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Abstract

Stance detection is the task of classifying the

attitude expressed in a text towards a target

such as “Climate Change is a Real Concern”

to be “positive”, “negative” or “neutral”. Pre-

vious work has assumed that either the target

is mentioned in the text or that training data for

every target is given. This paper considers the

more challenging version of this task, where

targets are not always mentioned and no train-

ing data is available for the test targets. We

experiment with conditional LSTM encoding,

which builds a representation of the tweet that

is dependent on the target, and demonstrate

that it outperforms the independent encoding

of tweet and target. Performance improves

even further when the conditional model is

augmented with bidirectional encoding. The

method is evaluated on the SemEval 2016

Task 6 Twitter Stance Detection corpus and

achieves performance second best only to a

system trained on semi-automatically labelled

tweets for the test target. When such weak

supervision is added, our approach achieves

state–of-the-art results.

1 Introduction

The goal of stance detection is to classify the at-

titude expressed in a text, towards a given target,

as “positive”, ”negative”, or ”neutral”. Such in-

formation can be useful for a variety of tasks, e.g.

Mendoza et al. (2010) showed that tweets stating ac-

tual facts were affirmed by 90% of the tweets re-

lated to them, while tweets conveying false infor-

mation were predominantly questioned or denied.

The focus of this paper is on a novel stance detec-

tion task, namely tweet stance detection towards pre-

viously unseen target entities (mostly entities such

as politicians or issues of public interest), as de-

fined in the SemEval Stance Detection for Twitter

task (Mohammad et al., 2016). This task is rather

difficult, firstly due to not having training data for

the targets in the test set, and secondly, due to the

targets not always being mentioned in the tweet.

For example, the tweet “@realDonaldTrump is the

only honest voice of the @GOP” expresses a posi-

tive stance towards the target Donald Trump. How-

ever, when stance is predicted with respect to Hillary

Clinton as the target, this tweet expresses a nega-

tive stance, since supporting candidates from one

party implies negative stance towards candidates

from other parties.

Thus the challenge is twofold. First, we need to

learn a model that interprets the tweet stance towards

a target that might not be mentioned in the tweet it-

self. Second, we need to learn such a model without

labelled training data for the target with respect to

which we are predicting the stance. In the example

above, we need to learn a model for Hillary Clinton

by only using training data for other targets. While

this renders the task more challenging, it is a more

realistic scenario, as it is unlikely that labelled train-

ing data for each target of interest will be available.

To address these challenges we develop a

neural network architecture based on con-

ditional encoding (Rocktäschel et al., 2016).

A long-short term memory (LSTM) net-

work (Hochreiter and Schmidhuber, 1997) is

used to encode the target, followed by a second



LSTM that encodes the tweet using the encoding

of the target as its initial state. We show that this

approach achieves better F1 than standard stance

detection baselines, or an independent LSTM

encoding of the tweet and the target. The latter

achieves an F1 of 0.4169 on the test set. Results

improve further (F1 of 0.4901) with a bidirectional

version of our model, which takes into account the

context on either side of the word being encoded.

In the context of the shared task, this would be the

second best result, except for an approach which

uses automatically labelled tweets for the test tar-

gets (F1 of 0.5628). Lastly, when our bidirectional

conditional encoding model is trained on such

data, it achieves state-of-the-art performance (F1 of

0.5803).

2 Task Setup

The SemEval 2016 Stance Detection for Twitter

task (Mohammad et al., 2016) consists of two sub-

tasks, Task A and Task B. In Task A the goal is

to detect the stance of tweets towards targets given

labelled training data for all test targets (Climate

Change is a Real Concern, Feminist Movement,

Atheism, Legalization of Abortion and Hillary Clin-

ton). In Task B, which is the focus of this paper,

the goal is to detect stance with respect to an unseen

target different from the ones considered in Task

A, namely Donald Trump, for which labeled train-

ing/development data is not provided.

Systems need to classify the stance of each tweet

as “positive” (FAVOR), “negative” (AGAINST) or

“neutral” (NONE) towards the target. The official

metric reported is F1 macro-averaged over FAVOR

and AGAINST. Although the F1 of NONE is not

considered, systems still need to predict it to avoid

precision errors for the other two classes.

Although participants were not allowed to

manually label data for the test target Donald

Trump, they were allowed to label data automat-

ically. The two best performing systems submit-

ted to Task B, pkudblab (Wei et al., 2016b) and

LitisMind (Zarrella and Marsh, 2016), both made

use of this. Making use of such techniques renders

the task intp weakly supervised seen target stance

detection, instead of an unseen target task. Although

the goal of this paper is to present stance detec-

tion methods for targets for which no training data

is available, we show that they can also be used in

a weakly supervised framework and outperform the

state-of-the-art on the SemEval 2016 Stance Detec-

tion for Twitter dataset.

3 Methods

A common stance detection approach is to treat

it as a sentence-level classification task sim-

ilar to sentiment analysis (Pang and Lee, 2008,

Socher et al., 2013). However, such an approach

cannot capture the stance of a tweet with respect to a

particular target, unless training data is available for

each of the test targets. In such cases, we could learn

that a tweet mentioning Donald Trump in a positive

manner expresses a negative stance towards Hillary

Clinton. Despite this limitation, we use two such

baselines, one implemented with a Support Vector

Machine (SVM) classifier and one with an LSTM,

in order to assess whether we are successful in in-

corporating the target in stance prediction.

A naive approach to incorporate the target in

stance prediction would be to generate features con-

catenating the target with words from the tweet.

In principle, this could allow the classifier to learn

that some words in the tweets have target-dependent

stance weights, but it still assumes that training data

is available for each target.

In order to learn how to combine the target with

the tweet in a way that generalises to unseen targets,

we focus on learning distributed representations and

ways to combine them. The following sections de-

velop progressively the proposed bidirectional con-

ditional LSTM encoding model, starting from the in-

dependent LSTM encoding.

3.1 Independent Encoding

Our initial attempt to learn distributed rep-

resentations for the tweets and the targets is

to encode the target and tweet independently

as k-dimensional dense vectors using two

LSTMs (Hochreiter and Schmidhuber, 1997).
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Figure 1: Bidirectional encoding of tweet conditioned on bidirectional encoding of target ([c→3 c
←

1 ]). The stance is predicted using

the last forward and reversed output representations ([h→9 h
←

4 ]).
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]
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f )

ot = σ(Wo
H+ b

o)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wc
H+ b

c)

ht = ot ⊙ tanh(ct)

Here, xt is an input vector at time step t, ct denotes

the LSTM memory, ht ∈ R
k is an output vector and

the remaining weight matrices and biases are train-

able parameters. We concatenate the two output vec-

tor representations and classify the stance using the

softmax over a non-linear projection

softmax(tanh(Wta
htarget +W

tw
htweet + b))

into the space of the three classes for stance detec-

tion where W
ta,Wtw ∈ R

3×k are trainable weight

matrices and b ∈ R
3 is a trainable class bias. This

model learns target-independent distributed repre-

sentations for the tweets and relies on the non-

linear projection layer to incorporate the target in the

stance prediction.

3.2 Conditional Encoding

In order to learn target-dependent tweet representa-

tions, we use conditional encoding as previously ap-

plied to the task of recognizing textual entailment

(Rocktäschel et al., 2016). We use one LSTM to en-

code the target as a fixed-length vector. Then, we

encode the tweet with another LSTM, whose state

is initialised with the representation of the target.

Finally, we use the last output vector of the tweet

LSTM to predict the stance of the target-tweet pair.

This effectively allows the second LSTM to read

the tweet in a target-specific manner, which is cru-

cial since the stance of the tweet depends on the tar-

get (recall the Donald Trump example above).

3.3 Bidirectional Conditional Encoding

Bidirectional LSTMs have been shown to learn

improved representations of sequences by encod-

ing a sequence from left to right and from right

to left (Graves and Schmidhuber, 2005). Therefore,

we adapt the conditional encoding model from Sec-

tion 3.2 to use bidirectional LSTMs, which represent

the target and the tweet using two vectors for each

of them, one obtained by reading the target and then

the tweet left-to-right (as in the conditional LSTM

encoding) and one obtained by reading them right-

to-left. To achieve this, we initialise the state of the

bidirectional LSTM that reads the tweet by the last

state of the forward and reversed encoding of the tar-

get (see Figure 1). The bidirectional encoding al-

lows the model to construct target-dependent repre-

sentations of the tweet such that when each word is

considered, they take into account both the left- and

the right-hand side context.



3.4 Unsupervised Pretraining

In order to counter-balance the relatively small

training data available (5628 instances in total),

unsupervised pre-training is employed. It ini-

tialises the word embeddings used in the LSTMs

with an appropriately trained word2vec model

(Mikolov et al., 2013). Note that these embeddings

are used only for initialisation, as we allow them to

be optimised further during training.

In more detail, we train a word2vec model on a

corpus of 395,212 unlabelled tweets, collected with

the Twitter Keyword Search API1 between Novem-

ber 2015 and January 2016, plus all the tweets con-

tained in the official SemEval 2016 Stance Detection

datasets (Mohammad et al., 2016). The unlabelled

tweets are collected so they contain the training, dev

and test targets, using up to two keywords per tar-

get, namely “hillary”, “clinton”, “trump”, “climate”,

“femini”, “aborti”. Note that Twitter does not allow

for regular expression search, so this is a free text

search disregarding possible word boundaries. We

combine this large unlabelled corpus with the offi-

cial training data and train a skip-gram word2vec

model (dimensionality 100, 5 min words, context

window of 5). Tweets and targets are tokenised

with the Twitter-adapted tokeniser twokenize2. Sub-

sequently, all tokens are normalised to lower case,

URLs are removed, and stopword tokens are filtered

(i.e. punctuation characters, Twitter-specific stop-

words (“rt”, “#semst”, “via”).

As demonstrated in our experiments, unsuper-

vised pre-training is quite helpful, since it is dif-

ficult to learn representations for all the words us-

ing only the relatively small training datasets avail-

able. Finally, to ensure that the proposed neural

network architectures contribute to the performance,

we also use the word vectors from word2vec in a

Bag-of-Word-Vectors baseline (BOWV), in which

the tweet and target representations are fed into

a logistic regression classifier with L2 regulariza-

tion (Pedregosa et al., 2011).

1https://dev.twitter.com/rest/public/
search

2https://github.com/leondz/twokenize

Corpus Favor Against None All

TaskA Tr+Dv 1462 2684 1482 5628
TaskA Tr+Dv HC 224 722 332 1278
TaskB Unlab - - - 278,013
TaskB Auto-lab* 4681 5095 4026 13,802
TaskB Test 148 299 260 707
Crawled Unlab* - - - 395,212

Table 1: Data sizes of available corpora. TaskA Tr+Dv HC

is the part of TaskA Tr+Dv with tweets for the target Hillary

Clinton only, which we use for development. TaskB Auto-

lab is an automatically labelled version of TaskB Unlab.

Crawled Unlab is an unlabelled tweet corpus collected by us.

4 Experiments

Experiments are performed on the SemEval 2016

Task 6 corpus for Stance Detection on Twit-

ter (Mohammad et al., 2016). We report experi-

ments for two different experimental setups: one

is the unseen target setup (Section 5), which is the

main focus of this paper, i.e. detecting the stance of

tweets towards previously unseen targets. We show

that conditional encoding, by reading the tweets in

a target-specific way, generalises to unseen targets

better than baselines which ignore the target. Next,

we compare our approach to previous work in a

weakly supervised framework (Section 6) and show

that our approach outperforms the state-of-the-art on

the SemEval 2016 Stance Detection Subtask B cor-

pus.

Table 1 lists the various corpora used in the ex-

periments and their sizes. TaskA Tr+Dv is the

official SemEval 2016 Twitter Stance Detection

TaskA training and development corpus, which

contain instances for the targets Legalization of

Abortion, Atheism, Feminist Movement, Climate

Change is a Real Concern and Hillary Clinton.

TaskA Tr+Dv HC is the part of the corpus which

contains only the Hillary Clinton tweets, which

we use for development purposes. TaskB Test
is the TaskB test corpus on which we report re-

sults containing Donald Trump testing instances.

TaskB Unlab is an unlabelled corpus containing

Donald Trump tweets supplied by the task organ-

isers, and TaskB Auto-lab* is an automatically la-

belled version of a small portion of the corpus for

the weakly supervised stance detection experiments

reported in Section 6. Finally, Crawled Unlab* is



a corpus we collected for unsupervised pre-training

(see Section 3.4).

For all experiments, the official task evaluation

script is used. Predictions are postprocessed so that

if the target is contained in a tweet, the highest-

scoring non-neutral stance is chosen. This was mo-

tivated by the observation that in the training data

most target-containing tweets express a stance, with

only 16% of them being neutral.

4.1 Methods

We compare the following baseline methods:

• SVM trained with word and character

tweet n-grams features (SVM-ngrams-
comb) Mohammad et al. (2016)

• a majority class baseline (Majority baseline),

reported in (Mohammad et al., 2016)

• bag of word vectors (BoWV) (see Section 3.4)

• independent encoding of tweet and the target

with two LSTMs (Concat) (see Section 3.1)

• encoding of the tweet only with an LSTM

(TweetOnly) (see Section 3.1

to three versions of conditional encoding:

• target conditioned on tweet (TarCondTweet)
• tweet conditioned on target (TweetCondTar)
• a bidirectional encoding model (BiCond)

5 Unseen Target Stance Detection

As explained, the challenge is to learn a model with-

out any manually labelled training data for the test

target, but only using the data from the Task A tar-

gets. In order to avoid using any labelled data for

Donald Trump, while still having a (labelled) devel-

opment set to tune and evaluate our models, we used

the tweets labelled for Hillary Clinton as a develop-

ment set and the tweets for the remaining four tar-

gets as training. We refer to this as the development

setup, and all models are tuned using this setup. The

labelled Donald Trump tweets were only used in re-

porting our final results. For the final results we train

on all the data from the development setup and eval-

uate on the official Task B test set, i.e. the Donald

Trump tweets. We refer to this as our test setup.

Based on a small grid search using the develop-

ment setup, the following settings for LSTM-based

Method Stance P R F1

BoWV
FAVOR 0.2444 0.0940 0.1358

AGAINST 0.5916 0.8626 0.7019

Macro 0.4188

TweetOnly
FAVOR 0.2127 0.5726 0.3102

AGAINST 0.6529 0.4020 0.4976

Macro 0.4039

Concat
FAVOR 0.1811 0.6239 0.2808

AGAINST 0.6299 0.4504 0.5252

Macro 0.4030

TarCondTweet
FAVOR 0.3293 0.3649 0.3462

AGAINST 0.4304 0.5686 0.4899

Macro 0.4180

TweetCondTar
FAVOR 0.1985 0.2308 0.2134

AGAINST 0.6332 0.7379 0.6816

Macro 0.4475

BiCond
FAVOR 0.2588 0.3761 0.3066

AGAINST 0.7081 0.5802 0.6378

Macro 0.4722

Table 2: Results for the unseen target stance detection devel-

opment setup.

models were chosen: input layer size 100 (equal to

word embedding dimensions), hidden layer size 60,

training for max 50 epochs with initial learning rate

1e-3 using ADAM (Kingma and Ba, 2014) for opti-

misation, dropout 0.1. Using one, relatively small

hidden layer and dropout help avoid overfitting.

5.1 Results and Discussion

Results for the unseen target setting show how well

conditional encoding is suited for learning target-

dependent representations of tweets, and crucially,

how well such representations generalise to unseen

targets. The best performing method on both de-

velopment (Table 2) and test setups (Table 3) is Bi-
Cond, which achieves an F1 of 0.4722 and 0.4901

respectively. Notably, Concat, which learns an

indepedent encoding of the target and the tweets,

does not achieve big F1 improvements over Twee-
tOnly, which learns a representation of the tweets

only. This shows that it is not only important to

learn target-depedent encodings, but also the way in

which they are learnt matters. Models that learn to

condition the encoding of tweets on targets outper-

form all baselines on the test set.

It is further worth noting that the Bag-of-Word-

Vectors baseline achieves results comparable with

TweetOnly, Concat and one of the conditional en-



Method Stance P R F1

BoWV
FAVOR 0.3158 0.0405 0.0719

AGAINST 0.4316 0.8963 0.5826

Macro 0.3272

TweetOnly
FAVOR 0.2767 0.3851 0.3220

AGAINST 0.4225 0.5284 0.4695

Macro 0.3958

Concat
FAVOR 0.3145 0.5270 0.3939

AGAINST 0.4452 0.4348 0.4399

Macro 0.4169

TarCondTweet
FAVOR 0.2322 0.4188 0.2988

AGAINST 0.6712 0.6234 0.6464

Macro 0.4726

TweetCondTar
FAVOR 0.3710 0.5541 0.4444

AGAINST 0.4633 0.5485 0.5023

Macro 0.4734

BiCond
FAVOR 0.3033 0.5470 0.3902

AGAINST 0.6788 0.5216 0.5899

Macro 0.4901

Table 3: Results for the unseen target stance detection test

setup.

coding models, TarCondTweet, on the dev set, even

though it achieves significantly lower performance

on the test set. This indicates that the pre-trained

word embeddings on their own are already very use-

ful for stance detection.

Our best result in the test setup with BiCond is

currently the second highest reported result on the

Stance Detection corpus, however the first, third and

fourth best approaches achieved their results by au-

tomatically labelling Donald Trump training data.

BiCond for the unseen target setting outperforms

the third and fourth best approaches by a large mar-

gin (5 and 7 points in Macro F1, respectively), as can

be seen in Table 7. Results for weakly supervised

stance detection are discussed in the next section.

Unsupervised Pre-Training Table 4 shows the

effect of unsupervised pre-training of word embed-

dings, and furthermore, the results of sharing these

representations between the tweets and targets, on

the development set. The first set of results is with

a uniformly Random embeddings initialisation in

[−0.1, 0.1]. PreFixed uses the pre-trained word

embeddings, whereas PreCont uses the pre-trained

word embeddings and continues training them dur-

ing LSTM training.

Our results show that, in the absence of a large

EmbIni NumMatr Stance P R F1

Random

Sing
FAVOR 0.1982 0.3846 0.2616

AGAINST 0.6263 0.5929 0.6092

Macro 0.4354

Sep
FAVOR 0.2278 0.5043 0.3138

AGAINST 0.6706 0.4300 0.5240

Macro 0.4189

PreFixed

Sing
FAVOR 0.6000 0.0513 0.0945

AGAINST 0.5761 0.9440 0.7155

Macro 0.4050

Sep
FAVOR 0.1429 0.0342 0.0552

AGAINST 0.5707 0.9033 0.6995

Macro 0.3773

PreCont

Sing
FAVOR 0.2588 0.3761 0.3066

AGAINST 0.7081 0.5802 0.6378

Macro 0.4722

Sep
FAVOR 0.2243 0.4103 0.2900

AGAINST 0.6185 0.5445 0.5792

Macro 0.4346

Table 4: Results for the unseen target stance detection develop-

ment setup using BiCond, with single vs separate embeddings

matrices for tweet and target and different initialisations

labelled training dataset, unsupervised pre-training

of word embeddings is more helpful than random

initialisation of embeddings. Sing vs Sep shows

the difference between using shared vs two sepa-

rate embeddings matrices for looking up the word

embeddings. Sing means the word representations

for tweet and target vocabularies are shared, whereas

Sep means they are different. Using shared embed-

dings performs better, which we hypothesise is be-

cause the tweets contain some mentions of targets

that are tested.

Target in Tweet vs Not in Tweet Table 5 shows

results on the development set for BiCond, com-

pared to the best unidirectional encoding model,

TweetCondTar and the baseline Concat, split by

tweets that contain the target and those that do not.

All three models perform well when the target is

mentioned in the tweet, but less so when the tar-

gets are not mentioned explicitly. In the case where

the target is mentioned in the tweet, biconditional

encoding outperforms unidirectional encoding and

unidirectional encoding outperforms Concat. This

shows that conditional encoding is able to learn use-

ful dependencies between the tweets and the targets.



Method inTwe Stance P R F1

Concat

Yes
FAVOR 0.3153 0.6214 0.4183

AGAINST 0.7438 0.4630 0.5707

Macro 0.4945

No
FAVOR 0.0450 0.6429 0.0841

AGAINST 0.4793 0.4265 0.4514

Macro 0.2677

TweetCondTar

Yes
FAVOR 0.3529 0.2330 0.2807

AGAINST 0.7254 0.8327 0.7754

Macro 0.5280

No
FAVOR 0.0441 0.2143 0.0732

AGAINST 0.4663 0.5588 0.5084

Macro 0.2908

BiCond

Yes
FAVOR 0.3585 0.3689 0.3636

AGAINST 0.7393 0.7393 0.7393

Macro 0.5515

No
FAVOR 0.0938 0.4286 0.1538

AGAINST 0.5846 0.2794 0.3781

Macro 0.2660

Table 5: Results for the unseen target stance detection devel-

opment setup for tweets containing the target vs tweets not con-

taining the target.

6 Weakly Supervised Stance Detection

The previous section showed the usefulness of con-

ditional encoding for unseen target stance detec-

tion and compared results against internal base-

lines. The goal of experiments reported in

this section is to compare against participants

in the SemEval 2016 Stance Detection Task B.

While we consider an unseen target setup, most

submissions, including the three highest rank-

ing ones for Task B, pkudblab (Wei et al., 2016b),

LitisMind (Zarrella and Marsh, 2016) and INF-

UFRGS (Wei et al., 2016a) considered a different

experimental setup. They automatically annotated

training data for the test target Donald Trump, thus

rendering the task as a weakly supervised seen target

stance detection. The pkudblab system uses a deep

convolutional neural network that learns to make 2-

way predictions on automatically labelled positive

and negative training data for Donald Trump. The

neutral class is predicted according to rules which

are applied at test time.

Since the best performing systems which partic-

ipated in the shared task consider a weakly super-

vised setup, we further compare our proposed ap-

proach to the state-of-the-art using such a weakly

Method Stance P R F1

BoWV
FAVOR 0.5156 0.6689 0.5824

AGAINST 0.6266 0.3311 0.4333

Macro 0.5078

TweetOnly
FAVOR 0.5284 0.6284 0.5741

AGAINST 0.5774 0.4615 0.5130

Macro 0.5435

Concat
FAVOR 0.5506 0.5878 0.5686

AGAINST 0.5794 0.4883 0.5299

Macro 0.5493

TarCondTweet
FAVOR 0.5636 0.6284 0.5942

AGAINST 0.5947 0.4515 0.5133

Macro 0.5538

TweetCondTar
FAVOR 0.5868 0.6622 0.6222

AGAINST 0.5915 0.4649 0.5206

Macro 0.5714

BiCond
FAVOR 0.6268 0.6014 0.6138

AGAINST 0.6057 0.4983 0.5468

Macro 0.5803

Table 6: Stance Detection test results for weakly super-

vised setup, trained on automatically labelled pos+neg+neutral

Trump data, and reported on the official test set.

supervised setup. Note that, even though pkudblab,

LitisMind and INF-UFRGS also use regular expres-

sions to label training data automatically, the result-

ing datasets were not made available to us. There-

fore, we had to develop our own automatic labelling

method and dataset, which will be made publicly

available on publication.

Weakly Supervised Test Setup For this setup, the

unlabelled Donald Trump corpus TaskB Unlab is

annotated automatically. For this purpose we cre-

ated a small set of regular expressions3 , based on

inspection of the TaskB Unlab corpus, expressing

positive and negative stance towards the target. The

regular expressions for the positive stance were:

• make( ?)america( ?)great( ?)again

• trump( ?)(for|4)( ?)president

• votetrump

• trumpisright

• the truth

• #trumprules

The keyphrases for negative stance were:

#dumptrump, #notrump, #trumpwatch, racist,

idiot, fired

3Note that “|” indiates “or”, ( ?) indicates optional space



Method Stance F1

SVM-ngrams-comb (Unseen Target)

FAVOR 0.1842

AGAINST 0.3845

Macro 0.2843

Majority baseline (Unseen Target)

FAVOR 0.0

AGAINST 0.5944

Macro 0.2972

BiCond (Unseen Target)

FAVOR 0.3902

AGAINST 0.5899

Macro 0.4901

INF-UFRGS (Weakly Supervised*)

FAVOR 0.3256

AGAINST 0.5209

Macro 0.4232

LitisMind (Weakly Supervised*)

FAVOR 0.3004

AGAINST 0.5928

Macro 0.4466

pkudblab (Weakly Supervised*)

FAVOR 0.5739

AGAINST 0.5517

Macro 0.5628

BiCond (Weakly Supervised)

FAVOR 0.6138

AGAINST 0.5468

Macro 0.5803

Table 7: Stance Detection test results, compared against

the state of the art. SVM-ngrams-comb and Majority

baseline are reported in Mohammad et al. (2016), pkudblab

in Wei et al. (2016b), LitisMind in Zarrella and Marsh (2016),

INF-UFRGS in Wei et al. (2016a)

A tweet is labelled as positive if one of the posi-

tive expressions is detected, else negative if a nega-

tive expressions is detected. If neither are detected,

the tweet is annotated as neutral randomly with 2%

chance. The resulting corpus size per stance is

shown in Table 1. The same hyperparameters for

the LSTM-based models are used as for the unseen

target setup described in the previous section.

6.1 Results and Discussion

Table 6 lists our results in the weakly super-

vised setting. Table 7 shows all our results, in-

cluding those using the unseen target setup, com-

pared against the state-of-the-art on the stance

detection corpus. It further lists baselines re-

ported by Mohammad et al. (2016), namely a major-

ity class baseline (Majority baseline), and a method

using 1 to 3-gram bag-of-word and character n-gram

features (SVM-ngrams-comb), which are extracted

from the tweets and used to train a 3-way SVM

classifier. Bag-of-word baselines (BoWV, SVM-

ngrams-comb) achieve results comparable to the

majority baseline (F1 of 0.2972), which shows how

difficult the task is. The baselines which only extract

features from the tweets, SVM-ngrams-comb and

TweetOnly perform worse than the baselines which

also learn representations for the targets (BoWV,

Concat). By training conditional encoding models

on automatically labelled stance detection data we

achieve state-of-the-art results. The best result (F1

of 0.5803) is achieved with the bi-directional condi-

tional encoding model (BiCond). This shows that

such models are suitable for unseen, as well as seen

target stance detection.

7 Related Work

Stance Detection: Previous work mostly con-

sidered target-specific stance prediction in de-

bates (Hasan and Ng, 2013, Walker et al., 2012)

or student essays (Faulkner, 2014). Recent

work studied Twitter-based stance detec-

tion (Rajadesingan and Liu, 2014), which is also

a task at SemEval 2016 (Mohammad et al., 2016).

The latter is more challenging than stance detection

in debates because, in addition to irregular language,

the Mohammad et al. (2016) dataset is offered with-

out any context, e.g., conversational structure or

tweet metadata. The targets are also not always men-

tioned in the tweets, which makes the task very chal-

lenging (Augenstein et al., 2016) and distinguishes

it from target-dependent (Vo and Zhang, 2015,

Zhang et al., 2016, Alghunaim et al., 2015) and

open-domain target-dependent sentiment analysis

(Mitchell et al., 2013, Zhang et al., 2015).

Conditional Encoding: Conditional encoding

has been applied in the related task of recog-

nising textual entailment (Rocktäschel et al., 2016),

using a dataset of half a million training exam-

ples (Bowman et al., 2015) and numerous different

hypotheses. Our experiments show that conditional

encoding is also successful on a relatively small

training set and when applied to an unseen testing

target. Moreover, we augment conditional encod-

ing with bidirectional encoding and demonstrate the

added benefit of unsupervised pre-training of word

embeddings on unlabelled domain data.



8 Conclusions and Future Work

This paper showed that conditional LSTM encod-

ing is a successful approach to stance detection for

unseen targets. Our unseen target bidirectional con-

ditional encoding approach achieves the second best

results reported to date on the SemEval 2016 Twitter

Stance Detection corpus. In a seen target minimally

supervised scenario, as considered by prior work,

our approach achieves the best results to date on the

SemEval Task B dataset. We further show that in the

absence of large labelled corpora, unsupervised pre-

training can be used to learn target representations

for stance detection and improves results on the Se-

mEval corpus. Future work will investigate further

the challenge of stance detection for tweets which

do not contain explicit mentions of the target.
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