
JSS Journal of Statistical Software
June 2017, Volume 78, Code Snippet 2. doi: 10.18637/jss.v078.c02

Locally Adaptive Tree-Based Thresholding Using
the treethresh Package in R

Ludger Evers
University of Glasgow

Tim Heaton
University of Sheffield

Abstract

This paper introduces the treethresh package offering accurate estimation, via thresh-
olding, of potentially sparse heterogeneous signals and the denoising of images using
wavelets. It gives considerably improved performance over other estimation methods
if the underlying signal or image is not homogeneous throughout but instead has distinct
regions with differing sparsity or strength characteristics. It aims to identify these dif-
ferent regions and perform separate estimation in each accordingly. The base algorithm
offers code which can be applied directly to any one-dimensional potentially sparse se-
quence observed subject to noise. Also included are functions which allow two-dimensional
images to be denoised following transformation to the wavelet domain. In addition to re-
constructing the underlying signal or image, the package provides information on the
believed partitioning of the signal or image into its differing regions.

Keywords: CARTs, wavelets, thresholding, sparsity, denoising, heterogeneous, partition.

1. Methodology

The treethresh (Evers and Heaton 2009, 2017) package is intended to allow improved estima-
tion, via thresholding, of signals and images that have been observed subject to noise. The
basic underlying algorithm is suitable for application on any underlying signal which may be
potentially sparse but is particularly justified if we believe that this sparsity may vary along
the course of the signal. There are many instances where such sparsity may be observed but
one that is especially significant occurs when denoising via wavelets. Here although the origi-
nal image may not itself be sparse, upon transformation to the wavelet domain it is expected
to have a parsimonious representation. For this reason we also provide two specific algorithms
to perform wavelet denoising. We illustrate our method both in the context of single sequence
estimation and wavelet denoising using simulated data (for clarity of exposition) as well as a
real world example.

http://dx.doi.org/10.18637/jss.v078.c02

2 treethresh: Locally Adaptive Tree-Based Thresholding in R

The underlying TreeThresh algorithm is based upon the EbayesThresh approach (Johnstone
and Silverman 2004, 2005a,b) which demonstrated that signal estimation could be consider-
ably improved by adapting to the global strength of the particular signal under observation
and the selection of a suitable strength-specific threshold. TreeThresh attempts to improve
upon this methodology by also allowing adaptivity to potential local variations in the strength
along the course of the signal. This idea has been applied before by Heaton (2009) whereby
signal strength was estimated to vary smoothly by kernel or spline smoothing although here
we consider more abrupt changes in this strength. Specifically TreeThresh aims to partition
the observed data into disjoint heterogeneous regions corresponding to potential changes in
the strength level within the signal. Within each of these partitions, it is expected that there
is a similar level of signal strength and so EbayesThresh can be applied to give a suitable
threshold in each separately.
The performance of TreeThresh has been demonstrated in both simulation studies and appli-
cations to practical examples where we have found it to outperform EbayesThresh, see Evers
and Heaton (2009) for more details. Furthermore, both in single sequence estimation and
image denoising via wavelets, our methodology is able to provide the user with a partition of
the signal into disjoint regions with differing sparsity characteristics which may, in itself, be
of interest.
The treethresh package is available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=treethresh. It has been developed to depend
upon the additional packages EbayesThresh (Silverman 2010) for the base thresholding; and
wavethresh (Nason 2010) to perform the wavelet decompositions and reconstructions needed
for image denoising. These packages are required dependencies of treethresh in R and do not
require independent installation.

1.1. Model

We will first explain the methodology as applied to single, potentially sparse, sequences before
demonstrating the application to wavelet image denoising in Section 3. Suppose we have, after
possible rescaling to obtain unit variance, observed a sequence X = (Xi)i∈I satisfying

Xi = µi + εi, for i ∈ I,

where µ = (µi)i∈I is a possibly sparse signal (i.e., some/most of the µi are believed to be
zero), the εi are independentN(0, 1) noise, and I is a possibly multidimensional index domain.
Being a generalization of EbayesThresh, the TreeThresh method is based on assuming a
mixture between a point mass at zero (denoted δ0) and a signal with density γ(·) as the prior
distribution for the µi:

fprior(µi) = (1− wi)δ0 + wiγ(µi).

However, in contrast to the EbayesThresh method, the mixing weights wi depend on the
index i, i.e., the underlying signal can be heterogeneous (in the sense of not being everywhere
equally sparse). We assume there is a partition of the index space I = P1 ∪ . . . ∪ Pp (with
Pk ∩ Pl = ∅ for k 6= l) such that the weights within each region P are (almost) constant.
This yields

l(w) =
∑
i∈I

log f(xi|wi) =
∑
i∈I

log ((1− wi)φ(xi) + wi(γ ? φ)(xi))

https://CRAN.R-project.org/package=treethresh

Journal of Statistical Software – Code Snippets 3

as the marginal log-likelihood of the observed x. Here, φ denotes the density of the standard
normal distribution and γ?φ the convolution of γ and φ. In commonality with EbayesThresh,
the treethresh package uses a double exponential distribution1 with fixed scale parameter a
(set to 0.5 by default) as γ(·) permitting this convolution to be written in closed-form. Other
possibilities exist but Silverman (2010) uses this as the default in their EbayesThresh package
having found it to be the best performing prior for a wide range of sparse signals as well as
having shown that its heavy tails provide theoretical benefits (for further details see Johnstone
and Silverman 2005a).

1.2. Estimation

The TreeThresh procedure contains two steps, both of which are implemented in the package.
Firstly, given the observed data, we estimate a suitable partition P splitting the signal into
disjoint regions according to potential variations in strength and simultaneously estimate the
mixing weight wi in each. Secondly, with these mixing weights we select a suitable mixing-
weight specific threshold for the accompanying partition t(wi) before applying our chosen
thresholding rule.

Partitioning and mixing weight estimation

The partitioning is found using an algorithm that resembles those used in recursive parti-
tioning algorithms such as classification and regression trees (CARTs; Breiman, Friedman,
Olshen, and Stone 1984). In brief, we initially create a nested sequence of increasingly fine
partitions. Cross-validation is then used to prune (remove) some of these partitions and iden-
tify the “best” overall partition of the signal. Section 2 gives a more detailed description of
the specific algorithm.
Having identified an “optimal” partition, we then estimate the mixing weights in each region
by maximizing the log-likelihood of the observations it contains. This mixing weight estima-
tion corresponds to carrying out the EbayesThresh algorithm for each region separately.

Thresholding

Having created our partition and identified the mixing weights wi in each region, we can use
these to estimate the underlying signal µi via thresholding with a weight specific threshold.
The thresholding can be done in a variety of ways but the exact choice of technique is much
less important than the threshold level t(wi). We provide three such choices for the threshold
function but all use the same threshold value – that obtained from the posterior median
method. This threshold value has been shown to have strong theoretical properties (Johnstone
and Silverman 2004, 2005a).

Posterior median: The posterior median of µi given Xi = x is shown in Figure 1 as a
function of x (solid line). As pictured, it has a thresholding property where for x ∈
[−tŵi , tŵi] the posterior median is zero. For the mathematical details see e.g., Johnstone
and Silverman (2005b, Section 6.1).

Hard thresholding: Alternatively, we allow use of the tŵi obtained from the posterior me-
1I.e., a distribution on the real line with density γ(u) = a

2 exp(−a|u|).

4 treethresh: Locally Adaptive Tree-Based Thresholding in R

x

µ(
x)

− tw 0 tw

0

post.med.
hard
soft

Figure 1: Comparison of the three thresholding rules.

dian within the hard thresholding rule

µ̂hard
i (x) =


x for x < −tŵi

0 for −tŵi ≤ x ≤ tŵi

x for x > tŵi

This threshold rule is illustrated with a dashed line in Figure 1. Such hard thresholding
is discontinuous at −tŵi and at tŵi .

Soft thresholding: Finally, the package gives the option of the soft thresholding rule

µ̂soft
i (x) =


x+ tŵi for x < −tŵi

0 for −tŵi ≤ x ≤ tŵi

x− tŵi for x > tŵi

where again tŵi is the threshold obtained from the posterior median. This rule (dotted
line in Figure 1) is continuous, but is biased even for large values of x.

By default, the treethresh package uses the posterior median.

2. Algorithmic details
The partitioning algorithm aims to find a partitioning of the index set I = P1 ∪ . . . ∪ Pp ,
Pk ∩ Pl = ∅, such that {wi, i ∈ Pk} is (almost) constant. An exhaustive search over all
possible rectangular partitions is prohibitive, thus the method uses a greedy “one step look-
ahead” strategy of recursively partitioning the signal: The canonical step of the algorithm is
to split one rectangular region P into two rectangular regions L and R. As there are only
a small number of these “splits”, an exhaustive search can be performed. An optimal cutoff

Journal of Statistical Software – Code Snippets 5

should split the current region P into two new regions hopefully corresponding to changes
in the sparsity and its heterogeneity. This can be measured by looking at a test of the null
hypothesis that the signal is equally sparse in both regions, i.e., H0 : w(L) = w(R). By default,
the software uses the score statistic, as this does not require computing w(L) and w(R) for
all pairs of candidate regions L and R, see Evers and Heaton (2009) for the mathematical
details.
This canonical step of splitting one rectangular region into two rectangular regions is carried
out recursively. This (first) step of the algorithm is implemented in the functions treethresh
and wtthresh dependent upon whether you wish to simply estimate a possibly sparse vector
µ as described in Section 1.1 or denoise an image by taking advantage of its sparsity in the
wavelet domain (see Section 3 for more on the differences between these two functions).
In order to avoid overfitting, it is important not to estimate too fine a partition. One possibil-
ity could be to use stopping rules based on the test statistic of the score test (or a likelihood
ratio test). However these suffer from two drawbacks. First, it is difficult to find the correct
critical value, as we are testing data-driven hypotheses. Second, using a naïve stopping rule
would lead to a short-sighted strategy for choosing the optimal partition: A seemingly worth-
less split might turn out to be an important boundary in a more complex partition. Thus
we propose, in complete analogy with the CART algorithm, to initially estimate too fine a
partition and then reduce its complexity by finding a coarser super-partition such that

lP − α · |P|

is maximal, where lP is the log-likelihood obtained by partition P and |P| is the number of
regions in P.
Just as in the case of CARTs, one can show (see e.g., Ripley 1996, Section 7.2) that there exists
a nested sequence of partitions which maximize the penalized log-likelihood over different
ranges of α. Figure 2 illustrates this idea. The “optimal” value of α can be found using cross-
validation. As the parameter α is on a scale which is difficult to interpret, the software works
with the parameter C = α

α0
, where α0 is the value that would yield a partition consisting of a

single region. This parameter C can thus take values between 0 (no pruning) to 1 (partition
reduced to a single region).
It might be expected that one would choose the value of C that yields the largest predictive
log-likelihood. However, it turns out to be often better in practice to use a simpler model
(corresponding to a larger value of C) if the corresponding predictive log-likelihood is not
much worse than that of the best model. Thus the package uses by default the largest C for
which the difference to the best predictive log-likelihood is less than half the standard error
of the best predictive log-likelihood.
This second step of the algorithm can be carried out by calling the function prune. Sections 4.1
and 4.2 contain two examples illustrating both steps of the algorithm and explaining the
output generated. For a more detailed description together with some asymptotic properties
see Evers and Heaton (2009).

3. Application to wavelet coefficients
Perhaps the most common application of thresholding is for denoising an observed, possibly
multidimensional, signal (or image) using wavelets. Here we do not expect the original image

6 treethresh: Locally Adaptive Tree-Based Thresholding in R

Figure 2: Example of a nested sequence of partitions corresponding to different values of
α. As α increases, the optimal penalized likelihood partition becomes coarser and is nested
within the optimal partition for smaller values of α.

to itself be sparse but obtain this sparsity by first transforming the noisy signal to the wavelet
domain where it is expected that the underlying signal has a parsimonious representation.
The observed wavelet coefficients are thus thresholded before being transformed back to the
original domain to provide a hopefully noise-free version of the original signal.
Denoising of signals/images in this way provokes an additional question of whether we would
wish to partition our image in the original untransformed domain or rather within each
individual level of the wavelet coefficient space. The former approach is appealing in that
it permits the interpretation of the untransformed image as containing distinct regions with
differing characteristics and allows partitioning information to be shared across differing levels
of the wavelet transform which may improve estimation. Identification of such regions in the
original domain may also be of independent interest to the user. Figure 3 illustrates the idea
of partitioning the original untransformed domain and shows how the partition of the original
domain is transferred to the wavelet coefficients.
Our code provides the possibility to apply both types of partitioning algorithms. Levelwise
TreeThresh simply applies the partitioning algorithm explained in Section 2 to each level
of the wavelet coefficients independently. On the other hand, Wavelet TreeThresh combines
the information across different levels of the wavelet transform to partition in the original
space domain. As well as providing an estimate of the noise-free image/signal, the output of
Wavelet TreeThresh provides the partition of the space domain selected for the user to see.
For an example of how to apply both the Levelwise and Wavelet TreeThresh algorithms see
Section 4.2.

4. Using the software
To explain the implementation of the package we provide a set of examples increasing in
complexity. We hope these will guide the reader through the various steps of the algorithm
before ending with an application of the methodology to a real life example of image denois-
ing via wavelets. We commence with a highly simplified example of the thresholding of a
single artificial sequence with varying sparsity. This example aims to show the reader how
TreeThresh is able to partition such a sequence, correctly identify the regions of differing
sparsity and choose an appropriate threshold in each. We then show how this fundamental
idea can be incorporated into the context of wavelet denoising. We present a small simulation
study showing how, once in the wavelet domain, the wavelet coefficients of functions and
images often fall in regions with varying sparsity. In this section we also demonstrate how

Journal of Statistical Software – Code Snippets 7

(a) Illustration for a one-dimensional signal. (b) Illustration for a two-
dimensional signal.

Figure 3: Underlying signal in the original domain (bottom) and corresponding wavelet coeffi-
cients at fine levels. The thick solid lines indicating the partitions illustrate how the partition
of the original index domain is transferred to each level of the wavelet coefficients.

our method is robust to deviations from the Gaussian noise assumption. In real world images
it is not uncommon to instead have “salt and pepper” noise where there are a few extremely
noisy measurements polluting the underlying image. We show how our method is still able to
perform denoising in such instances. Finally we conclude with denoising of a real life image
of 3T3 cells illuminated by laser.

4.1. Single sequence estimation of a potentially sparse signal via threshold-
ing

We begin with a short example (very similar to that given in the help file of treethresh) to
illustrate how the treethresh package can be used to threshold a simple sequence and identify
the estimated partition. While the example itself is somewhat artificial we spend some time
explaining the features of the model and output since this single sequence estimation provides
the underlying building block for our more advanced wavelet techniques.

Creating an artificial signal

First let us start with creating a sparse underlying signal which is rather dense towards
the middle and sparse at the beginning and at the end. This is done by choosing a vector
containing the probabilities wi that µi 6= 0.

R> w.true <- c(rep(0.15, 400), rep(0.6, 300), rep(0.05, 300))

The true signal µ = (µ1, . . . , µ1000) is then created by drawing the non-zero µi from a Laplace

8 treethresh: Locally Adaptive Tree-Based Thresholding in R

0 200 400 600 800 1000

−
5

0
5

10

Index i

µ i

True signal

(a) Underlying true signal µ.

0 200 400 600 800 1000

−
10

−
5

0
5

Index i
x i

Observed signal

(b) Observed signal x.

Figure 4: The underlying true signal and observed noisy signal x (entries corresponding to
non-zero µi are shown in red).

distribution.

R> mu <- numeric(length(w.true))
R> non.zero.entry <- runif(length(mu)) < w.true
R> num.non.zero.entries <- sum(non.zero.entry)
R> mu[non.zero.entry] <- rexp(num.non.zero.entries, rate = 0.5) *
+ sample(c(-1, 1), num.non.zero.entries, replace = TRUE)
R> mu[1:12]

[1] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[7] 0.2581282 0.0000000 0.0000000 1.8380074 0.0000000 0.0000000

The specific signal generated is displayed in Figure 4(a). Our hope is not only to recover
this signal after observation subject to noise but also to identify the three distinct regions of
differing sparsity corresponding to changes in the selected w.
We finish by creating the observed noisy signal x = (x1, . . . , x1000) with the addition of white
noise to the µ. Figure 4(b) displays the simulated “observed” signal.

R> x <- mu + rnorm(length(mu))

Estimating the noise variance and rescaling

In the above example we know that the noise has unit variance. Ideally a user would know the
error in their measurements, for example by running some sort of blank where the underlying
signal is known to be empty. However, in many practical settings this may not be the case

Journal of Statistical Software – Code Snippets 9

True proportion of signal w 0 0.01 0.05 0.1
Correction factor 1.482602 1.473273 1.435957 1.389315
True proportion of signal w (ctd.) 0.2 0.3 0.5 1
Correction factor (ctd.) 1.296104 1.203145 1.019313 0.6176064

Table 1: Correction factors that would give an unbiased estimate of the standard deviation
of the noise.

and the standard error will need to be estimated from the signal/image itself. Such a priori
estimation is a difficult problem. In the case of sparse signals (and hence by extension wavelet
demonizing) the medium absolute deviation as implemented in the function mad can be used
to get a rough idea of the standard error of the noise. However, the correction factor of
1.4826 used by mad is only unbiased if no signal is present, i.e., µ = 0. If a signal is present,
it overestimates the standard deviation of the noise. For a homogeneous signal with wi ≡ 0.5,
mad overestimates the standard deviation by about 50%. To illustrate this bias, Table 1 gives
the correction factors one could use (instead of 1.4826) for a homogeneous signal if the wi were
constant and known (although this would of course defeat the purpose of the EbayesThresh
or TreeThresh algorithms).
When using mad to estimate the standard error of the noise in our example signal, we use a
correction factor of 1.3 to account for the fact that our signal is fairly dense:

R> sdev <- mad(x, constant = 1.3)
R> sdev

[1] 0.9973816

As indicated in Section 1.1, our algorithm assumes that the signal that is fed into the
treethresh function has unit variance and so it is necessary to rescale appropriately us-
ing our estimate sdev:

R> x <- x / sdev

Signal strength and partition estimation

We are now ready to apply the treethresh function, which estimates the partitioning and
the corresponding wi.

R> library("treethresh")
R> x.tt <- treethresh(x)

The element splits contains detailed information about the partition. We provide a guide
to help interpret this output in the next section. In short however, each row corresponds to
a region or a split, respectively. The columns are as follows:

id: Integer uniquely identifying the region / split.

parent.id: The modulus of parent.id is the id of the parent region. If the current region
is to the left of the split, parent.id is negative, otherwise it is positive.

10 treethresh: Locally Adaptive Tree-Based Thresholding in R

dim: The dimension (indexed starting at 0) used to define the split.

pos: The position of the split.

left.child.id / right.child.id: If the region has been split further, these two columns
contain the id of the newly created “children”, otherwise NA.

crit: The value of the criterion (i.e., by default the score test) for carrying out this split.

w: The value of ŵ(P) used in this region (before splitting further).

t: The corresponding threshold tŵ(P) in this region (before splitting further).

loglikelihood: Contribution of the observations in this region to the log-likelihood (before
splitting further).

alpha / C: If the value of C (or α) in the pruning step is chosen larger than the number
given, this region (not split) would be removed in the pruning, and only its “parent” or
another “ancestor” would be retained.

The output of treethresh can be inspected as follows:

R> nrow(x.tt$splits)

[1] 63

R> head(x.tt$splits, n = 10)

id parent.id dim pos left.child.id right.child.id crit
[1,] 1 NA 0 745 2 63 51.794514
[2,] 2 -1 0 393 3 32 52.354525
[3,] 3 -2 0 369 4 31 19.843343
[4,] 4 -3 0 9 5 6 4.821266
[5,] 5 -4 NA NA NA NA NA
[6,] 6 4 0 145 7 14 2.741212
[7,] 7 -6 0 83 8 13 21.499363
[8,] 8 -7 0 51 9 12 4.202844
[9,] 9 -8 0 14 10 11 18.933715

[10,] 10 -9 NA NA NA NA NA
w t loglikelihood alpha C

[1,] 0.291419714 2.1945073 448.22531923 NA NA
[2,] 0.369894137 1.9968887 463.49453253 19.957311 1.00000000
[3,] 0.139722902 2.6506361 66.09874994 19.957311 1.00000000
[4,] 0.154346257 2.5975401 67.70449641 1.981756 0.09929975
[5,] 0.008961814 3.7169222 -0.02479908 1.981756 0.09929975
[6,] 0.158658582 2.5824785 68.15741062 1.981756 0.09929975
[7,] 0.086433684 2.8834517 17.24646557 1.981756 0.09929975
[8,] 0.176956791 2.5211251 19.60181045 1.981756 0.09929975
[9,] 0.050922031 3.1079077 0.56249679 1.981756 0.09929975

[10,] 0.918786110 0.3074389 3.38213713 1.981756 0.09929975

Journal of Statistical Software – Code Snippets 11

−
10

−
5

0
5

10

C

Lo
gl

ik
el

ih
oo

d
fr

om
 C

V
 (

+
co

ns
t)

0.0327 0.0543 0.0741 0.1167 0.2801 >1

number of regions

32 29 25 21 17 7 6 5 4 3 1

Figure 5: Predictive log-likelihood as a function of the complexity parameter C.

On the left hand side of Figure 6 we show the estimated partition and the estimated weights
wi created by treethresh before pruning. As described in Section 2 and as can be clearly
seen from the plot, the partition estimated in this first step constitutes an overfit to the data.
There are far too many partitions and thus we need to carry out a second, pruning step that
reduces the complexity of the estimated partition.

R> x.ttp <- prune(x.tt)
R> x.ttp$splits

id parent.id dim pos left.child.id right.child.id crit
[1,] 1 NA 0 745 2 63 51.79451
[2,] 2 -1 0 393 3 32 52.35453
[3,] 3 -2 NA NA NA NA NA
[4,] 32 2 NA NA NA NA NA
[5,] 63 1 NA NA NA NA NA

w t loglikelihood alpha C
[1,] 0.29141971 2.194507 448.225319 NA NA
[2,] 0.36989414 1.996889 463.494533 19.95731 1
[3,] 0.13972290 2.650636 66.098750 19.95731 1
[4,] 0.59349144 1.427620 420.521354 19.95731 1
[5,] 0.03300857 3.274768 1.519837 19.95731 1

In Figure 6(b) we show the estimated partition after pruning has taken place. Most of the
splits have now been removed and we are left with just three distinct sections. As can be seen

12 treethresh: Locally Adaptive Tree-Based Thresholding in R

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index i

w
i^

Estimated weights (before pruning).

(a) Before pruning.

0 200 400 600 800 1000

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Index i
w

i^

Estimated weights (after pruning).

(b) After pruning.

Figure 6: Estimated partition and weights before and after pruning.

these correspond well to the changes in the weight vector we used to create the simulated
signal both in their location and the estimated values ŵi.
Within prune a cross-validation step is used to select the “optimal” complexity parameter
C. This is done automatically but we illustrate the approach in Figure 5. By default prune
uses five-fold cross validation (which can be changed using the argument v) to estimate the
predictive log-likelihood. The predictive log-likelihood is highest for partitions with three
regions, and the simpler partition having only one region is more than half a standard error
worse (being below the dotted line), thus we retain the partition with three regions.

Thresholding

Having found the optimal partition, all that is then required is to use the estimated weights
in each region to threshold the sequence. Figure 7 shows the corresponding threshold. The
thresholding is done using the function thresh, which uses by default the posterior median.

R> mu.hat <- thresh(x.ttp)

Finally, we need to scale the reconstructed signal µ̂ back to the original domain.

R> mu.hat <- mu.hat * sdev

Figure 8 shows the reconstructed sequence.

Interpreting the partitioning output

The detailed partitioning output provided by the package may initially seem a little complex.
Here we give a short explanation of how to interpret that information for the case of the
pruned x.ttp$splits.

Journal of Statistical Software – Code Snippets 13

0 200 400 600 800 1000

1.
5

2.
0

2.
5

3.
0

Index i

t w
i^

Estimated thresholds (after pruning)

Figure 7: Estimated thresholds tŵi of the partition after pruning.

0 200 400 600 800 1000

−
5

0
5

10

Index i

µ̂ i

Reconstructed signal

Figure 8: Reconstructed signal µ̂i in the original scale (entries corresponding to non-zero true
signal µi in red).

14 treethresh: Locally Adaptive Tree-Based Thresholding in R

The user should commence by looking at the first row of output which corresponds to the case
of no partitioning. This tells us that the global signal (with no proposed splitting) is estimated
to have a sparsity mixing weight of ŵi = 0.29 for all i with a corresponding threshold to apply
of tŵi = 2.19. This “no split” situation is not however optimal and the algorithm suggests an
initial split at position 745 into the subregions with identifiers 2 and 63 (to the left and right
of this split respectively).
Information on the first of these regions is given in the row with id = 2. This corresponds
to those elements µi for i = 1, . . . , 745. In this region the sparsity weight is estimated to be
ŵi = 0.37. Again however the algorithm suggests another split, this time at position 393 into
the subpartition with identifiers 3 and 32. This however is as far as we proceed in our splitting
since the rows corresponding to these identifiers have NA values for both left.child.id and
right.child.id.
Similarly, for more detail on the right hand side of the initial split (and potential further
splitting) we look at the row with identifier 63. Here we estimate the signal to be extremely
sparse with ŵi = 0.03. It is not split further.
In summary, the method suggests an optimal partition of the signal µ into three regions. The
first being for those i = 1, . . . , 393 with an estimated value ŵi = 0.14; the second being for
i = 394, . . . , 745 with ŵi = 0.59; and the third for i = 746, . . . , 1000 with ŵi = 0.03. This is
shown on the right hand side of Figure 6. If we refer back to the original vector of wi selected
we can see that the method has identified fairly accurately both the partition locations and
the corresponding sparsity in each region.
The column dim indicates which dimension is used for the split. In the one-dimensional
example presented in this section the column dim is always zero. If a two-dimensional signal
is thresholded, then dim is either 0 or 1, depending on whether splits are horizontal or vertical.

4.2. Denoising an image by thresholding wavelet coefficients

In this section we show how the ideas of sparse sequence partitioning and estimation via
thresholding presented in the previous section can be applied to wavelet coefficients permitting
improved image denoising. We provide explanations of the function wavelet.treethresh
which is a high level function automating the process as well as describe how estimation can
be performed manually using lower level functions.
We also show how our image denoising is still able to perform for images with deviations
from the Gaussian noise model assumption. We use an artificial example to which we add
“salt-and-pepper” noise before attempting to recover the original image. A small simulation
study is presented where we compare our TreeThresh method to the current state-of-the-
art EbayesThresh method illustrating the significant improvement that can be achieved by
partitioning the image and thresholding each region adaptively.

Preparing the example
This example uses the image tiles available with the treethresh package and shown in
Figure 9(a).

R> data("tiles", package = "treethresh")

To see whether the TreeThresh algorithm is able to recover this image observed subject to

Journal of Statistical Software – Code Snippets 15

(a) Original image. (b) Noisy image. (c) Wavelet decomposition.

Figure 9: Image tiles (Panel (a)) and image with “salt-and-pepper” noise added (Panel (b)).
In Panel (c) we show the 2D wavelet decomposition of the noisy image illustrating the localized
levels of sparsity. The color palette used was obtained using the function matlab.like2 from
the package colorRamps (Keitt 2012).

noise we add “salt-and-pepper” noise, rather than the Gaussian noise assumed by the model.
“Salt-and-pepper” noise sets a fixed proportion of the pixels, 20% in our case, to either the
largest value (“white”) or the smallest value (“black”), chosen randomly for each pixel.

R> tiles.noisy <- tiles
R> subset <- sample(length(tiles), round(length(tiles) * 0.2))
R> tiles.noisy[subset] <- range(tiles)[sample(1:2, length(subset),
+ replace = TRUE)]

Figure 9(b) shows the noisy image generated. The corresponding signal to noise ratio is about
1:1.
In order to be able to use the TreeThresh algorithm, we need to compute the wavelet transform
of the image. We do this using the function imwd from the package wavethresh (Nason 2010).

R> tiles.noisy.imwd <- imwd(tiles.noisy)

Using the high-level function wavelet.treethresh

The function wavelet.treethresh allows for thresholding in a more user-friendly way by call-
ing the relevant functions extract.coefficients, estimate.sdev, treethresh / wttresh,
prune, and thresh internally as well as rescaling the coefficients so that the noise has approx-
imately unit variance. This section explains how to use this more user-friendly interface, see
the following section for the commands required to carry out the thresholding step-by-step
or if information on the estimated partition is required.

R> tiles.noisy.imwd.threshed <- wavelet.treethresh(tiles.noisy.imwd)

The default approach is to create the partition in the original untransformed domain. If the
Levelwise TreeThresh algorithm is desired instead then the user can simply add an additional
argument levelwise = TRUE.

16 treethresh: Locally Adaptive Tree-Based Thresholding in R

(a) TreeThresh. (b) EbayesThresh.

Figure 10: Image reconstructed by the TreeThresh algorithm (Panel (a)) compared to the
one reconstructed by the EbayesThresh algorithm.

TreeThresh EbayesThresh
Mean l2 loss 5488.534 7255.330
Standard deviation of l2 loss 350.9619 223.1894

Table 2: Comparison of the l2 loss incurred by TreeThresh and EbayesThresh for the tiles
data (1,000 replications).

Having thresholded the wavelet coefficients, we transform them back to the original domain
using the function imwr from the package wavethresh to recover our original signal with
the noise hopefully removed. The wavethresh package is set as a required dependency for
treethresh and so does not require independent installation.

R> tiles.denoised <- imwr(tiles.noisy.imwd.threshed)

Figure 10(a) shows the reconstructed image and compares it to the result obtained by the
EbayesThresh algorithm (Panel (b)). The result of the TreeThresh method appears sharper
and the regions without the three square designs are notably clearer than the EbayesThresh
reconstruction. The corresponding l2 loss is 5963.337 for the TreeThresh algorithm and
7682.055 for the EbayesThresh algorithm. Table 2 gives the l2 loss for 1,000 replications.
TreeThresh outperforms EbayesThresh for every single replication and leads on average to a
reduction of the l2 loss by almost a quarter. Neither method appears to be hampered by the
presence of “salt-and-pepper”, rather than Gaussian, noise. This suggests that both methods
are robust with respect to violations of the assumption of white noise.

A step-by-step guide to carrying out the thresholding manually
This section explains how the reconstruction of the image can be done manually using the func-
tions extract.coefficients, estimate.sdev, treethresh / wttresh, prune, and thresh.

Journal of Statistical Software – Code Snippets 17

Starting with the wavelet transform we have computed at the beginning of this section we
first estimate the standard error of the noise. This is easier for wavelets than it is for general
sequences, as one can base the estimate on the coefficients at the finest level, which typi-
cally do not contain much of the underlying signal. This can be done using the function
estimate.sdev which can be applied to objects of the classes ‘wd’ or ‘imwd’.

R> sdev <- estimate.sdev(tiles.noisy.imwd)

Our estimate of the standard deviation is 0.9691384, which is not too far from the actual
standard deviation of the “salt-and-pepper” noise (0.9752828).
Next, we need to extract the coefficient matrices (or vectors in the case of ‘wd’ objects) from
the object, so that we can threshold them. Typically one would not threshold the coarser
coefficients, by default extract.coefficients does not extract the coefficients at the four
coarsest levels (i.e., these will not be thresholded).

R> tiles.noisy.coefs <- extract.coefficients(tiles.noisy.imwd)

Then we rescale these coefficients, so that the noise has (approximately) unit variance.

R> for (nm in names(tiles.noisy.coefs)) {
+ tiles.noisy.coefs[[nm]] <- tiles.noisy.coefs[[nm]] / sdev
+ }

We are now ready to threshold the coefficients. We will use the Wavelet TreeThresh algo-
rithm.2

R> tiles.noisy.wtt <- wtthresh(tiles.noisy.coefs)

Figure 12 (a) shows the estimated partitioning (before having carried out the pruning) to-
gether with the corresponding thresholded image. Again it is a little too fine. Panel (b) shows
the partitioning after the pruning, which removes two splits towards the middle of the image
and one towards the bottom left. To determine the correct amount of pruning we again use
cross-validation to estimate the optimal complexity parameter C. This is shown in Figure 11
where we plot the predictive log-likelihood estimated by cross-validation as a function of the
complexity parameter C. The predictive log-likelihood is highest for C = 0.2719 (correspond-
ing to 16 regions). However, choosing the slightly larger C = 0.4210 (corresponding to 15
regions) does not give results that are more than half a standard error worse than the best
choice (being above the dotted line). Thus, as explained in Section 1, a partition with 15
regions is retained.

R> tiles.noisy.wttp <- prune(tiles.noisy.wtt)

Once we have determined the partitioning, we only need to carry out the actual thresholding,
rescale the coefficients to their original domain, insert them into the ‘imwd’ (or ‘wd’ object)
and transform the coefficients back to the original domain.

2If we wanted to use the Levelwise TreeThresh algorithm we would simply threshold each coefficient matrix
(or vector) separately as described in Section 4.1 (with the only exception that we would do the rescaling
again).

18 treethresh: Locally Adaptive Tree-Based Thresholding in R

0
20

40
60

80
10

0
12

0

C

Lo
gl

ik
el

ih
oo

d
fr

om
 C

V
 (

+
co

ns
t)

0.0314 0.0492 0.0636 0.0812 0.1786 0.4263 >1

number of regions

30 29 28 27 26 24 23 22 20 15 14 2 1

Figure 11: Predictive log-likelihood as a function of the complexity parameter C.

R> tiles.noisy.coefs.threshed <- thresh(tiles.noisy.wttp)
R> for (nm in names(tiles.noisy.coefs)) {
+ tiles.noisy.coefs.threshed[[nm]] <-
+ tiles.noisy.coefs.threshed[[nm]] * sdev
+ }
R> tiles.noisy.imwd.threshed <- insert.coefficients(tiles.noisy.imwd,
+ tiles.noisy.coefs.threshed)
R> tiles.noisy.threshed <- imwr(tiles.noisy.imwd.threshed)

4.3. A real word example

We conclude our illustration of the software implementation with a final example showing
how the method can be applied to denoise a real life image of cells illuminated by laser
provided by Dr. Ashley Cadby (Dept. of Physics, University of Sheffield). The noisy image
can be seen in Figure 13 and show 3T3 cells where the Actin cytoskeleton of the cells has
been labeled with AlexaFluor 647. The image is a single frame from a stochastic optical
reconstruction microscopy (STORM) experiment. The sample was illuminated with a high
power 640nm laser causing stochastic emission from single molecules. The emission from the
single molecules is diffraction limited, with the magnification of the optical system such that
a single diffraction limited spot appears over 3 × 3 pixels.
The raw photograph is provided as a grayscale image file in PNG format and read in using
the package png (Urbanek 2013).

Journal of Statistical Software – Code Snippets 19

(a) Before pruning. (b) After pruning.

Figure 12: Estimated partitioning and corresponding reconstructed image (before and after
the pruning).

R> library("png")
R> img <- readPNG("3T3cells.png")
R> img.imwd <- imwd(img)
R> img.imwd.threshed <- wavelet.treethresh(img.imwd)
R> img.denoised <- imwr(img.imwd.threshed)
R> writePNG(img.denoised, "3T3_denoised.png")

Figure 13 presents the original image and the denoised image using both TreeThresh and
EbayesThresh. As can be seen, TreeThresh provides a much cleaner reconstruction than
EbayesThresh. In the center, TreeThresh retains significantly more contrast when compared
to EbayesThresh. Furthermore, in the outer regions where no signal is present, TreeThresh
provides an estimate with fewer visually distracting artefacts. This illustrates that, due to
the capacity of TreeThresh to partition images and denoise adaptively, improvement in the
estimation of one part of an image need not come at the expense of a poorer reconstruction
in other areas.

5. Conclusion
In this manuscript we have demonstrated how the treethresh package can be used for the
thresholding of sequences observed with error and for the denoising of images via the use of
a wavelet transformation. The package has been developed in R (R Core Team 2017) and
is freely available from the Comprehensive R Archive Network (CRAN) at https://CRAN.
R-project.org/package=treethresh.
The TreeThresh method and the associated software we have introduced often yield lower
reconstruction errors than the default EbayesThresh method. Furthermore, they create po-

https://CRAN.R-project.org/package=treethresh
https://CRAN.R-project.org/package=treethresh

20 treethresh: Locally Adaptive Tree-Based Thresholding in R

(a) Original image. (b) Denoised image (TreeThresh).

(c) Denoised image (EbayesThresh).

Figure 13: STORM image (Panel (a)) and denoised image obtained using TreeThresh (Panel
(b)) and EbayesThresh (Panel (c)).

tential partitions of the sequence or image into regions with differing characteristics according
to signal strength. This allows for independent interpretation and may give additional insight
into the data at hand.
It should be noted that since only splits parallel to the axes are considered, the method is
not invariant under rotations of the input signal. This is of course not an issue for one-
dimensional data and in most applications two-dimensional and higher-dimensional signals
have a natural orientation, so that the rotational invariance does not seem to be an important
desired property of the method. In principle, this could be addressed by modifying the method

Journal of Statistical Software – Code Snippets 21

to use partitions based on Voronoi tessellations instead of perpendicular splits although these
will add computational expense if dimensions extend considerably higher than the two or
three we envisage our method being most commonly applied in.

References

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). Classification and Regression Trees.
Wadsworth and Brooks/Cole, Monterey.

Evers L, Heaton TJ (2009). “Locally-Adaptive Tree-Based Thresholding.” Journal of Com-
putational and Graphical Statistics, 18(4), 961–977. doi:10.1198/jcgs.2009.07109.

Evers L, Heaton TJ (2017). treethresh: Methods for Tree-Based Local Adaptive Thresholding.
R package version 0.1-11, URL https://CRAN.R-project.org/package=treethresh.

Heaton TJ (2009). “Adaptive Thresholding of Sequences with Locally Variable Strength.”
Statistics and Computing, 19(1), 57–71. doi:10.1007/s11222-008-9071-1.

Johnstone IM, Silverman BW (2004). “Needles and Straw in Haystacks: Empirical Bayes
Estimates of Possible Sparse Sequences.” The Annals of Statistics, 32(4), 1594–1649. doi:
10.1214/009053604000000030.

Johnstone IM, Silverman BW (2005a). “Empirical Bayes Selection of Wavelet Thresholds.”
The Annals of Statistics, 33(4), 1700–1752. doi:10.1214/009053605000000345.

Johnstone IM, Silverman BW (2005b). “EbayesThresh: R Programs for Empirical Bayes
Thresholding.” Journal of Statistical Software, 12(8), 1–38. doi:10.18637/jss.v012.i08.

Keitt T (2012). colorRamps: Builds Color Tables. R package version 2.3, URL https:
//CRAN.R-project.org/package=colorRamps.

Nason G (2010). wavethresh: Wavelets Statistics and Transforms. R package version 4.5,
URL https://CRAN.R-project.org/package=wavethresh.

R Core Team (2017). R: A Language and Environment for Statistical Computing. Vienna,
Austria. R Foundation for Statistical Computing, URL https://www.R-project.org/.

Ripley BD (1996). Pattern Recognition and Neural Networks. Cambridge University Press,
Cambridge.

Silverman BW (2010). EbayesThresh: Empirical Bayes Thresholding and Related Methods.
R package version 1.3-2, URL https://CRAN.R-project.org/package=EbayesThresh.

Urbanek S (2013). png: Read and Write PNG Images. R package version 0.1-7, URL https:
//CRAN.R-project.org/package=png.

http://dx.doi.org/10.1198/jcgs.2009.07109
https://CRAN.R-project.org/package=treethresh
http://dx.doi.org/10.1007/s11222-008-9071-1
http://dx.doi.org/10.1214/009053604000000030
http://dx.doi.org/10.1214/009053604000000030
http://dx.doi.org/10.1214/009053605000000345
http://dx.doi.org/10.18637/jss.v012.i08
https://CRAN.R-project.org/package=colorRamps
https://CRAN.R-project.org/package=colorRamps
https://CRAN.R-project.org/package=wavethresh
https://www.R-project.org/
https://CRAN.R-project.org/package=EbayesThresh
https://CRAN.R-project.org/package=png
https://CRAN.R-project.org/package=png

22 treethresh: Locally Adaptive Tree-Based Thresholding in R

Affiliation:
Ludger Evers
School of Mathematics and Statistics
University of Glasgow
Glasgow, G12 8QQ, United Kingdom
E-mail: Ludger.Evers@glasgow.ac.uk
Tim Heaton
School of Mathematics and Statistics
University of Sheffield
Sheffield, S3 7RH, United Kingdom
E-mail: T.Heaton@shef.ac.uk

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

June 2017, Volume 78, Code Snippet 2 Submitted: 2012-01-25
doi:10.18637/jss.v078.c02 Accepted: 2016-05-27

mailto:Ludger.Evers@glasgow.ac.uk
mailto:T.Heaton@shef.ac.uk
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v078.c02

	Methodology
	Model
	Estimation
	Partitioning and mixing weight estimation
	Thresholding

	Algorithmic details
	Application to wavelet coefficients
	Using the software
	Single sequence estimation of a potentially sparse signal via thresholding
	Creating an artificial signal
	Estimating the noise variance and rescaling
	Signal strength and partition estimation
	Thresholding
	Interpreting the partitioning output

	Denoising an image by thresholding wavelet coefficients
	Preparing the example
	Using the high-level function wavelet.treethresh
	A step-by-step guide to carrying out the thresholding manually

	A real word example

	Conclusion

