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synchronization of a hyperchaotic Lorenz system 

based on small impulsive signals 
 

Yang Li 
 
 Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD 

Abstract: In this Letter the issue of impulsive Synchronization of a hyperchaotic Lorenz system is 

developed. We propose an impulsive synchronization scheme of the hyperchaotic Lorenz system 

including chaotic systems. Some new and sufficient conditions on varying impulsive distances are 

established in order to guarantee the synchronizabillity of the systems using the synchronization 

method. In particular, some simple conditions are derived for synchronizing the systems by equal 

impulsive distances. The boundaries of the stable regions are also estimated. Simulation results 

show the proposed synchronization method to be effective. 
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1. Introduction 
 

Hyperchaos, which has more than one positive Lyapunov exponent, has 

increasingly aroused the interest of many researches due to its great potential in 

technological applications in many fields, including secure communications and lasers. 

Hence, the generation, control, synchronization and application of hyperchaos have 

recently become a hot topic for research in this regard [1-6]. A large variety of 

hyperchaotic systems have been presented over the past few decades. For example, 

the hyperchaotic Chua’s circuit [1] and Rossler system [2] are two representative 

hyperchaotic systems. Recently, several new hyperchaotic systems have been 

proposed. Li et al proposed a new hyperchaotic system by introducing an additional 

state in a third-order generalized Lorenz chaotic system [3]. Chen et al proposed a 

new hyperchaotic system by adopting a state feedback control to Lu’s chaotic system 

[4]. These hyperchaotic systems are new and each has their own properties. Therefore, 

it is very important to explore further the control and synchronization of these new 

hyperchaotic systems for engineering applications. 

Due to their high complexity and properties, hyperchaotic systems have 
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significant potential in several fields. For example the presence of more than one 

positive Lyapunov exponent or unstable direction in these systems generates more 

complexity in secure communications [7]. In [7, 8] the authors investigated the 

synchronization of hyperchaotic systems by transmitting just one scalar signal. The 

other point to study is that in the synchronization problem of the slave system, most of 

the methods rely on receiving the master system signal continuously which is not 

generally the case in communications. Impulsive synchronization is one of the 

methods proposed to overcome this problem [9-11]. In [9] the conditions under which 

chaotic and hyperchaotic systems can be synchronized by impulses determined from 

samples of their state variables were studied. In [10], a detailed mathematical analysis 

was provided to explain how the asymptotic stability of the sporadically driven 

system depends on the driving period in linear systems. The sensitivity of the 

synchronization with respect to noise was also investigated for coupled chaotic 

systems. It was shown that the synchronization might be enhanced through the use of 

sporadic driving in special cases. In [11], the lag synchronization of hyperchaotic 

systems using the sporadic method was studied. Impulsive controllers seem to have a 

simple structure, and the controller is discontinuous which can be useful for digital 

communication systems. The research on impulsive synchronization in [12, 14] is 

based on the theory of comparison systems, but it is difficult to estimate the interval 

of the impulsive control for some systems using this theory. The impulsive 

synchronization of Chua’s oscillator and a hyperchaotic circuit has been studied in 

[15]. The experimental results in [15] show that the accuracy of impulsively 

controlled synchronization depends on both the period and the width of the impulse. 

Furthermore, the robustness of impulsive synchronization to additive noise was also 

experimentally studied in [13, 16]. Itoh et al. gave a sufficient condition for impulsive 

synchronization of continuous systems under the assumption that the synchronization 

errors are sufficiently small, but this result does not hold for chaotic systems with 

strong nonlinearities [17]. The impulsive synchronization method is also applicable to 

systems which cannot endure continuous disturbances. Using this method, the slave 

system receives the information from the master system only at discrete times and the 

amount of conveyed information is, therefore, decreased, which is suitable in practice 

because of reduced control cost.  

However, few analysis results (if any) have been reported for synchronization of 

hyperchaotic systems governed by ordinary differential equations (ODE). In this 
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paper, we pay particular attention to the investigation of synchronization in identical 

hyperchaotic systems using only small impulses. A fourth-order coupled hyperchaotic 

Lorenz system is taken as an example to demonstrate the results. 

New and less conservative criteria are also proposed to synchronize systems with 

varying impulse distances, and a simple and sufficient condition is derived to achieve 

synchronization based on equal impulse distances. The boundaries of the stable 

regions are also determined, and numerical simulation results are given to show the 

feasibility and effectiveness of the used method. 

The organization of the paper is as follows. In Section 2, the theory of impulsive 

synchronization is explained. The synchronization of the hyperchaotic Lorenz system 

using a small impulse is discussed. The numerical simulation results are given to 

show the feasibility and effectiveness of the method. Boundaries of the stable regions 

are estimated in Section 3 and Section 4, respectively. Finally, some conclusions are 

drawn in Section 5. 
 

2.  The theory of impulsive synchronization 
 

In impulsive systems, the master system is described by the following relation 

( ),x f t x=                                                    (1)                     

: n nf R R R+ × →  is a continuous function with respect to its arguments and nx R∈  

represents the state variables. The slave system is characterized by 

( )
( ) ( ) ( ) ( )

( )0 0,

, ,

,

1,2,3, .

i

i i i i i i

y f t y t t

y y t y t y t y t Be t t

y t y i

+ − +

+

= ≠

Δ = − = − = =

= =

                                (2)                 

f  is the same function as above, ny R∈  is left continuous at ,it t= iB are  

matrices, and 

n n×

[ ] [ ]1 2 1 1 2 2, , , , , , .T T
ne e e e y x y x y x= = − − n n−  Define a discrete instant set 

{ }it  that satisfies  1t < i →∞ s  discrete 

time instants at which the master signal is transmitted to the slave system. The states 

of the slave system are changed at these instants in accordance with the 

synchronization errors. Subtracting (2) from (1), provides results for synchronization 

2 1 ,i i it t t t+< < < < →∞  as  i the. it  
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error dynamics. Since the states of the master system are continuous in time, xΔ will 

be zero at the time instants  it

 
( ) ( ), , ,

, .
i

i i

e f t y f t x t t
e B e t t
= − ≠

Δ = =

,
  (3)                  

The goal is to find some conditions on the control gains, iB  and the impulsive 

distances 1 1i i it tδ + += − < ∞ ( 1, 2,3, .i )= such that the slave system (2) is 

synchronized asymptotically with the master system (1) for any initial condition. 
 

Remark 1. Several hyperchaotic systems satisfy (3). For example, the fourth 

Rossler’s system [4], the Chen’s hyperchaotic system [5] and the hyperchaotic Lorenz 

system [6] all belong to the class defined by (3). 
 

3. The impulsive synchronization of the hyperchaotic Lorenz system 
 

Here we investigate the impulsive synchronization of the hyperchaotic Lorenz 

system [6]. The system is descried as follows: 

( )1 2 1

2 1 2 1 3

3 3 1 2

4 1

,
,

,
.

x a x x

4x bx cx x x x
x dx x x
x kx

= −

= + − +

= − +
= −

                                        (4) 

Where 1 2 3, ,x x x  and 4x  are state variable, and and are  , , ,a b c d k
system parameters. The hyperchaotic Lorenz system shows hyperchaotic  
behavior when 35, 7,a b= =  1 2 , 3 ,c d= =  and 5k = . 

First we decompose the system dynamics to its linear and nonlinear parts. Thus 

(4) is rewritten as 

( ) ,x Ax xφ= +                                                    (5)                  

where ( )xφ  represents the nonlinear part of the dynamics.  
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0

x x
x
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.                                       (6) 

Therefore, the error dynamics in (3) can be written as 

( ), ,
, ,

i

i i

e Ae x y t t
e B e t t

ψ= + ≠

Δ = =

,
                                               (7)                   

in which  

( ) ( ) ( ) 1 3 1 3

1 2 1 2

0

,

0

y y x x
x y y x

y y x x
ψ φ φ

⎡ ⎤
⎢ ⎥− +⎢ ⎥= − =
⎢ −
⎢ ⎥
⎣ ⎦

⎥                                       (8) 

and  are the instants that the impulsive controls are implemented. it

 

Remark 2. From the analysis above, it follows that it is sufficient for synchronizing 

chaos that the origin of (7) is asymptotically stable. It is worth noting that the origin is 

one of the equilibrium points of system (7). Also, the origin is the unique equilibrium 

of system (7)  implies ie B eΔ = ( ) ( )ie t e t+ ≠ i unless ( ) ( ) 0.i ie t e t+ = =  

 

Regardless of their initial conditions, chaotic systems have bounded states so that 

one can find a positive number M such that ( )ix t M≤ and ( )iy t M≤ for any 

initial conditions. This fact is used in the proof of the following theorem. 

 

Theorem. Let iβ  and λ  be the largest eigenvalues of ( ) ( ,T
i i )I B I B+ +  

 and 1, 2, 3, ,i = ( ) ,TA A+  respectively. If there exists a constant 1α >  

such that  

( ) ( )ln 2 0,i iMαβ λ δ+ + ≤                                           (9) 1, 2,3, .i =

then the slave system (2) will be globally asymptotically synchronous with the master 

system (1).  

Proof. Let the candidate Lyapuov function be in the form of  

( ) .TV e e e=                                                               (10)                   

The time derivative along the trajectory (7) is 
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( )
( )( ) ( )( ), ,

T T

T T

V e e e e e

Ae x y e e Ae x yψ ψ

= +

= + + +
       

( ) 1 2 3 1 3 22 2T Te A A e e e x e e x= + − +  

( ) 1 2 1 32 2T Te A A e M e e M e e≤ + + +  

( ) ( )1 2 1 3 2 32 2 2T Te A A e M e e e e e e≤ + + + +     

       ( )( ) ( )2 2 2
1 2 32V e t M e e eλ≤ + + +

( ) ( )( )2 ,M V e tλ= +      ( ]1 ,i it t t−∈  for 1, 2 , 3, .i =              (11) 

This implies that  

( )( ) ( )( ) ( )( )12
1 e ,iM t t

iV e t V e t λ −+ −+
−≤ ( ]1 ,i it t t−∈  for 1, 2, .i =          (12)  

Now from (7)  

( )( ) ( ) ( ) ( ) (T
i i i iV e t I B e t I B e t+ = + +⎡ ⎤⎣ ⎦ )i

)i

i i i

         

 ( ) ( ) ( ) (TT
i i ie t I B I B e t⎡ ⎤= + +⎣ ⎦

( ) ( )Te t e tβ≤ ( )( )V e tβ= i i                                       (13)  

When  in inequality (12), then for any1i = ( ],t t t∈ 0 1 , 

( )( ) ( )( ) ( )( )02
0 .M t tV e t V e t e λ+ −+≤                                          (14) 

This leads to  

( )( ) ( )( ) ( )( )1 02
1 0 .M t tV e t V e t e λ + −+≤                                     (15)  

Also from (13) we have  

( )( ) ( )( )1 1 1V e t V e tβ+ ≤  ( )( ) ( )( )1 02
1 0 .M t tV e t e λβ + −+≤                 (16)                

In the same way for ( ]1 2,t t t∈  we have  

( )( ) ( )( ) ( )( 12
1

)M t tV e t V e t e λ+ −+≤   

( )( ) ( )( )02
1 0 .M t tV e t e λβ + −+≤                                        (17)                   

In general for any ( ]1,i it t t +∈  one finds that  

( )( ) ( )( ) ( )( )02
1 2 0 .M t t

iV e t V e t e λβ β β + −+≤                                  (18)  
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From the assumption given in the theorem we have  
( )2 1, 1, 2, .iM

i e iλ δα β + ≤ =                                      (19)  

Thus for ( ]1,i it t t +∈ , we have  1, 2 , ,i =

( )( ) ( )( ) ( )( )02
1 2 0

M t t
iV e t V e t e λβ β β + −+≤   

( )( ) ( ) 12
0 1

MV e t e λ δβ ++ ⎡ ⎤= ×⎣ ⎦
( )( ) ( )( )2 2i ic M M t t

ie eλ δ λβ + + −⎡ ⎤
⎣ ⎦

( )( ) ( )( )2
0

1 .iM t t
iV e t e λ

α
+ −+≤                               (20)                   

This implies that the origin in system (7) is globally asymptotically stable or the slave 

system is synchronized with the master system asymptotically for any initial 

conditions. By this we conclude the proof of the theorem. 

To be convenient the gain matrices iB  and the impulsive distances iδ  can be chosen 

to be constant. Thus we have the following corollary. 

 

Corollary. Suppose 0iδ δ= >  and gain matrices ( )1, 2, .iB B i= = If there exists a 

constant 1α >  such that  

( ) ( )ln 2 0.Mαβ λ δ+ + ≤                                         (21)                

Then the slave system (2) is globally asymptotically synchronous with the master 

system (1). 
 

4. Numerical simulations 

In order to demonstrate and verify the performance of the proposed method, 

some numerical simulations are presented in this section. The hyperchaotic Lorenz 

system is given in (4) where and are the real constants. Typical phase 

portraits of this system are shown as Fig. 1, Fig. 2, and Fig. 3.. This system indicates 

hyperchaotic behavior when 

, , ,a b c d k

35,a =  7,b =  12,c =  3,d =  and  it is a 

forced dissipative system with bounded states 

5,k =

( )22.4927M ≤  as  then      .t →∞

( )
2 0

2 0 1
0 0 2 0

1 0 0

T

a a b k
a b c

A A
d

k

− + −⎡ ⎤
⎢ ⎥+⎢ ⎥+ =
⎢ ⎥−
⎢ ⎥−⎣ ⎦
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70 42 0 5
42 24 0 1
0 0 6 0
5 1 0 0

− −⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ −
⎢ ⎥−⎣ ⎦

⎥ ,                                             (22) 

This eigenvalues of this matrix are 86.3246,−  6.000,− 0.2748,  and  

Thus

40.0498.

40.0498.λ =   

If iB is a constant matrix  

0 0 0
0 0 0

,
0 0 0
0 0 0

k
k

k
k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

It is evident that  From (9), the estimation of bounds of stable regions 

are given by      

( )21 kβ = + .

( ) ( )2ln ln ln 1
0

2 85.0352
k

M
αβ α

δ
λ

+ +
≤ ≤ − = −

+
.                                      (23)  

 
 

 

Fig. 1. Phase graph of hyperchaotic Lorenz system with parameters 35, 7,a b= =  

12, 3,c d= = Initial condition [ ]0.05, 0.02, 0.001, 0.05 . 
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Fig. 2. Phase graph of hyperchaotic Lorenz system with parameters 35, 7,a b= =   12,c =

k=5.  initial condition [ ]0.05, 0.02, 0.001, 0.05 . 

 

Fig. 3. Phase graph of hyperchaotic Lorenz system with parameters 7,b=  12,c= d=3,  

k = 5 .  initial condition [ ]0.05, 0.02, 0.001, 0.05 . 

 

. 
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Fig. 4. The boundaries of the stable region for different values of α . 

 
Fig. 4 shows the stable regions for different values of α  and , The entire 

region below the curve corresponding to given parameter 

k

α  is the predicted stable 

region. It can be seen that for α →∞  the stable region approaches a vertical line 

. For example if 1k = − 5α = and 1.5k = −  then 0 0.0026.δ≤ ≤  Fig. 5 shows the 

curve of impulse time interval 0.002δ = with respect to control parameter 5α =  

and  1.5.k = −

In the next simulation we choose the gain matrix iB B=  a diagonal matrix as 

follows: 

( 1.8, 1.6, 0.8, 0.4B diag= − − − − ) . Thus we can obtain 0.64.β =  For 1.2α =  and 

0.001δ = , the condition given in (21) ( ) ( )ln 2 0Mαβ λ δ+ + ≤  is satisfied. The 

numerical simulation result for this case with 1.2,α =  and 0.001δ =  is shown in 

Fig. 6. As expected in both cases asymptotic synchronization of the hyperchaotic 

Lorenz system is achieved. 
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Fig. 5. Time response of the synchronization error system with 5, 1.5, 0.002.kα δ= =− =  

 

 

 

Fig. 6. Time response of the synchronization error system with 1.2,α =  0.64,β =  0.001.δ =  

 
Remark 3. We have investigated the issue on the synchronization of 
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hyperchaotic Lorenz system via an impulsive method. In comparison with the 
schemes reported in the literature, e.g., [14, 15], our method does not require complex 
mathematical analysis. Moreover, we can see that the stable conditions in this paper 
are simpler and less conservative. Simulation results in this paper show that the 
proposed synchronization method is effective and less conservative.  

 
 

5. Conclusions 
 

In this paper, some simple conditions are obtained in synchronizing systems by 

equal impulsive distances to guarantee that the impulsive synchronization is globally 

asymptotically synchronous. The effectiveness of the suggested method has been 

shown by computer simulation. Since the upper bound of the impulsive interval is 

related to the system parameters and the impulsive control coefficients, the estimate of 

the bound is simpler than the method derived from comparison systems. The theory of 

impulsive synchronization is implementation many systems, especially for the 

synchronization of chaos in secure communication systems. 
 

Acknowledgements 

 

    This work was supported by the Major Program of the National Natural Science 

Foundation of China (Grant No. 60574024). 
 
References 
 
[1] Thamilmaran K, Lakshmanan M and Venkatesan A 2004 Hyperchaos in a modified canonical Chua's circuit Int. 

J.  Bifur. Chaos 14 221-243 

[2] Grassi G Mascolo S 1998 Design of nonlinear observer for hyperchaos synchronization using s scalar signal In: 

Proc IEEE Int. Symp on Circuits and Systems 3 283-289 

[3] Li Y X Tang S and Chen G R 2005 Generating hyperchaos via state feedback control Int. J. Circuit Theory 

Application 15 3367-3375 

[4] Chen A M J Lu A Lü J H and Yu S M 2006 Generating hyperchaotic Lu attractor via state feedback control 

Physica A 364 103-110 

[5] Yan Z Y 2005 Controlling hyperchaos in the new hyperchaotic Chen system Appl. Math. Comput 168 

1239-1250 

[6] Wang F Q Liu C X 2006 Synchronization of hyperchaotic Lorenz system based on passive control Chin. Phys. 

 - 12 -



15 1971-1976 

[7] Peng J H Ding E J Ding M and Yang W 1996 Synchronizing hyperchaos with a scalar transmitted signal Phys. 

Rev. Lett. 76 904-907 

[8] Cafagna D Grassi G 2002 Synchronizing hyperchaos using a scalar signal: a unified framework for systems 

with one or several nonlinearities in: Asia–Pacific Conference on Circuit Systems APCCAS 02, 28 575–580 

[9] Itoh M Yang T Chua L O 2001 Conditions for impulsive synchronization of chaotic and hyperchaotic system 

Int. J. Bifurcation Chaos Appl. 11 551-560 

[10] Stojanovski T Kocarev L Parlitz U and Harris R 1997 Controlling spatiotemporal chaos in coupled nonlinear 

oscillators Phys. Rev. E 56 1238-1241 

[11] Li C D Liao X F 2004 Complete and lag synchronization of hyperchaotic systems using small impulses Chaos, 

Solitons Fractals 22 857-867 

[12] Yang T Yang L B and Yang C M A 1997 Ge semiconductor experiment showing chaos and 

hyperchaos Physica D 35 425-435 

[13] C. Li, G. Feng and T. Huang 2008 On hybrid impulsive and switching neural networks, IEEE Transactions on 

Systems, Man, and Cybernetics, Part B 28 233-238  

[14] Zhang P Sun J T 2005 Stability of impulsive delay differential equations with impulses at variable times 

Dynamical Systems: An International Journal 20 323-331 

[15] Sun J T and Zhang Y P 2004 Impulsive control and synchronization of Chua’s oscillators Mathematics and 

Computers in Simulation 66 499-508 

[16] T. Huang, C. Li and X. Liu 2008 Synchronization of chaotic systems with delay using intermittent linear state 

feedback, Chaos 18 331-342,  

[17] T. Huang, C. Li and X. Liao 2007 Synchronization of a class of coupled chaotic delayed systems with 

parameter mismatch, Chaos 17 321-331 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 - 13 -

http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=FREESR&smode=strresults&sort=chron&maxdisp=25&origquery=%28%5B.99%5D%28%22XXXSTARTXXX+JH+Peng+XXXENDXXX%22%29+%3Cin%3E+exactauthor%2C+%5B.80%5D%28%22XXXSTARTXXX+JH+Peng+XXXENDXXX%22%29+%3Cin%3E+mnmitossed%2C+%5B.70%5D%28%22XXXSTARTXXX+J+Peng+XXXENDXXX%22%29+%3Cin%3E+exactauthor%2C+%5B.60%5D%28%22XXXSTARTXXX+J+Peng+XXXENDXXX%22%29+%3Cin%3E+mnmitossed%29+&disporigquery=%28J.H.+Peng+%3CIN%3E+author%29+&threshold=0&pjournals=&pyears=&possible1=J.H.+Peng&p
http://apps.isiknowledge.com/WoS/CIW.cgi?SID=D1dGefg1i9IG1cjLcCP&Func=Abstract&doc=9/47
http://apps.isiknowledge.com/WoS/CIW.cgi?SID=D1dGefg1i9IG1cjLcCP&Func=Abstract&doc=21/5

	1.pdf
	Yang_Some

