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Abstract

The power absorption dynamics of electrons and the electrical asymmetry effect in capacitive 

radio-frequency plasmas operated in CF4 and driven by tailored voltage waveforms are 

investigated experimentally in combination with kinetic simulations. The driving voltage 

waveforms are generated as a superposition of multiple consecutive harmonics of the 

fundamental frequency of 13.56 MHz. Peaks/valleys and sawtooth waveforms are used to 

study the effects of amplitude and slope asymmetries of the driving voltage waveform on 

the electron dynamics and the generation of a DC self-bias in an electronegative plasma at 

different pressures. Compared to electropositive discharges, we observe strongly different 

effects and unique power absorption dynamics. At high pressures and high electronegativities, 

the discharge is found to operate in the drift-ambipolar (DA) heating mode. A dominant 

excitation/ionization maximum is observed during sheath collapse at the edge of the sheath 

which collapses fastest. High negative-ion densities are observed inside this sheath region, 

while electrons are confined for part of the RF period in a potential well formed by the 

ambipolar electric field at this sheath edge and the collapsed (floating potential) sheath at the 

electrode. For specific driving voltage waveforms, the plasma becomes divided spatially into 

two different halves of strongly different electronegativity. This asymmetry can be reversed 

electrically by inverting the driving waveform. For sawtooth waveforms, the discharge 

asymmetry and the sign of the DC self-bias are found to reverse as the pressure is increased, 

due to a transition of the electron heating mode from the α-mode to the DA-mode. These 

effects are interpreted with the aid of the simulation results.

Keywords: voltage waveform tailoring, multi-frequency capacitive discharges, electronegative 

plasmas, electrical asymmetry effect
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1. Introduction

Optimal utilization of technological plasmas, such as those 

used in plasma medicine [1–3] or the plasma etching of semi-

conductors [4, 5], often requires finely tuned local plasma 

parameters, such as ion fluxes and particle energy distribu-

tions at a substrate surface. Customized flux-energy distri-

bution functions for electrons, ions, and neutral radicals in 

these plasmas are necessary for optimum process control for a 

variety of applications such as anisotropic dielectric etching, 

plasma-enhanced chemical vapor deposition (PECVD) [6], 

etc. Such control is not possible in classical single-frequency 

capacitively coupled plasmas (CCPs) or single-source induc-

tively coupled plasmas (ICPs) [7–11]. Classical dual-fre-

quency CCPs operated at significantly different frequencies 

allow for separate control of ‘integral quantities’ of ion energy 

distribution functions (IEDFs) such as the mean ion energy 

and ion flux, but only within a certain window of operating 

conditions [11–16]. The addition of RF substrate biasing in 

ICPs allows the average ion energy to be increased in a con-

trolled way.

A promising new way to achieve an advanced control of 

distribution functions and to improve the plasma’s lateral 

uniformity across large substrates is driving RF plasmas with 

tailored voltage waveforms [17–52]. With this technique, the 

sheath voltage waveforms as well as the time dependence of 

the electric field in the sheaths and in the plasma bulk can 

be customized on a nanosecond timescale. As a consequence, 

the ion and electron power absorption dynamics can be con-

trolled and distribution functions of different particle species 

can be customized [17–20, 23–34, 37–39]. Integral quanti-

ties, such as the mean ion energies, can then be tailored for 

various applications. Recently, it was found that even the 

shape of the IEDF can be controlled using voltage waveform 

tailoring (VWT) [35, 36]. Johnson et al and Schüngel et al 

demonstrated various advantages of using VWT for PECVD 

[42–45].

Such voltage waveforms can be generated as a superpo-

sition consisting of multiple consecutive harmonics of a 

fundamental driving frequency. These waveforms can be cus-

tomized by individually adjusting their harmonics’ amplitudes 

and phases. Any driving voltage waveform can be generated 

in this way using a sufficient number of harmonics. Efficient 

delivery of such waveforms with impedance matching is pos-

sible based on a novel RF supply and matching system [47].

Investigating the effect of the driving voltage waveform on 

the electron power absorption dynamics (referred to as elec-

tron heating dynamics in previous works [25–32, 39, 53–57]) 

is a crucial step in the fundamental understanding of the way 

these plasmas are generated. This is the basis for customizing 

distribution functions of both electrons and ions and, thus, 

for process optimization based on plasma science. A major 

stride towards this goal has been the discovery of the electrical 

asymmetry effect (EAE) in CCPs driven by two consecutive 

harmonics by Heil et al [17]. The EAE includes two effects: 

the amplitude asymmetry effect (AAE) and the slope asym-

metry effect (SAE). The AAE is the generation of a DC self-

bias as a function of the phase between the driving harmonics 

that changes the difference between the global extrema of the 

driving voltage waveform. The AAE was verified by simula-

tions [18, 20, 22–24, 41] and experiments [19–24, 40, 46], as 

well as demonstrated to be strongly enhanced by using more 

than two harmonics [25–34, 37–39, 47, 48]. Later, Bruneau 

et al discovered the slope asymmetry effect (SAE) in argon, 

which also generates a DC self-bias and induces a discharge 

asymmetry by using sawtooth-like waveforms with identical 

global extrema, but with significantly different rise- and fall-

times [49–52]. These previous investigations were mostly 

limited to electropositive plasmas operated in the α-heating 

mode.

An analytical model of the EAE introduced by Heil et al 

[17] has been described in detail by Czarnetzki et  al [20]. 

Based on the individual voltage drops across the sheaths adja-

cent to each electrode and across the bulk, an expression for 

the DC self-bias, η, is obtained in this model as [17, 20]:
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 are the global maximum and minimum 

of the applied voltage waveform, φ f
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 are the floating 

potentials at the powered and grounded electrodes, and φb
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 are the voltage drops across the bulk at the times 

of maximum and minimum applied voltage, respectively. The 

bulk voltage drop φ
b
 in equation (1) can usually be neglected 

for electropositive plasmas (e.g. argon) at low pressures [58], 

but cannot be neglected in the case of electronegative gases 

(e.g. CF4), where significant drift electric fields are often 

present in the plasma bulk and ambipolar fields can be gener-

ated near the sheath edges [40, 41, 53, 59–64]. However, even 

for electronegative plasmas, the applied voltage waveform, i.e. 

the first term in equation (1) is typically dominant compared 

to the other terms. The symmetry parameter ε is defined by:
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with φ
sp
max and φ

sg
max being the maximum voltage drops across 

each sheath (note that φ < 0
sp
max  V and φ > 0

sg
max  V). The vari-

ables on the right hand side of equation (2) correspond to the 

respective electrode surface areas Ap and Ag, the respective 

mean charge densities in each sheath n̄sp and n̄sg, the max-

imum uncompensated charges in each sheath Qmp and Qmg, 

and the sheath integrals for each sheath Isp and Isg (for details 

see [17, 20, 58]). The symmetry parameter ε compares the 

plasma conditions at each sheath to determine the influence on 

the DC self-bias due to any spatial asymmetry (from different 

effective electrode surface areas), or from plasma sheath 

parameters, which affect the generation of a DC self-bias 

(η). The effect of the difference between the driving voltage 

waveform’s global extrema on both the symmetry parameter 

and the DC self-bias can thus be referred to as the amplitude 

asymmetry effect (AAE). By using two or more consecutive 

harmonics of a fundamental frequency with distinct phases, 

φ̃
max

 and φ̃
min

 can be made unequal.
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The slope asymmetry effect (SAE) is described in detail 

in the works of Bruneau et al [49–52]. Qualitatively, the SAE 

is the result of a temporal asymmetry in the positive (rise) 

and negative (fall) slopes of the applied voltage waveform. 

As the applied voltage waveform determines the (differing) 

voltage drops across each individual sheath, this leads to dras-

tically different sheath dynamics, with a quickly expanding 

sheath at one electrode and a slowly expanding sheath at the 

opposing electrode. For electropositive discharges operated in 

the α-heating mode, the ‘fast’ expanding sheath accelerates 

electrons and (at high pressures) induces ionization locally 

near the given electrode, leading to a higher local ion den-

sity compared to the other electrode [49–52] and inducing an 

electrical asymmetry (ε≠ 1), as indicated by equation (2). The 

SAE may also affect other parameters associated with ε such 

as the sheath integrals [17, 20, 58].

The influence of the SAE on the electron power absorption 

and ionization dynamics will strongly depend on the electron 

heating mode, which in turn depends on pressure, driving fre-

quency, and the relative phases between harmonics [25–34, 

37–39, 41, 49–57, 59–61, 63–78]. In contrast to low pressure 

electropositive discharges (α-mode), a different heating mode 

caused by a significant electric field in the plasma bulk, known 

as the drift-ambipolar mode, has been observed in electron-

egative gases [40, 59, 61, 63, 66, 75, 79]. Under these condi-

tions, electrons are accelerated towards the electrode during 

sheath collapse by a drift electric field in the plasma bulk and 

by ambipolar fields at the sheath edges. The drift electric field 

is a consequence of the reduced bulk conductivity, which itself 

is a result of the reduced electron density due to the attach-

ment of electrons to the gas molecules, forming negative ions 

with low mobility. These negative ions are confined within 

the bulk plasma and do not generally reach the electrodes. 

The ambipolar field is the consequence of the peaked electron 

density at the sheath edges, which create strong density gradi-

ents towards the bulk [40, 59, 78]. Significant electron accel-

eration occurs in the bulk for this heating mode, and strong 

local field reversals which also cause electron energy gain can 

be observed at the collapsing sheath edge [68–70, 79, 80]. If 

this heating during sheath collapse (field reversal heating) is 

dominant, the SAE will cause the discharge symmetry to be 

reversed compared to discharges operated in the α-mode [52].

Previous fundamental studies on the effects of voltage 

waveform tailoring on the electron power absorption and exci-

tation/ionization dynamics have been mostly restricted to elec-

tropositive argon discharges operated in the α-mode [25–32, 

39, 53–57]. The fundamental knowledge of these dynamics is 

incomplete for process relevant electronegative and reactive 

gases (e.g. CF4, which is often used in processing applica-

tions), where different electron heating modes are dominant. 

The effects of different gas chemistries on the electron power 

absorption dynamics and the generation of a DC self-bias in 

RF discharges driven by tailored voltage waveforms are inad-

equately understood.

Here, we present the first systematic experimental invest-

igation of the electron power absorption dynamics and the 

EAE in CCPs driven by tailored voltage waveforms operated 

in CF4, where the drift-ambipolar heating mode is prevalent. 

Experimental measurements of the DC self-bias and phase-

resolved optical emission spectroscopy (PROES) are com-

bined with particle-in-cell (PIC) simulations to obtain a 

complete understanding of the electron power absorption 

dynamics. We investigate the effects of the gas pressure, the 

harmonics’ phases, and the number of harmonics under the 

conditions of both the amplitude and slope asymmetry effects.

We show that, due to the presence of the drift-ambipolar 

electron heating mode [40, 59, 61, 63, 66, 75, 79], the effect 

of VWT on the electron power absorption and excitation 

dynamics in CF4 can differ significantly from those in elec-

tropositive discharges. Mode transitions are observed as 

a function of pressure and harmonics’ phases. These trans-

itions drastically affect the discharge symmetry and heating 

dynamics. For specific harmonic phases, it is found that the 

discharge can be split into a strongly electronegative half 

and an electropositive (or weakly electronegative) half. In 

the strongly electronegative half, a high negative-ion density 

occurs close to one electrode. This unique structure is caused 

by a comparatively long time of sheath collapse, a strong 

ioniz ation source adjacent to the electrode, and the creation of 

a potential well. Electrons are confined in this well and effi-

ciently generate negative ions locally via dissociative attach-

ment. These dynamics are induced by particular shapes of the 

driving voltage waveform and are expected to provide unique 

advantages for a variety of applications.

This paper is structured in the following way: in section 2, 

the experimental setup and all diagnostic methods are intro-

duced. The PIC/MCC code used in the numerical studies is 

briefly described in section 3. The presentation of the results 

in section 4 is divided into two parts. First, systematic phase 

variations using different numbers of driving frequencies, i.e. 

voltage waveform tailoring, are performed at different pres-

sures. Waveforms with specific sets of phases between har-

monics are then used to study either the AAE or a non-optimized 

SAE. Second, sawtooth waveforms are studied as one impor-

tant waveform shape at different pressures. From these studies, 

the slope asymmetry effect is enhanced and isolated from the 

amplitude asymmetry effect, since the absolute values of the 

global extrema for sawtooth waveforms are identical. In both  

parts, the formation of a DC self-bias and the spatio-temporal 

excitation dynamics are analyzed and understood based on the 

experimental and computational results. Finally, conclusions 

are drawn in section 5.

2. Experimental setup

2.1. Reactor and diagnostics

The experimental setup is shown in figure 1. The capacitively 

coupled plasma is operated inside a modified gaseous elec-

tronics conference (GEC) reference cell by applying specific 

multi-frequency voltage waveforms to the powered (bottom) 

electrode while keeping the other (top) electrode and the 

chamber walls grounded. Up to three consecutive harmonics 

of the fundamental frequency f  =  13.56 MHz are applied to 

the system. The harmonics’ amplitudes and relative phases are 

tuned in order to realize the prescribed voltage waveforms.

Plasma Sources Sci. Technol. 25 (2016) 045015
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A novel RF power supply system and impedance matching 

are used to generate these waveforms [47]. The system con-

sists of three RF signal generators, each outputting a single 

frequency corresponding to one of the first three harmonics of 

the fundamental frequency, i.e. f1  =  13.56 MHz, f2  =  27.12 

MHz, and f3  =  40.68 MHz. These signals are phase-locked by 

a control unit and each generator’s signal is matched individu-

ally before being combined at the powered electrode to drive 

the RF plasma. Electrical filters in each matching network pre-

vent parasitic interactions between the signal branches [47].

The discharge is operated in CF4 at pressures between 

10 Pa and 100 Pa inside a 25 mm gap between two circular, 

stainless steel electrodes having a diameter of 10 cm. The 

plasma is radially confined between the electrodes by a 

glass cylinder. The discharge is slightly geometrically asym-

metric due to capacitive coupling between the glass cyl-

inder and the grounded side walls of the vacuum chamber 

[19, 81, 82]. This capacitive coupling effectively increases 

the grounded electrode area, which results in a small geo-

metric asymmetry even though the material areas of each 

electrode are the same (see equation (2)) [81, 82]. Therefore, 

a negative DC self-bias is present even for single-frequency 

sinusoidal waveforms. At high pressures, the capacitive 

coupling between the cylinder and the walls has a weaker 

effect. The importance of the capacitive coupling between 

the cylinder and the grounded walls decreases because of the 

higher plasma density at high pressures, which increases the 

current flowing through the plasma and reduces the signifi-

cance of the current flowing as a displacement current to the 

walls. The symmetry is significantly better at such higher 

pressures, and thus only the results at higher pressure will be 

compared with the results of the simulations, which assume 

perfect geometrical symmetry.

The plasma is investigated experimentally by utilizing two 

diagnostics: a high voltage probe and an ICCD (intensified 

charge-coupled device) camera used for PROES. The high voltage 

probe is attached to the coaxial cable connecting the combined 

frequency branches and the powered electrode (see figure 1) and 

allows measurements of the applied voltage waveform using an 

oscilloscope. The amplitudes and phases of the three consecutive 

harmonics of the voltage waveform are determined at the powered 

electrode’s surface via Fourier analysis and a calibration routine  

previously used in dual- and triple-frequency discharges [19, 47].  

This calibration procedure is performed by venting the 

chamber and attaching the high voltage probe to the powered 

electrode’s surface. Comparisons of the voltage waveform 

parameters (harmonic amplitudes, phases) at the measurement 

point on the coaxial cable and at the electrode surface yield cali-

bration factors for each harmonic’s amplitude and phase. These 

calibration factors are strongly system dependent and are dif-

ferent for each applied frequency. This calibration procedure 

relies on the assumption that the impedance of the plasma is 

similar to the impedance when the chamber is vented, which is 

usually valid for CCPs due to their low plasma densities com-

pared with inductively coupled plasmas or hybrid setups [19]. 

The high voltage probe and oscilloscope are used to tune the 

voltage waveform parameters as necessary to achieve the desired 

waveform.

In order to perform phase-resolved optical emission spectr-

oscopy (PROES), an ICCD camera with an optical filter is 

placed outside a GEC cell viewport. PROES is a non-intrusive 

diagnostic that probes the dynamics of highly energetic elec-

trons, which sustain the discharge through ionization, with 

high spatial and temporal resolutions within the RF period 

[66–68, 83–85]. Emission from a specifically chosen Flourine 

transition at 703.7 nm with a lifetime of about 26.3 ns [86] is 

resolved in space and time by this nanosecond-gated, high rep-

etition rate ICCD camera (Andor iStar) synchronized with the 

applied RF voltage waveform. A more complete description of 

PROES can be found in [83]. Analysis of PROES data via a 

simple col lisional-radiative model [83] yields the exper imental 

spatio-temporal excitation rate plots. These plots have a spatial 

resolution better than 1 mm and a temporal resolution of about 

2 ns.

2.2. Driving voltage waveforms

Different types of voltage waveforms are used to drive the 

CCP. The ‘peaks’/‘valleys’ waveforms are applied to optimize 

the AAE (see figure 2(a)), while the sawtooth waveforms are 

used to optimize and study the SAE separately from the AAE 

(see figure 2(c)). Intermediate waveforms shown in figure 2(b) 

isolate the SAE from the AAE, but do not optimize the SAE. 

All waveforms are generated as a superposition of multiple 

consecutive harmonics [25–32, 39]:

˜( ) ( )∑φ φ π θ= +

=

t kftcos 2 ,

k

N

k k

1

 (3)

where N is the total number of harmonics. k is the harmonic 

index, f  =  13.56 MHz is the fundamental frequency, φ
k
 are the 

harmonics’ amplitudes, and θk are the harmonics’ phases. The 

total possible amplitude of the waveform is φ φ= ∑
=k

N

ktot 1
, 

but because of destructive interference between the harmonics, 

this amplitude is not reached for every set of phases. The phase 

of the first harmonic (13.56 MHz), i.e. θ1, is subtracted from 

all phases such that θ = !
01  for any waveform. Therefore, the 

other harmonics’ phases (θk, ≠k 1) are relative to the phase of 

the fundamental 13.56 MHz component in equation (3).

Figure 1. Sketch of the experimental setup consisting of a 
capacitively coupled GEC reference cell monitored by diagnostics 
(PROES via ICCD camera, and a high voltage probe for waveform 
monitoring/analysis).
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‘Peaks’ waveforms are generated by setting all phases 

to zero (θ = !
0k ), while θ = !

1802 , θ θ= =
!

01 3  define the 

‘Valleys’ waveforms. The intermediate waveforms shown in 

figure 2(b) are generated by choosing θ θ= =
!

01 3  and either 

θ =
!

902  or θ = !
2702 . The harmonics’ amplitudes are chosen 

according to the following criterion [25]:

( )

( )
φ φ=

− +

+

N k

N N

2 1

1
.

k tot (4)

We set φ = 210
tot

 V. Dual- (φ = 140
1

 V, φ = 70
2

 V) and triple- 

(φ = 105
1

 V, φ = 70
2

 V, φ = 35
3

 V) frequency cases are studied.

For sawtooth waveforms, the harmonic amplitudes are 

chosen according to the following criterion [49–52]:

φ φ=
k

1
,

k N (5)

where φ
N

 changes with the total number of harmonics 

(N). Here we study the triple-frequency case (N  =  3) with 

φ = 138
N

 V and thus φ = 138
1

 V, φ = 69
2

 V, and φ = 46
3

 V. 

The resulting waveform oscillates between the peak values 

±200 V. The total possible amplitude φ = 253
tot

 V was chosen 

so that the absolute possible positive and negative voltages 

were approximately the same as those reached by the AAE 

waveforms. For the sawtooth up waveform, the phases are 

set to θ = !
01 , θ = !

2702 , and θ = !
1803 . The sawtooth down 

waveform has phases θ = !
01 , θ = !

902 , and θ = !
1803 . This 

choice of individual harmonic amplitudes and phases makes 

the slope of the slowly rising/falling part of the waveform 

more linear and the fast drop/rise steeper (see figure  2(c)), 

thus enhancing the SAE.

Historically, waveforms designed from the harmonics’ 

amplitudes criterion of equation (4) were used before the use 

of sawtooth waveforms and will therefore be called ‘classical 

tailored voltage waveforms’ in this work.

3. Simulations

Our numerical studies of CF4 plasmas are based on a bounded 

1D3V particle-in-cell simulation code, complemented with 

a Monte Carlo treatment of collision processes (PIC/MCC) 

[87–89]. The electrodes are assumed to be planar and parallel. 

To further simplify, the large aspect ratio (electrode diameter 

over electrode separation) of the experimental device justifies 

neglecting the radial losses. The discharge modeled by the 

code is assumed to be perfectly geometrically symmetric. The 

powered electrode is driven by the voltage waveforms speci-

fied in section 2.2, while the other electrode is grounded.

The charged species taken into account in the model are 

CF+3 , CF−3 , F−ions, and electrons. The cross-sections of elec-

tron-CF4 collision processes (see table 1) are adopted from 

Kurihara et al [90], with the exception of electron attachment 

processes (producing CF−3  and F− ions), which are adopted 

from Bonham [91]. The electron-impact collision processes 

considered in the model are listed in table 1 and their energy 

dependent cross-sections are displayed in figure 3. As a sim-

plification, the processes that create radicals, or charged 

species other than CF+3 , CF−3 , and F−, are allowed to affect 

only the electron kinetics and the products are not otherwise 

accounted for.

Ion-molecule reactive reactions, as well as elastic col-

lisions are also considered in the simulation [92–95]. For the 

elastic collisions of ions with buffer gas molecules, we adopt 

Langevin type cross-sections:

Figure 2. Examples of applied voltage waveforms over two consecutive RF periods for N  =  3 harmonics: (a) ‘Peaks’ (solid) and ‘Valleys’ 
(dashed) waveforms (equations (3) and (4)), (b) intermediate waveforms where 902θ =

! (solid) and 2702θ =
! (dashed) and all other phases 

are zero (equations (3) and (4)), and (c) sawtooth up (solid) and down (dashed) waveforms (equations (3) and (5)).

Plasma Sources Sci. Technol. 25 (2016) 045015
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where µ is the reduced mass, αp is the polarizability, g is 

the relative velocity of the colliding partners, and β∞ is the 

dimensionless impact parameter for which the deflection 

angle is negligible [92–94]. The ion-molecule reaction pro-

cesses considered in our model are listed in table 2 and their 

cross-sections are shown in figure 4.

The ion-molecule reactions produce the charged species 

considered in the model (CF+3 , CF−3 , F−, and e−), with the 

exception of the first reaction in table 2 that results in the for-

mation of CF+2  ions. CF+2  and CF+3  ions react similarly with 

CF4 and the recombination rate of CF+2  with electrons is only 

slighter higher than the recombination rate of CF+3  [96]. We 

assume, as a simplification, that the above CF+2  generation 

process does not convert CF+3  ions to CF+2  ions. This is fur-

ther justified by the high rates for CF+ -neutral and CF+2 -neu-

tral reactions, which convert these lighter ions into CF+3  ions 

[97]. This assumption makes it unnecessary to introduce an 

additional type of charged species of minor importance into 

the computations and improves the balance of positive ion 

density.

Recombination processes between positive and negative 

ions as well as between electrons and CF+3  ions are simulated 

according to the procedure outlined in the work of Nanbu and 

Denpoh [98]. The ion–ion recombination rate coefficients are 

Figure 4. Cross-sections of ion-impact collision processes [92–95].

Table 3. Recombination processes considered in the model.

Reaction Rate coefficient (m3 s−1)

CF3

+  +  e− ×
− − −

T T3.95 10
15

i

1

e

0.5

CF3

+  +  F− 5.5 10
13

×
−

CF3

+  +  CF3

−

5.5 10
13

×
−

Note: The ion and electron temperatures, Ti and Te, respectively, are given in 

electronvolts [91, 98–100].

Table 1. List of electron-CF4 molecule collision processes 
considered in the model.

Collision 
partners Description Product E0

e−  +  CF4 Elastic momentum transfer 0

e−  +  CF4 Vibrational excitation 0.108

e−  +  CF4 Vibrational excitation 0.168

e−  +  CF4 Vibrational excitation 0.077

e−  +  CF4 Electronic excitation CF4

∗ 7.54

e−  +  CF4 Dissociative ionization CF3

++ 41

e−  +  CF4 Dissociative ionization CF3

+ 16

e−  +  CF4 Dissociative ionization CF2

++ 42

e−  +  CF4 Dissociative ionization CF2

+ 21

e−  +  CF4 Dissociative ionization CF+ 26

e−  +  CF4 Dissociative ionization C+ 34

e−  +  CF4 Dissociative ionization F+ 34

e−  +  CF4 Attachment F− 0

e−  +  CF4 Attachment CF3

− 0

e−  +  CF4 Neutral dissociation CF3 12

e−  +  CF4 Neutral dissociation CF2 17

e−  +  CF4 Neutral dissociation CF 18

Note: E0 is the threshold energy in eV [90, 91].

Table 2. Ion-CF4 molecule collision processes considered in the 
model.

Projectile Reaction E0

CF3

+ CF3

+  +  CF4  →  CF2

+  +  CF4  +  F 5.843

CF3

+ CF3

+  +  CF4  →  CF3

+  +  CF3  +  F 5.621

CF3

+ CF3

+  +  CF4  →  CF3

+  +  CF4
0

CF3

−

CF3

−  +  CF4  →  CF4  +  CF3  +  e− 1.871

CF3

−

CF3

−  +  CF4  →  CF3

−  +  CF3  +  F 5.621

CF3

−

CF
3

−

  +  CF4  →  CF2  +  CF4  +  F− 1.927

CF3

−

CF3

−  +  CF4  →  CF3

−  +  CF4 0

F− F−  +  CF4  →  CF4  +  F  +  e− 3.521

F− F−  +  CF4  →  CF3  +  F−  +  F 5.621

F− F−  +  CF4  →  F−  +  CF4 0

Note: E0 is the threshold energy in eV [92–95].

Figure 3. Cross-sections of electron-impact collision processes  
[90, 91].
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adopted from Proshina et al [99], while the rate for the elec-

tron-CF+3  recombination process is from Denpoh and Nanbu 

[100]. The recombination processes are listed in table 3.

In the simulations, we assume a gas temperature of 350 K.  

We include the emission of secondary electrons from the 

electrodes due to ion impact via the secondary electron 

emission coefficient, γ, which is set at γ = 0.4 for the best 

agreement with experimental results. In the experiment, the 

plasma is reactive and operates at a relatively high pressure. 

Consequently, a thin film with unknown properties is depos-

ited on the electrode. This high secondary electron emission 

coefficient in the simulations is required to reproduce the 

experimentally measured DC self-bias. The excitation rate 

from energetic secondary electrons is smaller in CF4 com-

pared to Argon due to the lower positive ion flux in CF4. The 

secondary electrons also cause more ionization than excitation 

due to their differing cross sections and can strongly affect the 

discharge symmetry via ionization in the sheaths. The (elastic) 

reflection of electrons from the electrodes is also considered; 

we adopt a reflection probability value of 0.2 [101].

For the specific driving voltage waveforms used here, a 

DC self-bias generally builds up on the powered electrode 

(which is capacitively coupled) in order to equalize the time-

averaged electron and positive ion fluxes to each of the elec-

trodes. Negative ions are confined within the bulk and do not 

reach the electrodes. This self-bias is adjusted in the simula-

tion in an iterative way to satisfy the current (i.e. flux) balance 

requirement mentioned above.

The electron-impact excitation rate from ground-state 

F atoms to the excited F-level responsible for the 703.7 nm 

emission observed experimentally by PROES is approxi-

mated in the simulation using the cross-section for the elec-

tronic excitation process for CF4 having a threshold of 7.54 eV  

(see figure 3 and table 1) by specifically accumulating excita-

tion data for electrons with energies equal to or higher than  

14.5 eV. This calculation is used exclusively for diagnostic 

purposes and does not affect the total electronic excitation 

 calculated in the code. We further assume that the F atom den-

sity is uniform in space and does not vary over time. In this 

way, we compare the simulated spatio-temporal dynamics of 

electrons to the experimental PROES measurements without 

explicitly including F atoms in the simulation. 

4. Results

This section  is divided into two parts according to the dif-

ferent shapes of the driving voltage waveform used to operate 

the CCP. First, classical tailored voltage waveforms are used 

based on harmonics’ amplitudes chosen according to equa-

tion (4) and a systematic variation of θ2 (θ θ= =
!

01 3 ). Such 

waveforms generate a pure AAE (‘Peaks’/‘Valleys’ wave-

forms), or a non-optimized SAE (θ = ! !90 , 2702  waveforms). 

Second, sawtooth waveforms are used to isolate the SAE from 

the AAE, while also optimizing the SAE. The harmonics’ 

amplitudes are chosen according to equation (5) with θ = !
01 , 

θ =
!

2702 , θ = !
1803  for sawtooth up waveforms and θ = !

01 , 

θ =
!

902 , θ = !
1803  for sawtooth down waveforms.

The effects of each voltage waveform on the spatio- 

temporal electron power absorption dynamics and the genera-

tion of a DC self-bias are studied by a synergistic combination 

of experiments and simulations to obtain a complete interpre-

tation of the effect of using a reactive electronegative gas such 

as CF4 on the EAE in CCPs driven by customized voltage 

waveforms.

4.1. Amplitude asymmetry

A driving voltage waveform according to equation (3), with 

amplitudes according to equation (4), is used. Single- (N  =  1), 

dual- (N  =  2), and triple- (N  =  3) frequency scenarios are 

investigated. Here, φ = 210
tot

 V is kept constant while θ2 is 

varied. Two different pressures of 20 Pa and 80 Pa are used to 

study a weakly electronegative (20 Pa) and a strongly electro-

negative (80 Pa) scenario.

The measured and simulated DC self-bias voltages are 

shown in figure 5 as a function of the second harmonic’s phase 

(the 27 MHz signal’s phase, θ2) for both 80 Pa and 20 Pa. The 

other harmonics’ phases are fixed at zero throughout these 

variations. In the experiment, the discharge is always geo-

metrically asymmetric at 20 Pa, as indicated by the η≈−29 V  

value obtained for N  =  1 (see figure 5(a)). Therefore, we do 

not compare the 20 Pa measurements to the results of the 

(geometrically symmetric) simulation. At 20 Pa, the control 

range of η is increased by using more harmonics for the same 

total voltage, due to an enhanced amplitude asymmetry effect 

(AAE) similar to the AAE in electropositive argon discharges 

[19–24, 31, 32, 39]. For 80 Pa, the control range of η is larger 

for N  =  2 compared to N  =  3 and the functional depend-

ence of the bias on the phase is significantly different. This is 

caused by the presence of a different electron heating mode 

which enhances the slope asymmetry effect (SAE) for N  =  2 

at phases around !
90  and !

270 . This heating mode will be dis-

cussed later in this section. The N  =  2 DC self-bias caused by 

the SAE at θ = !
902  is almost the same as the one caused by 

the AAE at θ = !
1802 . Such an effect is not observed in the 

N  =  3 case.

Figure 6 shows spatio-temporal plots of the different 

plasma parameters obtained from the experiment and the sim-

ulation, for θ = !
02  and N  =  3. Figures 6(a) and (b) show the 

spatio-temporal excitation rate and the electric field obtained 

from the simulation at 80 Pa, while figures 6(c) and (d) show 

the excitation rate obtained experimentally at 80 Pa and 20 Pa, 

respectively. In the experiment, the excitation at the (bottom) 

powered electrode is enhanced with respect to the maxima 

observed at the grounded electrode due to the geometric 

asymmetry of the reactor. This does not happen in the simula-

tion and, therefore, the excitation rate at the powered electrode 

is stronger in the experiment compared to the simulation. 

Nevertheless, good qualitative agreement is found throughout. 

The asymmetry of the discharge drastically changes between 

20 and 80 Pa as the excitation maximum near the powered 

electrode moves towards the grounded electrode at higher 

pressures as the result of a heating mode transition. At 20 Pa, 

α-mode heating is dominant (see figure 6(d)), whereas drift-

ambipolar mode heating is prevalent at 80 Pa (see figures 6(a) 
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Figure 6. Spatio-temporal plots for N  =  3, 02θ =
! (‘Peaks’ waveform) of (a) the excitation rate at 80 Pa obtained from the PIC  

simulation with the sheath edges shown in white, (b) the electric field at 80 Pa obtained from the simulation, (c) the experimentally 

measured excitation rate at 80 Pa, and (d) the experimentally measured excitation rate at 20 Pa. The applied voltage waveform is shown in 

(e) and (f) for reference, for 210
tot
φ =  V. The dashed region in (b) designates the region of high bulk electric field shown in figure 7(a). The 

powered electrode is situated at x  =  0, while the grounded electrode is located at x  =  25 mm.

Figure 5. DC self-bias as a function of 2θ  for (a) 20 Pa (experimentally measured bias) and (b) 80 Pa (including both the experimentally 
measured bias and the bias obtained from the PIC simulation, a.k.a. ‘Sim.’) for different numbers of applied harmonics, N  =  1, 2, 3. 

210
tot
φ =  V for all cases.
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and (c)). This transition is caused by the low electronegativity 

(and collisionality) at 20 Pa and the high electronegativity 

(and higher collisionality) in combination with specific elec-

tron dynamics at 80 Pa. At this high pressure a strong excita-

tion maximum is observed at the collapsing sheath edge close 

to the grounded electrode (see figure 6(a)), which originates 

from a strong drift and an ambipolar electric field caused by 

the high local electronegativity [40, 59, 61, 63, 66, 75, 79]. The 

high local electronegativity is caused by a unique mechanism 

induced by the shape of the driving voltage waveform, which 

causes the sheath at the grounded electrode to be collapsed for 

most of the fundamental RF period. This does not happen at 

the powered electrode. Therefore, at the grounded electrode, 

negative ions can enter the sheath region, since the time-aver-

aged electric field is very small and only weakly repels these 

ions from this region. Consequently, the local electron density 

and conductivity are depleted and a strong reversed electric 

field is generated by the high RF current which occurs during 

the sheath collapse [69]. This electric field causes an excita-

tion maximum at the grounded electrode which is further ana-

lyzed in figure 7.

Figure 7(a) shows the reversed electric field and the pres-

ence of a potential well formed near the grounded electrode 

by the (floating) sheath electric field at the electrode during its 

sheath collapse and an ambipolar field at the bulk plasma side 

caused by the local slope of the electron density profile (see 

figure 7(b)) [59]. This peak in the electron density near the 

grounded sheath edge is generated near the time of sheath col-

lapse (around 12–17 ns) and decays slowly throughout the RF 

period, as there is no sheath expansion to repel these electrons 

(until around 65 ns). The peak in electron density and, by 

extension, the ambipolar electric field, persists throughout the 

RF period and appears prominently in the time-averaged elec-

tron density shown in figure 7(b). Electrons are accelerated 

by the reversed electric field and are confined in this potential 

well. Depending on the energy of the electrons accelerated by 

the field reversal and those confined in this well, ionization 

(e.g. CF+3  generation) or attachment (CF−3  and F− generation) 

proceeds very efficiently, as shown in the marked regions of 

figure 8. Low energy electrons attach to CF4 molecules more 

efficiently compared to high energy electrons, due to the dif-

ferences in the cross-sections (see figure 3). This mechanism 

leads to strong ionization and a source of negative ions inside 

the sheath region at the grounded electrode. In this way, an 

even stronger field reversal is generated due to a further local 

depletion of the conductivity. These effects are self-amplifying 

until the plasma stabilizes, making the effect self-sustaining 

(i.e. a closed loop). Consequently, this geometrically sym-

metric CCP becomes split into an electropositive (or weakly 

electronegative) half and a strongly electronegative half, due 

to the above mechanisms (see figure 7(b)).

Figure 8(a) also shows the presence of secondary electrons, 

which are accelerated in the sheath regions. However, they 

do not affect the ionization and attachment rates considerably 

(see figures 8(c) and (d)). Their contribution to the excitation 

also appears to be negligible in comparison to other power-

coupling mechanisms (see figure 6).

The spatio-temporal excitation and electric field plots at 

θ =
!

1802  (see figure 9) mirror those at θ = !
02 . The simu-

lated excitation and electric field are exact mirrors of the 

θ =
!

02  simulation results, as there is no geometric asym-

metry there. The experimental PROES plots are affected by 

the geometric asymmetry in the experiment, but still closely 

mirror one another. Here, the region close to the powered 

electrode is electronegative, while the region close to the 

grounded electrode is electropositive (i.e. weakly electronega-

tive), according to the simulation. An intermediate regime is 

found at θ = !
902  (see figure 10), where the applied waveform 

utilizes a non-optimized slope asymmetry effect.

Several heating mode transitions can be observed as a func-

tion of θ2 or pressure. Specifically, a clear transition from the 

α-heating mode to the drift-ambipolar mode occurs between 

20 and 80 Pa for fixed harmonics’ phases and voltage ampl-

itudes (see figures 6, 9 and 10), with the drift-ambipolar mode 

being favored at higher pressures due to the higher electron-

egativity and higher collisionality at higher pressures.

Figure 11 demonstrates that adding higher harmonics 

enhances the sheath expansion heating relative to the 

Figure 7. (a) Spatio-temporal plot of the electric field at the beginning of one fundamental RF period close to the grounded electrode for  

80 Pa, 02θ =
! (‘Peaks’ waveform, N  =  3, 210

tot
φ =  V) obtained from the simulation, zoomed into the region of interest in figure 6(b). 

Time-averaged density profiles from the PIC simulations for all charged species. The dashed lines indicate the maximum sheath widths  
of the powered sheath (2.48 mm) and grounded sheath (3.13 mm).
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Figure 9. Spatio-temporal plots for 1802θ =
! (‘Valleys’ waveform, N  =  3, 210

tot
φ =  V) of (a) the excitation rate at 80 Pa obtained from 

the simulation with the sheath edges shown in white, (b) the electric field at 80 Pa obtained from the simulation, (c) the experimentally 
measured excitation rate at 80 Pa, and (d) the experimentally measured excitation rate at 20 Pa. The applied voltage waveform is shown in 
(e) and (f ) for reference.

Figure 8. Spatio-temporal plots for 80 Pa, 02θ =
! (‘Peaks’ waveform, N  =  3, 210

tot
φ =  V) of (a) mean electron energy, (b) electron 

density, (c) rate of CF3

+ creation, and (d) rate of electron attachment (i.e. CF3

− and F− creation), as obtained from the simulation.
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drift-ambipolar heating. This is due to an increase of the 

driving waveform’s slope during sheath expansion, which 

increases the effectiveness of α-mode heating. For θ = !
2702 , 

this leads to more spatially symmetric excitation dynamics 

for N  =  3, since the sheath expansion heating at the powered 

electrode is enhanced relative to the heating at the grounded 

electrode at about 28 ns. In terms of the symmetry para-

meter from equation (2), ε is less than unity for N  =  2 and ε 

is approximately unity for N  =  3 at θ = !
2702 . Thus, we find 

a negative DC self-bias for two harmonics at θ = !
2702 , and 

almost no bias at the same phase for N  =  3 (see figure 5). The 

strongly negative bias for N  =  2 at this phase is caused by the 

SAE, although its effect is reversed compared to electroposi-

tive gases due to the presence of the drift-ambipolar heating 

mode. In electropositive gases such as argon, positive DC self-

biases are often observed for this phase [49–52].

4.2. Slope asymmetry

The sawtooth waveforms used here (see figure 2(c)) are real-

ized with the fixed phases and amplitudes defined in section 2; 

these waveforms consist of three consecutive harmonics of 

f  =  13.56 MHz, each with an amplitude according to equa-

tion (5). The amplitudes and phases of the sawtooth up wave-

form for N  =  3 are: φ = 138
1

 V, φ = 69
2

 V, φ = 46
3

 V, θ = !
01 , 

θ =
!

2702 , and θ = !
1803 . The sawtooth up waveform yields a 

fast sheath expansion at the powered electrode as a result of 

the fast transition from its maximum positive applied voltage 

to its maximum negative applied voltage, and a fast sheath 

contraction at the grounded electrode. Conversely, the saw-

tooth down waveform yields a fast expansion of the grounded 

sheath as the fast transition occurs from the maximum nega-

tive voltage to the maximum positive voltage. The N  =  3 saw-

tooth down waveform has the same amplitudes and phases as 

listed above, with the exception that θ = !
902 .

The experimentally obtained DC self-bias (η) for the 

sawtooth waveforms is plotted as a function of pressure in 

figure  12. A significant geometric asymmetry is present, 

especially at lower pressures ( ⩽p 30 Pa), which prevents 

comparison of our experimental results to those of the PIC 

simulations. The bias changes drastically as a function of 

pressure as a result of the SAE and the geometric asymmetry 

of the discharge. No AAE can be present due to the identical 

global extrema in the driving voltage waveform. For the saw-

tooth down waveform, the sign of the self-bias changes as 

the pressure increases. In a geometrically symmetric reactor, 

this would also happen for the sawtooth up waveform. This 

reversal of the discharge asymmetry as a function of pressure 

is caused by a transition from the α-heating mode to the drift-

ambipolar heating mode induced by increasing the pressure 

Figure 10. Spatio-temporal plots for 902θ =
! (N  =  3, 210

tot
φ =  V) of (a) the excitation rate at 80 Pa obtained from the simulation with  

the sheath edges shown in white, (b) the electric field at 80 Pa obtained from the simulation, (c) the experimentally measured excitation rate at 
80 Pa, and (d) the experimentally measured excitation rate at 20 Pa. The applied voltage waveform is shown in (e) and (f) for reference.
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and thus increasing the electronegativity. Above 50 Pa, the 

self-bias stays approximately constant as a function of pres-

sure after this mode transition. This is expected to be highly 

relevant for applications, as it completely reverses the role 

of the two electrodes with regards to the EAE. For example, 

a negative DC self-bias voltage corresponds to enhanced 

excitation at the grounded side, whereas, in electropositive 

plasmas, it corresponds to enhanced excitation at the powered 

side.

The sawtooth down waveform causes the grounded sheath 

to expand quickly and the sheath at the powered electrode 

to expand slowly, while for the sawtooth up waveform the 

situation is reversed. At 20 Pa, the discharge operates in the  

α-heating mode (see figures 13(a) and (b)). At this low pressure,  

the discharge is geometrically asymmetric. This results in an 

increase of the excitation rate at the powered electrode rela-

tive to that at the grounded electrode. For the sawtooth down 

waveform, the spatio-temporal excitation rate at the grounded 

side during the grounded sheath expansion is more visible 

compared to that measured for a sawtooth up waveform, as the 

grounded sheath expands very quickly once per fundamental 

RF period. Due to the geometric asymmetry of the reactor, 

the density in the powered sheath is still higher than that in 

the grounded sheath, i.e. ¯ ¯>n nsp sg. Thus, according to equa-

tion (2), the symmetry parameter ε is relatively high for this 

situation, though it is still less than unity due to the geometric 

asymmetry. The self-bias is then weakly negative at low pres-

sures, according to equation (1).

At higher pressures (50 Pa and 80 Pa, see figures 13(c) 

and (d) and figures (e)–(f ), respectively), the discharge oper-

ates in the drift-ambipolar heating mode and there is strong 

excitation at the powered/grounded electrode for the sawtooth 

up/down waveform, respectively, where the sheath collapses 

quickly once per fundamental RF period. This is caused by a 

mechanism similar to that described in section 4.1. The high 

negative-ion density leads to a local depletion of the electron 

density and a strong electric-field reversal at the edge of the 

rapidly collapsing sheath. The self-amplifying mechanism 

described before is only effective at one electrode for saw-

tooth waveforms, where electrons are accelerated towards the 

electrode (i.e. towards the potential well) and not away from it 

(and its corresponding sheath). In combination with a reactor 

with better geometric symmetry, this leads to ¯ ¯≫n nsp sg for the 

sawtooth down waveform, where ε> 1 and a positive bias is 

generated, and ¯ ¯<n nsp sg for the sawtooth up waveform, where 

ε< 1 and a negative bias is generated. In conclusion, the 

Figure 12. Experimentally measured DC self-bias voltage as a function 

of pressure for the sawtooth waveforms at N  =  3 and 253
tot
φ =  V.

Figure 11. Spatio-temporal plots for 2702θ =
! ( 210

tot
φ =  V) at 80 Pa of (a) the experimentally measured excitation rate for N  =  2 and  

(b) the experimentally measured excitation rate for N  =  3. The applied voltage waveforms are shown below the spatio-temporal plots for 
reference.
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change of the DC self-bias and the reversal of the discharge 

symmetry as a function of pressure for the sawtooth wave-

forms can be explained by a transition to an electron heating 

mode characteristic of an electronegative plasma, which is 

induced by increasing the pressure.

5. Conclusions

The electron power absorption and excitation dynamics in 

capacitive CF4 discharges driven by tailored voltage wave-

forms were investigated experimentally and via numerical 

simulations, with good qualitative agreement between the 

two. The discharge pressure, the number of harmonics, and the 

harmonics’ phases were varied systematically. At high pres-

sures the discharge was found to operate in the drift-ambipolar 

heating mode, while at low pressures the α-heating mode was 

dominant. Mode transitions between these two modes were 

induced by changing the pressure, the harmonics’ phases, and 

the total number of harmonics.

The presence of the drift-ambipolar mode was found to lead 

to unique spatio-temporal excitation/ionization dynamics. 

Depending on the choice of the harmonics’ phases, i.e. the 

shape of the applied voltage waveform, one strong excitation/

ionization maximum per fundamental RF period can be gener-

ated at the collapsing sheath edge adjacent to only one elec-

trode. This is due to the extended period where the sheath is 

Figure 13. Experimentally measured spatio-temporal excitation rate for sawtooth waveforms (N  =  3, 253
tot
φ =  V) at ((a)–(b)) 20 Pa, ((c)–(d))  

50 Pa, and ((e)–(f )) 80 Pa. The left column contains the sawtooth down ( 902θ =
!, 1803θ =

!) results, while the right column shows the 
sawtooth up ( 2702θ =

!, 1803θ =
!) results. The applied voltage waveforms are shown in (g) and (h) for reference.
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fully collapsed at this electrode in combination with a strong 

electric-field reversal that accelerates negatively charged parti-

cles towards this electrode. Therefore, negative ions can move 

into this sheath region and locally deplete the electron density 

and conductivity. This enhances the electric-field reversal at 

times of high RF current. Moreover, a potential well is formed 

at this electrode during sheath collapse by the electric field of 

the (floating) collapsed sheath and the ambipolar electric field 

in the bulk plasma. Electrons are accelerated by the reversed 

field toward this well and are confined efficiently in it, leading 

to an increase in the local attachment rate and the formation of 

negative ions leading to an increased negative-ion density in 

the sheath region only at one electrode. This depletes the local 

conductivity further, increasing the field reversal strength. 

These mechanisms lead to a self-amplification of the field 

reversal. In this way, the discharge becomes divided into an 

electropositive half at one electrode and an electronegative 

half at the other electrode.

The generation of a DC self-bias via the EAE was found 

to be strongly affected by the electron heating mode. This 

was particularly true for sawtooth waveforms, where only 

the slope asymmetry effect (SAE) causes an electrical gen-

eration of a DC self-bias. For such waveforms, the sign 

of the DC self-bias can be reversed by switching from the 

α-heating mode to the drift-ambipolar heating mode by 

increasing the pres sure due to strongly different excita-

tion/ionization dynamics. Thus, the discharge asymmetry is 

reversed in electronegative CF4 plasmas operated by saw-

tooth waveforms in the drift-ambipolar heating mode com-

pared to electropositive plasmas operated in the α-heating 

mode (e.g. CF4 at low pressures and argon at all pressures), 

due to the unique electron power absorption dynamics 

induced by voltage waveform tailoring.

These findings are expected to have extremely important 

consequences for a variety of radio frequency plasma appli-

cations, for which CF4 or other electronegative gases are 

typically used, as the DC self-bias and excitation/ionization 

dynamics strongly influence the formation of process relevant 

flux-energy distributions of all particle species, including 

electrons, ions, and neutrals.
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