predictability and apparent randomness
discussed in Levitin et al. [38] through 1/ f power laws of musical rhythm. The application to
analysing music presented here can be seen as a case study for this method. We then hope that
this will stimulate research into other systems as has already started with [39,40] in kinetic processes
and [30,33] in dynamical systems. The belief is that other complicated systems in nature will have
simple evolutions in statistical space.

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/18/7/258/s1;
Figure S1: Sample PDF; Figure S2: log–log plots of L and J ; Figure S3: log–log plots for J � L2/T; Figure S4:
Velocity of musical compositions; Figure S5: Power of musical compositions.
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