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Abstract 

 

An approach for fabricating functionally graded specimens of supernickel alloy and ceramic 

compositions via Selective Laser Melting (SLM) is presented. The focus aimed at using the 

Functionally Graded Material (FGM) concept to gradually grade powdered compositions of 

Zirconia within a base material of Waspaloy®. A high power Nd:YAG laser was used to 

process the material compositions to a high density with gradual but discrete changes 

between layered compositions. The graded specimens initially consisted of 100% Waspaloy® 

with subsequent layers containing increased volume compositions of Zirconia (0-10%). 

Specimens were examined for porosity and microstructure. It was found that specimens 

contained an average porosity of 0.34% with a gradual change between layers without any 

major interface defects. 
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1 Introduction 

 

1.1 Functionally Graded Materials 

 

Functionally Graded Materials (FGMs) are composites of two or more materials with 

continuously varying volume fractions. Used as coatings and interfacial zones, they help to 

reduce mechanical and thermally induced stresses caused by a material property mismatch 

and can improve bonding strength. FGMs can be designed at varied material gradients to suit 

a specific application and achieve levels of performance superior to that of homogeneous 

materials. They can be applied to metals, ceramics and organic composites to generate 

improved components, they are increasingly being considered in industry for various 

applications to maximize strengths and integrities of many engineered structures [1]. 

Functionally graded materials are ideal candidates for applications that experience severe 

thermal gradients, ranging from thermal structures in aerospace engines to computer circuit 

boards [2].   

 

An area in which FGMs could play an important role in is the protection of aerospace, 

automobile and heavy duty industrial utility applications from high temperature environments. 

Studies related to the improvement in performance of materials for high temperature 

applications have mainly focused upon the thermally insulating systems of Thermal Barrier 

Coatings (TBC) [3]. This heat resistant coating is made from materials that have low thermal 

conductivities such as the ceramic Zirconia. They are applied to the surface of parts or 

substrates by metallurgical methods of diffusion saturation, electroplating, plasma spraying 

and Electron Beam Physical Vapor Deposition (EB-PVD) [4]. Initially a bond coat 

(conventionally MCrALY [5]) is applied to the surface of the application followed by the TBC, 

this is shown in Fig. 1.  

 

Fig.1  

 



 

Nozzle guide vanes (NGV) found within jet engines are a typical application that uses a TBC. 

These applications experience poor bonding strength between TBC and component when 

subjected to mechanical and thermal stresses after long term usage. Applications that employ 

a TBC are typically used within an oxidizing environment and undergo repetitive thermal 

cycles [6,7]. Thermal stresses are induced by a thermal expansion mismatch between 

coatings, leading to cracking, delamination and eventual part failure [8,9,10]. Significant 

oxidization problems occur due to the presence of the bond coat resulting in a large coating 

expansion and generation of high residual stresses at interfaces [11,12]. 

 

In an effort to release the residual stresses and improve the properties of conventionally 

formed heat protective coatings, the concept of FGM has recently been used to alleviate 

these problems [13]. Functionally grading the protective heat resistant coating within the 

substrate of the application can be used to alleviate the defects associated with multiple 

material interfaces [14,15]]. A gradual transition in properties through the coating thickness 

can be established [16,17] and will assist the reduction in residual stresses [18.19] associated 

with thermal expansion mismatch [20,21]. The external part of the specimens resistance to 

thermal shock cracking can be improved [22,23] as well as a superior bonding between 

compositions of material allowing for it to become more resistant to delamination [24,25]. It 

has been demonstrated that functionally graded heat resistant coatings also have better 

resistance to oxidization and a longer lifetime during test conditions than those formed without 

any type of functional grading [26]. 

 

1.2 Solid Freeform Fabrication  

 

A great interest has been expressed by industry for the production of FGM components via 

Solid Freeform Fabrication (SFF) [27]. SFF is family of processes that involve the layer-wise 

shaping and consolidation of material (e.g. powder, wire). Due to the additive nature of SFF it 

inherently holds many manufacturing advantages with the potential to produce parts with a 

high geometric freedom directly from a CAD model. SFF also reduce the time period between 



 

the initial conceptual design of a part and its actual fabrication. The benefits of using SFF to 

produce functionally graded parts have led to world-wide research activities [28].  

 

Research has been conducted by Domack et al to test the suitability of different SFF 

processes in the production of functionally graded Nickel and Titanium parts. Functionally 

graded parts were formed using Laser Engineered Net Shaping (LENS), flat wire welding and 

Ultrasonic Consolidation (UC). LENS builds parts by melting metal powder injected into the 

trajectory of a high power laser beam. Flat wire welding also uses a laser, however it melts 

wire without the need to create a molten pool of metal on to a substrate. UC is a process in 

which metal foil under an applied load is fused together using ultrasonic vibration. It was 

found that functionally graded parts processed using LENS contained macroscopic cracking 

and significant elemental segregation. Flat wire welding of materials exhibited good mixing 

between the wire layers but also exhibited cracking. UC parts demonstrated good 

metallurgical bonding between Nickel and Titanium interfaces. The researchers concluded 

that all three manufacturing methods require further development before functionally graded 

parts can be reliably produced [29].  Liu et al also used the LENS process to fabricate 

functionally graded Titanium Carbide and Titanium (TiC/Ti) parts. The researchers 

successfully processed these compositions of material to produce functionally graded TiC/Ti 

crack free parts [30]. Another laser based SFF process known as Selective Laser Sintering 

(SLS) also uses a laser to melt powders, however the material is processed from a pre-layed 

powder bed rather then by powder injection. Jepson et al used SLS to produce functionally 

graded Cobalt and Tungsten Carbide (Co/WC) parts. The grading of these materials would 

suit applications that require hardness and wear resistance while maintaining a degree of 

ductility [31]. 

 

Selective Laser Melting (SLM) is a tool-less manufacturing process capable of building 3D 

parts by a consecutive layer by layer production of thin cross-sections. SLM produces parts 

by selectively melting powder from a powder bed using a scanning focused laser beam, this 

makes the process extremely similar to SLS. The high power laser beam used within SLM 

can generate heat capable of fully melting powders. This allows for the direct production of 



 

high density parts without any breaks in the build cycle. The SLM process has great potential 

within the manufacturing of specialized functional applications [32].  

 

Limited research has been conducted using SLM to produce functionally graded parts. 

Research has included functionally graded Tungsten Carbide/Tool Steel parts [33] and Tool 

Steel/Copper parts [34]. Literature suggests that no research has used SLM to produce 

functionally graded nickel alloy and ceramic parts  

 

1.3 Benefits of SLM functionally graded parts 

 

The use of SLM to fabricate functionally graded parts would allow for the control in 

composition of material within each layer and precise regulation of the FGM gradient. 

Gradually changing the composition of material from metal to ceramic could allow for a TBC 

to be applied to a component without the requirement of a bond coat. This in turn should 

reduce the residual stress build up between TBC and application. Combining these 

technologies could extend the scope and capabilities of laser-assisted manufacturing by 

reducing production costs improving the performance and durability of functionally graded 

parts.  

 

Waspaloy® is a high temperature supernickel alloy that is typically used within jet engine 

components. Zirconia is a ceramic that is most commonly used to provide a TBC for these 

components. This investigation focused on using an Nd:YAG laser to fabricate by SLM 

functionally graded compositions of these materials. The laser processing parameters used 

had been specifically optimized for the production of high density crack free Waspaloy® parts 

[35].  

 

 

 

 



 

2 Experimental Methodology 

 

2.1 Setup 

 

A high power 550W Nd:YAG pulsed laser (GSI Lumonics JK701H) operating at a wavelength 

of 1.06 mμ  was used. The laser beam had a spot diameter of 0.8mm. The beam was carried 

through a fibre optics delivery system and was installed on a 4-axis CNC controlled machine. 

Powder layers were deposited in one direction by means of a hopper that traversed across 

the powder bed. Argon was used as a shield gas to prevent parts from oxidization. Parts were 

built on 43mmx30mmx4mm steel substrates. The experimental setup is shown in Fig. 2.  

 

Fig. 2   

 

3 Powder Properties 

 

Two powders were used within this investigation, a supernickel alloy Waspaloy® shown in 

Fig.3(a) and a partially stabilized ceramic Zirconia with 7-9% yttria (PSZ) shown in Fig.3(b) 

 

The Waspaloy® powder had a mean particle size of 63 mμ . In its solid form it has excellent 

strength at high temperature and good resistance to corrosion and oxidization. This material 

has a melt temperature of around 1330-1360 Co . Waspaloy® has been used for aerospace 

and gas turbine engine components as well as other miscellaneous engine hardware [36]. 

The chemical composition of Waspaloy® is shown in Table 1 

 

Fig. 3 

 

Table 1 [36]  

   



 

The PSZ powder had a mean particle size of 0.5 mμ . The yttria content stabilizes the ceramic 

at higher temperatures, avoiding phase transition and increasing the spallation life of the 

ceramic. The material’s melting temperature is around 1350-1500 Co , its chemical 

composition is shown in Table 2. Fig. 3(b) shows regions of the PSZ powder that has 

agglomerated, these agglomerates are comparable in size to that of the Waspaloy® powder.  

 

Table 2 [37]  

 

3.1 Specimen Preparation and Processing 

 

Four compositions of material were used, the first consisted of 100% Waspaloy® followed by 

increasing additions of PSZ. Each powder blend was mixed by volume fraction, placed in a 

ceramic container and blended for six hours. The volume fractions used are shown in Table 3, 

the SEM images of these mixed composition are shown in Fig. 4 

 

Table 3   

 

Fig. 4  

  

The placement of these powered compositions is shown in Fig. 5. The layers were graded in 

the z-axis and comprised a total of eight 0.4mm thick layers with the PSZ content changed 

stepwise from 0-10% volume. The first two layers consisted of 100% Waspaloy®. The third 

and the fourth layers contained volume compositions of 99% Waspaloy® and 1% PSZ. Layers 

five and six consisted of 95% Waspaloy® and 5% PSZ. Layers seven and eight consisted of 

90% Waspaloy® and 10% PSZ.  

 

Fig. 5  



 

3.1.1 Fabricating Functionally Graded 25x5mm specimens 

 

Initial specimens were 25mm in length, 5mm in width and consisted of eight 0.4mm layers 

with the functionally graded compositions shown in Fig. 5.  

 

Five test specimens were made and analysed under Scanning Electron Microscopy (SEM) 

and Energy Dispersive X-ray Spectroscopy (EDS) analysis. These test specimens were 

observed for grading of layers and material segregation.  

 

In previous work a refill scanning strategy that had been successfully developed to produce 

high density steel parts using SLM was used for processing these specimens. This scanning 

and refill strategy is shown in Fig. 6 [33]. Scans 1a, 2a, 3a etc. were initially performed 

followed by a refill strategy 1b, 2b, 2c to complete the layer.  

 

Fig. 6  

 
Parts were fabricated using optimized laser processing parameters developed in previous 

work to fabricate high density Waspaloy® specimens [35], these are shown in Table 4.  

 

Table 4   

 

3.1.2 Fabricating Functionally Graded 10x10mm specimens 

 

10x10mm blocks were created using a varied scanning strategy. The scanning strategy used 

was similar to that employed for processing the 25mmx5mm (section 3.1.1). However, each 

successive layer was scanned perpendicular to the previous. It was proposed that the use of 

this scanning strategy would improve the grading of layers and remove any periodic wave 

structure within the part. This should help avoid the formation of interconnected porosity [38] 

and prevent layer delamination. The cross-hatching technique and specimen dimensions are 

shown in Fig. 7. 



 

Fig. 7   

 
The same laser processing parameters used for fabricating the 25x5mm specimens were also 

used in the construction of the 10x10mm specimens. Once again five test specimens were 

produced, these specimens were observed for geometrical distortions, the occurrence of 

porosity and general microstructure including grading of layers. Standard metallographic 

techniques were used for the preparation of specimens by SEM analysis. An etching solution 

of 4CuSO  was used to reveal the microstructure. The porosity of the specimen was measured 

using Image Tool [39], a PC software which visually analyses a specimen’s cross section and 

determines it’s porosity. 

 

4 Results 

 

4.1 Functionally Graded 25x5mm specimen 

 

The 25x5mm functionally graded specimen was cross-sectioned and viewed using SEM, 

shown in Fig. 8. This specimen contained an average porosity of 0.45%. The variation in 

material composition between the layers is shown with a change in colour. The layers lighten 

in colour as the PSZ content is increased. Layers with 5-10% PSZ contain dark segments or 

bands that could be a result of alloy or ceramic segregation. The locations of each dark 

segment appear at interlayer boundaries or where the laser initially strikes the materials.  

 
As the volume percentage of Waspaloy® decreased and PSZ increased, there was less 

likelihood of full melting occurring due to PSZ having a higher melting temperature than 

Waspaloy®. Further to this the laser processing parameters used were specifically optimized 

for high density processing of 100% Waspaloy® and not for mixed composition of high 

temperature ceramic.  

 



 

The composition within the final layers may not have been fully homogenized within the 

mixture of materials. In order to determine the content of darker or lighter patches specific 

regions were subjected to EDS 

 

Fig. 8  

 

4.1.1 Energy Dispersive X-ray Spectroscopy Analysis 

 

A further magnified image of the 25x5mm specimen within the region containing 1%-5% PSZ 

is shown in Fig. 9. A number of dark patches were observed with one highlighted in region 1. 

A EDS analysis of the dark area and lighter area within this region was analysed, the results 

are shown in Fig. 10.  

 

Fig. 9 

 

Fig. 10  

 

The lighter region in Fig. 9(1a) was analysed and revealed it contained the same elements 

present within Waspaloy® shown in Fig 10(a). The darker area in Fig. 9(1b) consisted mostly 

of PSZ with small elements of titanium and aluminium, shown in Fig. 10(b). This shows that 

the PSZ particles accumulated in one particular area with only small amounts of Waspaloy® 

elements (titanium and aluminium). This could be a result of the original agglomeration of 

PSZ observed in Fig. 3(b). The small particle size of PSZ may make it difficult to break up 

agglomeration, separate and distribute particles within a Waspaloy® mixture causing isolated 

patches of PSZ to form. 

 

The difference in material properties of Waspaloy® and PSZ may cause these materials to 

react differently within the melt pool. The heat generated from the centre of the laser 

interaction zone lowers the density of heated powders. Cooler powders at the edge of the 



 

Heat Affected Zone (HAZ) will have higher densities. Therefore gravity will cause molten 

material at the edge of the HAZ to sink within the melt pool due to gravity (Buoyancy force). 

Different material densities will cause variations in the movement of material within the melt. 

This may explain why there is segregation of materials within layers containing higher PSZ 

content (Fig. 8). Another factor that may contribute to material segregation is surface tension. 

The surface tension of a material reduces with increasing temperature, cooler material at the 

edge of a HAZ will pull material from the centre of the HAZ to the edge (Marangoni 

convection). Waspaloy® conducts heat better than PSZ (subsequently melting over a larger 

HAZ) due to it having a higher thermal conductivity. There will therefore be a variation in 

movement of materials within melt due to surface tension forces. 

 

Despite the segregation of materials, the solidification structure around the embedded PSZ 

shows good wettability, resulting in a dense structure. This scenario is certainly preferable to 

experiencing defined voids around the agglomerated PSZ due to poor wetting. 

 

4.2 High Density 10x10mm Functionally Graded Specimen 

 

A fabricated 10x10mm specimen can be seen in Fig. 11. The cross-sectioned specimen 

viewed under an SEM microscope is shown in Fig. 12. 

 

Fig. 11 

 

Fig. 12  

 

The top layer of the specimens is not completely flat, it is assumed that the scanning strategy 

as well as the differences between material properties of Waspaloy ® and PSZ contributed to 

the unevenness of the top layer. As mentioned in section 4.1 the differences in material 

properties may have caused an alloy ceramic segregation. The placement and movement of 

material within the melt pool could have affected the formation of the top layer. The extreme 

ends of the block suffer from bulges or elevated edges that rise above the rest of the 



 

specimen. This is attributed to the scanning strategy initially processing the outer profile of the 

specimen. A large amount of material will initially be drawn into the melt pool, this leaves less 

material for subsequent scans within the same layer. Another factor connected to the 

availability of loose powder is the presence of existing solidified material.  

 

The functionally graded specimens were crack free and contained an average porosity of 

0.34%. The porosity was more prevalent within layers containing higher compositions of PSZ. 

 

The layers of different material composition appear to grade more evenly than that seen in 

Fig. 8, producing less discrete changes in layer boundaries. The dark bands that were 

predominate in the previous specimen are far less recognizable, indicating an improved and 

more even distribution of Waspaloy ® and PSZ particles. The presence of PSZ is noticeable 

with increasing volume of PSZ that appear to lighten the contrast of layers. The four 

compositions of material result in four varying contrasts throughout the layer, occurring at 

0.5mm intervals along the z-axis.  

 

The improved grading of Waspaloy® and PSZ may have been a result of the cross-hatching 

strategy breaking up any unevenly distributed and repetitive heat build-up along the layer 

causing segregation of materials due to differences in material properties. Research has 

shown that porosity can propagate through subsequent layers forming an interconnected 

void. Cross-hatching can eliminate interconnected porosity and maintain a level of uniformity 

throughout the layer [36]. This is demonstrated by the fact that the 25x5mm functionally 

graded specimen was produced without cross-hatching and contained porosity 0.45%, 

whereas the 10x10mm sample was fabricated using cross-hatching and held a lower porosity 

of 0.34%  

 

Fig. 13 shows the cross-sectioned specimen at a higher magnification, little transition 

between the different material compositions was observed. The exact location and 

morphology of PSZ was not visible due to low magnification. However initial observation and 

comparison of specimen cross-sections generally indicates an improvement within the 



 

grading and distribution of materials.  This is a promising feature for high temperature 

applications as it may alleviate the problems associated with defined interfaces between two 

different materials. These problems include thermal expansion mismatch, high residual 

stresses, cracks and possible delamination. 

 

Region one in Fig. 13 shows very fine precipitates of gamma prime with angles between the 

grain boundary. This very fine or amorphous microstructure may be a consequence of the 

rapid cooling rate near the top of the specimen. 

 

Region two in Fig. 13 shows an area where a small amount of porosity is present. The grain 

sizes appear to increase in size possibly due to a longer cooling period as result of re-melting 

and slow processing speed.  

 

Region three in Fig. 13 shows a columnar grain structure that aligns along the direction of the 

substrate due to directionally cooling through the steel substrate.  

 

Fig. 13  

 
It has been shown that despite stepwise stacking, the microstructure and distribution of metal 

and ceramic elements gradually change without distinct observable boundaries throughout 

the layers. 

 

5 Conclusion 

 

Using SLM to produce functionally graded parts has proven successful when grading small 

amounts of ceramic within a nickel alloy. It has been demonstrated that despite stepwise 

stacking, the microstructure and the distribution of material elements are gradually changed 

without distinct boundaries between layers when a cross-hatching scan strategy is used. 

 



 

Increasing compositions of 1%, 5% and 10% PSZ were functionally graded with Waspaloy® 

and processed using optimized laser parameters. Initially a 25x5mm functionally graded 

specimen was fabricated to a density of 99.55%. This contained dark bands or regions that 

may have been caused by an alloy or ceramic segregation. EDS analysis found that small 

areas or patches of agglomerated material were compositions of PSZ. This segregation of 

material may have been due to the difference in Waspaloy® and PSZ material properties. This 

could have caused a variation in movement of material within the melt pool due to the 

Buoyancy and Marangoni affects. The PSZ compositions within the layers showed good 

wettability when embedded amongst solidified Waspaloy® and therefore good bonding.  

 

The 10x10mm specimen fabricated using a cross-hatching scanning technique had an 

average density of 99.66%. The specimen experienced geometric unevenness and tended to 

bulge at its edges due to large amounts of material being pulled into the melt of initial scans. 

However the cross-hatching scanning technique was found to improve the grading of material 

compositions making interlayer boundaries less discrete. Initial analysis suggests that the 

segregation and agglomeration of PSZ experienced within earlier specimens had been 

significantly reduced as a result of the modified scanning strategy.  

The laser’s heat distribution when processing compositions of material from a powder bed is a 

significant factor. It affects the part porosity, location of material within a layer and has the 

potential to generate uniformity within functionally graded parts. 

 

Early tests suggest that functionally graded compositions of Waspaloy® and PSZ can be 

processed using SLM to produce high density crack free parts. The functionally graded layers 

are less likely to experience severe thermal expansion mismatch and delamination. Whether 

fabrication using the SLM process improves the performance of the component and avoids 

premature failure can only be determined after further advanced testing and analysis. 
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Tables 
 
 

Table 1  Waspaloy® Nominal Weight Composition in percent [30] 

Table 2  Partially stabilized ceramic Zirconia with 7-9% yttria weight composition [31] 

Table 3  Volume compositions of material 

Table 4  Optimized processing parameters for processing Waspaloy® 

 



 

Figure Legends 
 
 
Fig.1 Cross-sectional view of a TBC, bond coat and application substrate 

Fig.2 Experimental Setup 

Fig. 3 Micrograph of Waspaloy® (A) &  PSZ particles (B) 

Fig. 4    Micrograph images of (a) 99% Waspaloy® 1% PSZ , (b)  95% Waspaloy® 5%  PSZ, 

(c) 90% Waspaloy® 10% PSZ  

Fig. 5 Layers of functionally graded composition of Waspaloy®  and PSZ graded in the z-

axis 

Fig. 6  Plan view of optimized scan and refill strategy 

Fig. 7 Illustration of layer cross hatching technique and specimen dimensions  

Fig. 8 Cross-sectional image of 25x5mm layered FGM specimen 

Fig. 9 Micrograph characteristics of layers of 1% and 5% PSZ layers 

Fig. 10 EDS analysis results for region 1A & 1B 

Fig. 11 Functionally graded 10x10mm specimen before and after cross-sectioning 

Fig. 12 Cross-sectional view of 10x10 specimen 

Fig. 13 Micrographs characteristics of specimen of FGM 

 
 

 
 
 
 
 
 

 


