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Abstract

The General Unified Threshold model of Survival (GUTS) provides a consistent mathemati-

cal framework for survival analysis. However, the calibration of GUTS models is computa-

tionally challenging. We present a novel algorithm and its fast implementation in our R

package, GUTS, that help to overcome these challenges. We show a step-by-step applica-

tion example consisting of model calibration and uncertainty estimation as well as making

probabilistic predictions and validating the model with new data. Using self-defined wrapper

functions, we show how to produce informative text printouts and plots without effort, for the

inexperienced as well as the advanced user. The complete ready-to-run script is available

as supplemental material. We expect that our software facilitates novel re-analysis of exist-

ing survival data as well as asking new research questions in a wide range of sciences. In

particular the ability to quickly quantify stressor thresholds in conjunction with dynamic com-

pensating processes, and their uncertainty, is an improvement that complements current

survival analysis methods.

This is a PLOS Computational Biology Software paper.

Introduction

Survival analysis is an important tool in a wide range of scientific fields, including toxicology

[1–4], epidemiology [5, 6], pharmacology [7], medical research [6, 8–10], and biology [11–13].

In the engineering world survival analysis is known as reliability theory [14, 15] whereas in the

social sciences it is termed event history analysis [16, 17].

Common to these applications is the interest in the survival of individuals in response to a

stressor. The assumptions underlying survival models have been reviewed recently and the

General Unified Threshold model of Survival (GUTS) has been proposed as a consistent math-

ematical framework [4]. The GUTS framework has been developed primarily with environ-

mental toxicology questions in mind and consequently it allows to model different dose

metrics [18] and is a dynamic framework where toxicokinetic processes modify the dose metric

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004978 June 24, 2016 1 / 19

a11111

OPEN ACCESS

Citation: Albert C, Vogel S, Ashauer R (2016)

Computationally Efficient Implementation of a Novel

Algorithm for the General Unified Threshold Model of

Survival (GUTS). PLoS Comput Biol 12(6):

e1004978. doi:10.1371/journal.pcbi.1004978

Editor: Timothée Poisot, Universite de Montreal,

CANADA

Received: November 24, 2015

Accepted: May 12, 2016

Published: June 24, 2016

Copyright: © 2016 Albert et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: All relevant data are

within the paper, its Supporting Information files, and

the software R package.

Funding: The authors received no specific funding

for this work.

Competing Interests: The authors have declared

that no competing interests exist.



and toxicodynamic processes result in the organisms’ response [4, 19, 20]. Typically, GUTS is

used to model survival under chemical stress, for example under time-varying exposure [21] or

to compare different organisms [22] and life-stages [23], however, stressors other than chemi-

cals (e. g. starvation [24, 25]) can also be modelled. Often the parameters of GUTS are inter-

preted as reflecting the mechanisms affecting survival [4, 26].

One important consideration when modelling survival is the nature of death. Death can be

viewed as deterministic on the level of the individual but stochastic on the level of the popula-

tion: an individual dies immediately when its stressor tolerance threshold is exceeded, but all

individuals of the population have different thresholds. This special case of GUTS is termed

individual tolerance (GUTS-IT). In the other extreme case, death is stochastic on the level of the

individual only: all individuals are supposed to have the same stressor tolerance threshold, and

once the stressor exceeds this threshold all individuals respond with the same increased proba-

bility to die (GUTS-SD) [4]. The GUTS proper model provides a unification of both assump-

tions, however, it requires the calibration of four toxicodynamic parameters: the dominant

(recovery) rate constant, the killing rate and two parameters describing the threshold distribu-

tion. As it can be difficult to estimate the four toxicodynamic parameters from biological data

[22, 27], GUTS proper is often simplified to its two special cases, GUTS-IT and GUTS-SD [18,

21]. The special case models require the estimation of fewer toxicodynamic parameters and are

therefore easier to apply, although the necessity to always use two models is rather unwieldy.

Furthermore, the evaluation of the likelihood function, for GUTS proper, requires two

nested numerical integrations. As Bayesian inference requires many thousand likelihood evalu-

ations, we have designed a very efficient algorithm for this evaluation.

Thus to enable the wider application of GUTS we present the first software package that

allows this computationally non-trivial uncertainty quantification to be completed within a

matter of minutes. The software is computationally efficient because we developed a novel

algorithm, for the likelihood evaluation, and coded the underlying engine in C++. Further, our

R package can be used for all three flavours of GUTS: GUTS proper, GUTS-SD and GUTS-IT.

Design and Implementation

The Algorithm

Before we present the algorithm, we give a brief review of the GUTS model (see [4], for more

explanation). The time-dependent stressor, C(t), is assumed to cause a time-dependent dam-

age, D(t), which is described by the linear differential equation

_DðtÞ ¼ keðCðtÞ � DðtÞÞ : ð1Þ

Parameter ke quantifies the slowest process that leads to the recovery of the organism, and we

will henceforth refer to it as the dominant rate constant. The damage D(t) is the same, for all

individuals. However, the individuals are assumed to have different thresholds, beyond which

the damage increases their probability to die. Thus, the model combines two sources of sto-

chasticity, at the individual and at the population level. At the individual level, death is consid-

ered a stochastic event, whose probability increases linearly with the damage, once it exceeds a

certain threshold. At the population level, this threshold is assumed to vary stochastically over

the whole population.

The hazard rate, hz(t), of an individual with threshold z is determined by the formula

hzðtÞ ¼ kkmaxðDðtÞ � z; 0Þ þ hb ; ð2Þ

where kk is called killing rate and hb is the background mortality rate. The hazard rate, in turn,

determines the individual’s probability to survive until time t, Sz(t), via the linear differential
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equation

_SzðtÞ ¼ �hzðtÞSzðtÞ : ð3Þ

Finally, each individual is assumed to draw its z from a distribution, fθ(z), on the positive real

axis. Hence, the parameter vector of the model reads as θ = (hb, ke, kk, . . .), where the additional

arguments are supposed to determine the distribution fθ(z).

Typically, fθ(z) is a member of a two-parameter family of distributions, such as the lognor-

mal family. In these cases, GUTS has four toxicodynamic parameters, ke, kk, as well as the

mean and the standard deviation determining the lognormal distribution. These are GUTS

proper models. GUTS-SD and GUTS-IT are limiting cases of GUTS proper. In the first case,

the standard deviation is zero, which means that all individuals have the same threshold given

by the mean of the distribution. In the latter case, kk is infinite, which means that individuals

die immediately once their individual threshold is exceeded. Note that eq (2) may be viewed as

a special case of Aalens additive model [28].

Combining eqs (2) and (3), we find that the probability, for an arbitrarily chosen member of

the population, to survive until time t is given by the formula

S
θ
ðtÞ ¼

Z

exp �kk

Z t

0

maxðDðtÞ � z; 0Þdt� hbt

� �

f
θ
ðzÞdz : ð4Þ

Let y = (y0, y1, . . ., yn) denote a time series of survivors, counted at times (t0 = 0, t1, . . ., tn),

and set yn+1 = 0. Then, the logarithm of the likelihood, f(y | θ), of the model output y given the

parameters θ is, up to θ-independent terms, given by the formula

ln f ðyjθÞ ¼
X

nþ1

i¼1

ðyi�1
� yiÞlnðSθ;i�1

� S
θ;iÞ ; ð5Þ

where we have set Sθ, i = Sθ(ti) and Sθ, n+1 = 0. The index n+1 refers to the time-point at infinity,

where the survival probability is zero.

The calculation of the log-likelihood requires two nested numerical integrations (see eq (4)),

and, therefore, requires introducing two large numbers, N andM. The former counts the num-

ber of sample or discretisation points on the threshold axis and the latter counts the number of

discretisation points on the time axis. Our algorithm is of the orderOðNÞ þOðMÞ. It is based

on the approximation

Si ¼

Z

exp �kk

Z ti

0

maxð0;DðtÞ � zÞdt� hbti

� �

f
θ
ðzÞdz

�
1

N

X

N

j¼1

exp �kkDt
X

Dl>zj

ðDl � zjÞ � hbti

2

4

3

5

¼
1

N
e�hbtiðe�kkDtðeN�zN fN Þ þ e�kkDtðeNþeN�1�zN�1ðfNþfN�1ÞÞ þ . . .

þe�klDtðeNþ...þe1�z1ðfNþ...þf1ÞÞÞ;

ð6Þ

for an ordered sample z1 < . . .< zN from fθ(z), and with Dl = D(τl) on a grid τ0 < . . .< τM−1.

The inner sum in the second line is restricted to all Dl, for which τl< ti, and we have set

Δτ = tn/M. Furthermore,

ej ¼
X

zj<Dl<zjþ1

Dl ; ð7Þ
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and

fj ¼ ]fDljzj < Dl < zjþ1
g ; ð8Þ

where ] indicates counting the number of elements in the set, for 1� j� N (set zN+1 =1).

The algorithm for the calculation of eq (5) reads as follows:

Step 1: Draw N thresholds from fθ(z) and order them z1 < � � �< zN.

Step 2: Refine the grid t0 < . . .< tn to a fine grid τ0 < � � �< τM−1.

Step 3: Set i = 0.

Step 4: Solve eq (1), for ti� τl� ti+1, using equation

Dl ¼ DðtlÞ ¼ DðskÞe
�keðtl�skÞ

þCkð1� e�keðtl�skÞÞ

þ
Ckþ1

� Ck

skþ1
� sk

ðtl � sk � k�1

e þ k�1

e e�keðtl�skÞÞ;

ð9Þ

for sk � τl � sk+1. Here, we apply a linear interpolation, for C(t), between concentrations Ck,

measured at time points sk.

Step 5: Update eqs (7) and (8), for 1� j� N. (This can be done in timeOð1Þ, for each Dl).

Step 6: Calculate Si using the recursion:

Fj ¼ Fjþ1
þ fj; ð10Þ

Ej ¼ Ejþ1
þ ej; ð11Þ

Si;j ¼ Si;jþ1
þ e�kkDtðEj�FjzjÞ; ð12Þ

for j = N − 1, . . ., 1 and with Si, N = e−kk Δτ(EN − FN zN) and FN = fN, EN = eN. Then,

Si ¼
1

N
e�hbtiSi;1 : ð13Þ

Step 7: Increment i and go to step 4.

Step 8: Calculate the log-likelihood function according to eq (5).

Depending on the threshold distribution, the above algorithm can be made more efficient

through importance sampling. That is, instead of sampling from fθ(z) we sample from distribu-

tion gθ(z) and correct with weights:

Si ¼

Z

exp �kk

Z ti

0

maxð0;DðtÞ � zÞdt� hbti

� �

f
θ
ðzÞdz

¼

Z

exp �kk

Z ti

0

maxð0;DðtÞ � zÞdt� hbti þ lnðf
θ
ðzÞ=g

θ
ðzÞÞ

� �

g
θ
ðzÞdz:

ð14Þ

The associated algorithm is then the same as above, except that we generate an ordered sample

from gθ(z) and replace expression

e�kkDtðEj�FjzjÞ
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by

e�kkDtðEj�FjzjÞþlnðfθðzjÞ=gθðzjÞÞ :

Furthermore, the vector of survival probabilities, Si, has to be normalised through element-

wise division by the first unnormalised element of the vector.

If fθ(z) is the lognormal distribution, we recommend using a log-uniform distribution cover-

ing the highest probability region of fθ(z), and replacing the sample by a grid. More precisely,

we set zj ¼ exj , where {xj} describes an equidistant grid on the interval [μ − 4σ, μ+4σ], where

m ¼ lnðmÞ �
1

2
s
2 ; s

2 ¼ ln 1þ
s2

m2

� �

; ð15Þ

withm and s2, respectively, the mean and variance of the lognormal distribution. The weights

become, up to an irrelevant θ-independent term,

lnðf
θ
ðzjÞ=gθðzjÞÞ ¼ �

1

2

ðm� lnðzjÞÞ
2

s2
: ð16Þ

Implementation in the R Package GUTS

The GUTS algorithm is implemented in the R package GUTS [29, 30], current version 1.0.0). R

[31] is an open source software environment for statistical computing that provides a wide

range of procedures for data manipulation, data analysis, simulation, modelling and producing

graphics. R packages are extensions contributed by members of the R community to add func-

tionality to the R environment.

The R package GUTS is such an extension, and it contains a setup function and functions to

calculate the survival probabilities and the associated logarithm of the likelihood, respectively.

In order to achieve high speed, the actual engine for the calculation of the survival probabilities

and the associated logarithm of the likelihood is written in C++ and exposed to R through the

deployment of Rcpp [32, 33]. The engine cannot be called directly but through the use of two

wrapper functions. The function for the calculation of the log-likelihood is typically used in a

parameter estimation routine, while the function for the survival probabilities can be used to

make predictions. Both functions update the GUTS object directly, but also return the loga-

rithm of the likelihood or the vector of survival probabilities, respectively. The help file of the

package contains a detailed description of the package functions, their arguments and use

(R command help(“GUTS”)).

The R package GUTS allows for the realisation of two models, the full model (GUTS

Proper) and the individual tolerance model (GUTS-IT). In addition, the stochastic death

model (GUTS-SD) can be achieved through the use of the delta distribution with model GUTS

Proper. If the thresholds are sampled from the lognormal distribution (the default) and the full

model (GUTS Proper, also default) is applied, 5 parameters are required:

• hb: background mortality rate

• ke: dominant rate constant

• kk: killing rate

• mn: mean of the threshold distribution

• sd: standard deviation of the threshold distribution

Fast Software Package for GUTS
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For the delta distribution, no standard deviation must be provided, and for the model

GUTS-IT, the killing rate must be omitted. The number of parameters is checked according to

the distribution and model. A wrong number of parameters invokes an error. However,

improper parameter values (e.g., negative values) invoke a warning resulting in the vector of

parameters and the vector of survival probabilities being set to NA, and the logarithm of the

likelihood being set to -Inf.

For testing and demonstration purposes, the package also provides a data set, “diazinon”.

Pulsed toxicity tests with the freshwater crustacean Gammarus pulex and diazinon, an organo-

phosphate insecticide, were carried out to measure survival through time under repeated

pulsed exposure with variable recovery phases between pulses. Exposure concentrations were

measured frequently and survival was observed daily. The dataset contains the results from

three different experiments (exposure scenarios), where each experiment started off with 70

alive individuals. For more details see [34].

The R package GUTS is (like R) licensed under GPL-2 and freely available from CRAN

(http://CRAN.R-project.org, users should employ the package installation routines available in

R). The package also includes a manual page with detailed information about the functions

and their arguments.

Practical Application Example

A typical application scenario of the R package GUTS comprises creating proper GUTS objects

from data, performing the parameter estimation, computing the parameter uncertainty, and

making probabilistic predictions as well as validations with new data. We present such a sce-

nario using example data to model GUTS Proper with thresholds from the lognormal distribu-

tion. During our presentation we make use of self-defined wrapper functions, which serve

to keep the actual workflow clear and simple. A complete ready-to-run script containing a

detailed explanation of the code and functions can be found in the supplementary information.

Read Data and Create GUTS Objects

After installing and loading all required packages, we read in data from experiments. For con-

venience, it is best to prepare a well-formatted text file and then use our wrapper function

ga_read_list(). If, for instance, the data from [34] should be read in, the file must be for-

matted as follows:

# Gammarus pulex exposed to diazinon

C1:102.65,97.59,0,0,103.88,98.19,0,0,0,0

C2:100.78,106.32,0,0,103.56,95.82,0,0,0

C3:100.6,94.61,0,0,100.58,96.51,0,9.85

Ct1:0,1.02,1.03,2.99,3.01,4.01,4.02,11.01,18.01,22.01

Ct2:0,1.02,1.03,8,8.01,9,9.01,15,22.01

Ct3:0,1.02,1.03,16,16.01,17,17.01,22.01

y1:70,66,61,55,31,31,29,26,24,22,21,19,17,14,14,13,11,11,10,

9,8,8,8

y2:70,65,59,56,54,50,47,46,46,40,23,22,22,21,18,17,17,13,13,

13,11,11,11

y3:70,65,59,55,53,51,48,46,46,46,44,41,40,40,40,39,38,36,33,

28,24,23,19

Fast Software Package for GUTS
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The first line shows a comment, which is ignored when reading in. Each data line starts with

a variable name (e.g., C1 for the first concentration vector) followed by a colon, the actual data

separated by commas, and each data vector terminated by a newline. The C and y vectors

denote, respectively, exposure concentrations [nmol/l] and survival counts. The Ct and yt

vectors denote the time points at which these vectors are measured [day]. As our algorithm

assumes a linear interpolation between concentrations, the values have been chosen such that

pulses of approximately rectangular shape are achieved.

Having such a plain text file created in the working directory under the file name, say,

Data_Gp_Diazinon.txt, it can then be read in:

However, for testing and demonstration purposes, the diazinon data is included in the R

package GUTS. We can load this data directly and create a list of 3 GUTS objects:

Note, that all other arguments of the setup function (guts_setup()) already default to

modelling GUTS-Proper (i.e., dist = “lognormal”, model = “Proper”, N = 1000,

M = 10000) and are therefore omitted. However, for modelling GUTS-SD, set dist = “delta”

and model = “Proper”, and for modelling GUTS-IT, set dist = “lognormal” and

model = “IT”. In order to inspect the content of the first GUTS object in the list, use the print

command, print(guts_objects[[1]]).

Bayesian Parameter Estimation

The parameter estimation is achieved through the use of an optimisation routine to find good

starting parameters, and the use of a MCMC routine, for sampling the parameter posterior

yt1:0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22

yt2:0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22

yt3:0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22

diazinon <- ga_read_list(“Data_Gp_Diazinon.txt”)

data(diazinon)

guts_objects <- list(

guts_setup(C = diazinon[[“C1”]], Ct = diazinon[[“Ct1”]],

y = diazinon[[“y1”]], yt = diazinon[[“yt1”]]),

guts_setup(C = diazinon[[“C2”]], Ct = diazinon[[“Ct2”]],

y = diazinon[[“y2”]], yt = diazinon[[“yt2”]]),

guts_setup(C = diazinon[[“C3”]], Ct = diazinon[[“Ct3”]],

y = diazinon[[“y3”]], yt = diazinon[[“yt3”]])

)

Fast Software Package for GUTS
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distribution. We define the evaluation function logposterior(), which is the sum of the

log-likelihood and the log-prior:

We have chosen uniform priors, for all parameters, with lower bounds equal to zero. The

upper bounds are assumed sufficiently large so that they do not affect the posterior signifi-

cantly. As the posteriors of all parameters except kk decay sufficiently fast, no upper bounds

need to be specified, for those parameters. The posterior of parameter kk, however, seems to

exhibit a fat tail, which occasionally leads to divergent Markov chains. For this parameter, we

specify a prior upper bound kk< 30l/(day nmol) that is large enough to be practically indistin-

guishable from the IT regime kk =1.

The function logposterior() takes a vector of parameters as its only argument. If the

parameter vector lies outside the prior range, logposterior() returns -Inf; otherwise it

applies a vector-wise calculation of the logarithm of the likelihood to the GUTS objects (sap-

ply()) and returns the sum.

To find good starting parameters, we use an R implementation of the “Hooke-Jeeves deriva-

tive-free minimisation algorithm”. The optimiser hjkb() is included in the package dfoptim

[35]. We then define a start vector as well as its lower and upper bounds needed during the

optimisation.

Warnings invoked by the GUTS package functions can be inspected using the command

warnings() (for their meaning, see the help file and section Implementation in the R Pack-

age GUTS). However, these warnings do not affect the optimisation and can, therefore, be

safely ignored.

The result of the optimisation routine is inspected using the print function (for an in-depth

description of the output consult the manual page of hjkb()):

logposterior <- function(pars) {

if (any(is.na(pars), is.infinite(pars),

(pars<0), (pars[“kk”]>30))) {

return(-Inf)

}

ret <- sum(sapply(guts_objects,

function(obj) guts_calc_loglikelihood(obj, pars)))

return(ret)

}

library(“dfoptim”)

pars_start <- c(0.05, 0.1, 3, 20, 10)

names(pars_start) <- c(‘hb’, ‘ke’, ‘kk’, ‘mn’, ‘sd’)

optim_result <- hjkb(pars_start, logposterior, lower = rep(0, 5),

upper = c(1, 1, 30, 40, 20), control = list(maximize = TRUE))

Fast Software Package for GUTS
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Note that choosing reasonable parameter bounds can hardly be automatised and thus relies

on the expert knowledge about common parameters, for the respective types of data and exper-

iment. If expert knowledge suggest different parameters and bounds, the vectors above need to

be adjusted [26].

The posterior parameter distribution is sampled using the robust adaptive Metropolis sam-

pler implemented in the R package adaptMCMC [36] with the parameters from the optimisa-

tion serving as starting values. The function MCMC() automatically adapts the covariance of

the jump distribution to achieve a user-defined acceptance rate (here: 0.4). As a starting value,

for the covariance of the jump distribution, we simply use a diagonal one with 10% of the initial

parameter values as standard deviations. In order to prevent degeneracy of the matrix (in case

the optimiser returns zero, for certain parameters), the matrix is altered by adding a small posi-

tive number to the diagonal. Note that, although the R package GUTS is very fast, the MCMC

may take some minutes depending on the number of iterations chosen (argument n of the

function MCMC()) and the hardware used (on our testing MacBook Pro with a 4 core Intel i7

processor 50,000 iterations took about 3 minutes). Like in the optimisation routine, warnings

can occur and can be ignored (see above).

Visualisation of the Posterior Distribution

After the MCMC has finished without errors, it is necessary to inspect the chains and check

whether they have converged. Automatised checks are available (e.g., through using CODA

print(optim_result)

$par

hb ke kk mn sd

0.05473022 0.09215698 1.80652237 15.63446045 6.01160431

$value

[1] -570.6315

$convergence

[1] 0

$feval

[1] 14479

$niter

[1] 19

library(“adaptMCMC”)

mcmc_pars <- optim_result$par

mcmc_sigma <- diag((mcmc_pars/10)^2 + .Machine$double.eps)

mcmc_result <- MCMC(p = logposterior, init = mcmc_pars,

scale = mcmc_sigma, adapt = 20000, acc.rate = 0.4, n = 50000)

Fast Software Package for GUTS
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[37]), however, here we create a plot from the chains of the parameters’ posterior marginals

and check the chains visually (see Fig 1).

plot_chains <- ga_plot_chains(data = mcmc_result$samples,

from = 10000, steps = 50)

Fig 1. Chains of the parameters’ posterior marginals computed by the MCMC.

doi:10.1371/journal.pcbi.1004978.g001
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After cutting off the first 10,000 sample points, the chains show a reasonable mixing and no

signs of burn-in or the adaptation phase of the algorithm.We have chosen the function MCMC()

from package adaptMCMC because it is largely self-tuning and therefore easy to use. An adapta-

tion phase of 20,000 sample points seems to be sufficient in most cases. Nevertheless, it is impor-

tant to keep in mind that MCMC() calls a stochastic algorithm, which may fail to adapt, even for

the data set we are using. If that happens, running the algorithm a second time usually suffices. If

not, the adaptation phase might have to be enlarged and the chain might have to be run for a lon-

ger time.

Next, we create a correlation plot, for the posterior parameter sample, computed by the

MCMC. The parameters for our example co-vary as shown in Fig 2.

The strongest correlation is observed between the threshold mean (mn) and the dominant

rate constant (ke), which can be understood from eqs (1) and (2). Strong parameter correlations

could be viewed as indicators of over-parametrised models, however the equations of GUTS

represent our understanding of the processes determining survival under stress. As such the

model parameters have a mechanistic interpretation, which would be partially lost if reducing

the model. Furthermore, reducing GUTS to fewer parameters would introduce additional

strong assumptions and so GUTS would loose its generality. For example, disposing of the

threshold parameter would imply the assumption that any infinitely small dose of the stressor

will result in an increased hazard rate (see also [4]). An important insight from Fig 2 is that sur-

vival predictions must account for the correlation between parameters to properly account for

parametric uncertainty.

Quantification of Parameter Uncertainty

To compute the uncertainty of each of the parameters, we calculate adequate quantiles from

the posterior samples. Together with the maximum of the posterior distribution, these quan-

tiles are then tabulated.

plot_corrs <- ga_plot_correlations(data = mcmc_result$samples,

from = 10000, steps = 50)

tab_quant <- ga_tab_quantiles(data = mcmc_result$samples,

log.p = mcmc_result$log.p, from = 10001)

print(tab_quant)

maxpost q0.025 q0.5 q0.975

hb 0.05473022 0.04497855 0.05671463 0.06952769

ke 0.09215698 0.04676900 0.10578718 0.18960682

kk 1.80652237 0.86402773 3.22829131 17.27880308

mn 15.63446045 9.59333778 18.33559994 28.89464348

sd 6.01160431 3.44263752 6.86731117 12.31967439
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To inspect the distribution and the uncertainty visually, we plot the densities of each of the

parameters. Fig 3 shows the densities, and each plot contains a horizontal line indicating the

uncertainty quantiles (the median is always added).

Fig 2. Correlations between the parameter posterior samples computed by the MCMC.

doi:10.1371/journal.pcbi.1004978.g002

plot_dens <- ga_plot_densities(data = mcmc_result$samples)
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Probabilistic Prediction and Validating the Model With New Data

After calibrating our model with real data, we use it for probabilistic predictions. We demon-

strate how to make probabilistic predictions (without survival data) and how to validate these

predictions against measured survival data. In both cases we use fictional (“fake”) data, for

demonstration purposes.

Fig 3. Densities and uncertainty (quantiles) of the parameter posteriors.

doi:10.1371/journal.pcbi.1004978.g003
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The data must contain concentrations and concentration time points, but also the time

points at which we want to make predictions. Furthermore, we need to specify the initial num-

ber of individuals (100, in our example). This number is set in the first element of the vector of

survivor counts (y). Unless we have validation data, the remaining values are not needed and

set to an arbitrary value (0, in our example).

We tabulate the predictions and save the result in the R list object tab_pred. We use the

command head() to print the first 6 lines of the first table, however, all tables can be printed

using print(tab_pred).

Finally, we create a prediction plot (see Fig 4). The plot shows the medians as well as the

quantiles of the predicted survivor counts.

g_obj_new <- list(

guts_setup(C = c(99.97824, 0, 103.88, 0, 0, 103.56, 0, 0,

100.58, 96.51, 0, 2.35724),

Ct = c(0, 1.03, 3.01, 4.02, 8, 8.01, 15, 16,

16.01, 17, 18.01, 22.01),

y = c(100, rep(0, 22)),

yt = 0:22),

guts_setup(C = c(101.343, 99.5066, 0, 98.19, 95.82, 0, 0,

0, 3.283),

Ct = c(0, 1.02, 2.99, 4.01, 9, 9.01, 11.01,

17.01, 22.01),

y = c(100, rep(0, 22)),

yt = 0:22)

)

tab_pred <- ga_tab_predictions(gobjs = g_obj_new,

data = mcmc_result$samples)

head(tab_pred[[1]])

ytd q0.025 q0.5 q0.975

1 1 2 5 11

2 2 2 5 10

3 3 9 19 30

4 4 19 31 44

5 5 0 3 8

6 6 0 2 5

plot_pred <- ga_plot_predictions(gobjs = g_obj_new,

data = mcmc_result$samples)
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The prediction plots show the 95% probability bands and the medians, for the number of

deaths that are predicted to occur in each observation window. If measured survivor data is

present, it is also possible to add this information to the tables and plots, for validation. We

modify our first fictional data set from above and add some (also fictional) survivor data. The

tabulation now contains an additional column (“measured”), and the measured data (fictional

data, in our example) is added to the plot as well (see Fig 5). Note that each single table can also

be saved to text files using the command write.csv().

Fig 4. Predictions for 2 fictional (“fake”) experimental setups.

doi:10.1371/journal.pcbi.1004978.g004
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Example Code and Further Development

The complete code used throughout the presentation here is available with the paper (see S1

Script and S1 Data). We believe that the conciseness of our code and the application of our

self-created wrapper functions make the procedures very easy to understand and to reproduce.

However, with more expertise in R, users can easily alter our code and produce their own out-

put. For instance, the plotting routines provided by the R package ggplot2 [38] are very power-

ful and allow for rich-featured ready-to-publish graphics. We also encourage users to try out

different optimisation and inference routines.

Future development will focus on the implementation of more distributions as well as fur-

ther performance improvements. Users of our R package GUTS are encouraged to provide

ideas, feedback or feature requests to the authors and the R GUTS user community, or to con-

tribute actively to further development as a co-developer. The best way to communicate is

via the mailing list of the package (guts-users@lists.r-forge.r-project.org). The development

home page of our R package GUTS can be found on R-Forge (https://r-forge.r-project.org/

projects/guts/).

g_obj_val <- guts_setup(C = c(99.97824, 0, 103.88, 0, 0, 103.56, 0, 0,

100.58, 96.51, 0, 2.35724),

Ct = c(0, 1.03, 3.01, 4.02, 8, 8.01, 15, 16,

16.01, 17, 18.01, 22.01),

y = c(66, 62, 57, 42, 24, 19, 19, 18, 18, 11, 5, 5, 4, 4, 3, 3, 2),

yt = 0:16)

tab_val <- ga_tab_predictions(gobjs = list(g_obj_val),

data = mcmc_result$samples, measured = TRUE)

print(tab_val[[1]])

ytd measured q0.025 q0.5 q0.975

1 1 4 1.000 4 8

2 2 5 0.975 3 8

3 3 15 5.000 12 21

4 4 18 12.000 20 30

5 5 5 0.000 2 6

6 6 0 0.000 1 4

7 7 1 0.000 1 4

8 8 0 0.000 1 4

9 9 7 0.000 3 10

10 10 6 4.000 10 17

11 11 0 0.000 3 8

12 12 1 0.000 1 4

13 13 0 0.000 0 2

14 14 1 0.000 0 1

15 15 0 0.000 0 1

16 16 1 0.000 0 1

plot_val <- ga_plot_predictions(gobjs = list(g_obj_val),

data = mcmc_result$samples, measured = TRUE)
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Discussion and Future Directions

We discuss the modelling of survival under chemical stress using GUTS [4]. GUTS places the

assumptions underlying survival modelling in a consistent mathematical framework, but the

calibration has been a challenge. In particular the calibration of toxicodynamic parameters,

and the estimation of parametric and predictive uncertainty was still a problem as it required

much computational power and time.

GUTS is a survival analysis tool specifically designed to account for time-varying stressors.

It is also possible to integrate multiple, independently acting stressors by adding hazard rates

[25, 26]. However, most intriguing are the possibilities to better understand underlying mecha-

nisms my meaningful interpretation of the GUTS parameters. We expect that our software

facilitates re-analyses of existing survival data as well as asking new research questions in a

wide range of sciences. In particular the ability to quickly quantify stressor thresholds in con-

junction with dynamic compensating processes, and their uncertainty, is an improvement that

complements current survival analysis methods.

Supporting Information

S1 Script. GUTS example R script. Auxiliary R Script for the Paper “Computationally Effi-

cient Implementation of a Novel Algorithm for the General Unified Threshold Model of Sur-

vival (GUTS)”.

(R)

S1 Data. GUTS example data. Example data for the Paper “Computationally Efficient Imple-

mentation of a Novel Algorithm for the General Unified Threshold Model of Survival (GUTS)”.

(TXT)

Fig 5. Comparison of a model forecast with fictional (“fake”) data.

doi:10.1371/journal.pcbi.1004978.g005
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