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Cognitive Spectrum Management in Dynamic Cellular Environments:

A Case-Based Q-Learning Approach

N. Morozs∗, T. Clarke, D. Grace

Department of Electronics, University of York, York, YO10 5DD, UK

Abstract

This paper examines how novel cellular system architectures and intelligent spectrum management techniques can

be used to play a key role in accommodating the exponentially increasing demand for mobile data capacity in the

near future. A significant challenge faced by the artificial intelligence methods applied to such flexible wireless com-

munication systems is their dynamic nature, e.g. network topologies that change over time. This paper proposes

an intelligent case-based Q-learning method for dynamic spectrum access (DSA) which improves and stabilises the

performance of cognitive cellular systems with dynamic topologies. The proposed approach is the combination of

classical distributed Q-learning and a novel implementation of case-based reasoning which aims to facilitate a number

of learning processes running in parallel. Large scale simulations of a stadium small cell network show that the pro-

posed case-based Q-learning approach achieves a consistent improvement in the system quality of service (QoS) under

dynamic and asymmetric network topology and traffic load conditions. Simulations of a secondary spectrum sharing

scenario show that the cognitive cellular system that employs the proposed case-based Q-learning DSA scheme is

able to accommodate a 28-fold increase in the total primary and secondary system throughput, but with no need for

additional spectrum and with no degradation in the primary user QoS.
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1. Introduction

One of the fundamental tasks of a cellular system is

spectrum management. It is concerned with dividing

the available spectrum into a set of resource blocks or

subchannels and assigning them to voice calls and data

transmissions in a way which provides a good quality of

service (QoS) to the users. Flexible dynamic spectrum

access (DSA) techniques play a key role in utilising the

given spectrum efficiently in the face of an ever increas-

ing demand for mobile data capacity. This has given

rise to novel wireless communication systems such as

cognitive radio networks (Sun et al., 2013) and cogni-

tive cellular systems (Guizani et al., 2015; Sachs et al.,

2010). Such networks employ intelligent opportunis-

tic DSA techniques that allow them to access licensed

spectrum underutilized by the incumbent users.

The classical and most common application of spec-

trum sharing in cognitive radio networks to date is the

use of the TV white spaces. Such networks reuse

the spectrum allocated to TV broadcasters for other

wireless communications, whilst eliminating harm-
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ful interference to the incumbent TV receivers, e.g.

(Ghosh et al., 2011; Gurney et al., 2008). A more re-

cent problem investigated by researchers, mobile net-

work operators (MNOs) and regulators is Long Term

Evolution (LTE) and LTE-Advanced spectrum shar-

ing (Matinmikko et al., 2014). In many cases LTE

spectrum sharing is required by two or more co-

primary MNOs. This can be facilitated by an emerg-

ing framework known as licensed shared access (LSA)

(Matinmikko et al., 2014). Here, licenses for the use

of LTE spectrum are issued upon agreement for a spe-

cific geographical area and required time duration. An-

other type of LTE spectrum sharing actively investigated

within the LTE research community, is resource allo-

cation in heterogeneous networks (HetNets) consisting

of LTE femto-cells overlapped by a high power macro-

cell, e.g. (Alnwaimi et al., 2015; Hamouda et al., 2014).

In these scenarios, the problem is often tackled by using

game theory or machine learning principles. The LSA

method is a static regulatory approach to spectrum shar-

ing, whereas the HetNet problems normally consider a

dynamic scenario, where the same LTE channel is used

by both the macro-cell and the femto-cells. Both of

these spectrum sharing scenarios are investigated in this

paper.

An emerging state-of-the-art technique for intelli-

gent DSA is reinforcement learning (RL); a machine

learning technique aimed at building up solutions to

decision problems only through trial-and-error, e.g.

(Malialis and Kudenko, 2015; Walraven et al., 2016). It

has been successfully applied in a range of wireless

network scenarios, such as cognitive radio networks

(Jiang et al., 2011), small cell networks (Bennis et al.,

2013; Morozs et al., 2016), cognitive wireless mesh net-

works (Chen et al., 2013), and wireless sensor networks

(Chu et al., 2015). The most widely used RL algo-

rithm in both artificial intelligence and wireless com-

munications domains is Q-learning (Watkins, 1989).

Therefore, most of the literature on RL based DSA fo-

cuses on Q-learning and its variations, e.g. (Chen et al.,

2013; Morozs et al., 2015). The novel algorithm devel-

oped in this paper employs distributed Q-learning based

DSA. The distributed Q-learning approach has advan-

tages over centralised methods in that no communica-

tion overhead is required to achieve the learning objec-

tive, and the network operation does not rely on a single

computing unit. It also allows for easier insertion and

removal of base stations from the network, if necessary.

For example, such flexible opportunistic protocols are

well suited to disaster relief and temporary event net-

works. There, rapidly deployable network architectures

with variable topologies are required to supplement the

existing wireless infrastructure (Gomez et al., 2016).

The purpose of this paper is to propose an algorithm

that combines distributed RL with case-based reasoning

(CBR) to improve the stability of intelligent DSA algo-

rithms in realistic, dynamically changing cellular envi-

ronments, i.e. the type of environments rarely consid-

ered in the research literature. The key contributions of

this paper are the following:

• First, we present a detailed formulation of the case-

based RL framework designed for dynamic learn-

ing environments in general.

• We then use this framework to develop the case-

based Q-learning algorithm for DSA in cellular

networks with dynamically changing topologies.

• The proposed algorithm includes a novel network

topology based case identification and retrieval

mechanism; the two essential components of all

CBR systems.

• Finally, we present the results of an extensive em-

pirical evaluation of the proposed scheme using a

novel simulation model of a large-scale dynamic

wireless environment.

Similar combinations of RL and CBR have already

been successfully applied to various decision prob-

lems, e.g. dynamic inventory control (Jiang and Sheng,

2009), RoboCup Soccer (Celiberto et al., 2012) and

control of a simulated mountain car (Bianchi et al.,

2015). For example, Jiang and Sheng (2009) propose

an effective case-based RL algorithm, where CBR is

used for analysing the similarity between different states

of a dynamic multi-agent RL problem. Celiberto et al.

(2012) and Bianchi et al. (2015) develop transfer learn-

ing algorithms that transfer knowledge between simi-

lar learning tasks whilst using CBR to make this pro-

cess faster. However, the only example of applying this

methodology in the wireless communications domain

is proposed by us in (Morozs et al., 2013). There, a

DSA scheme is designed for an unrealistically small and

generic cellular network with its own dedicated spec-

trum, i.e. without secondary spectrum sharing and the

presence of the primary users.

The rest of the paper is organised as follows: Section

2 describes the dynamic cellular environments consid-

ered in this study, that justify the need for robust intel-

ligent DSA algorithms. Section 3 introduces the clas-

sical distributed Q-learning approach to DSA. In Sec-

tion 4 we propose our case-based Q-learning algorithm,

including novel case identification and case retrieval
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mechanisms. The results from a number of large-scale

simulation experiments are discussed in depth in Sec-

tion 5. Finally, the conclusions are given in Section 6.

2. Dynamic Cellular Environments

The aim of this paper is to investigate the applications

of intelligent DSA in dynamic cellular environments.

This section introduces the problem that provides such a

challenging learning environment for DSA algorithms.

2.1. Heterogeneous Temporary Event Networks

The DSA problem investigated in this paper is cur-

rently considered in the EU FP7 ABSOLUTE project.

It is designed for a stadium event scenario and involves

a temporary cognitive cellular infrastructure that is de-

ployed in and around a stadium to provide extra capac-

ity and coverage to the mobile subscribers and event or-

ganizers involved in a temporary event, e.g. a football

match or a concert (Reynaud et al., 2014). This scenario

is depicted in Figure 1. There, a small cell network is

deployed inside the stadium to provide ultra high capac-

ity density to the event attendees, and an eNodeB (eNB)

on an aerial platform is deployed above the stadium to

provide wide area coverage.

We consider two different spectrum management

cases:

1. The stadium small cell network has access to its

own dedicated 20 MHz LTE channel, e.g. it is

granted a temporary LSA license for exclusive ac-

cess to this spectrum for the duration of the event.

In this case, its performance is assessed separately,

not considering the aerial eNB (AeNB) and the pri-

mary eNBs (PeNBs).

Aerial eNB

Local eNB

User equipment

Stadium with
small cell eNBs

Figure 1: Enhanced cellular network infrastructure during a stadium

temporary event

2. The cognitive small cells and the AeNB have sec-

ondary access to a 20 MHz LTE channel, also used

by a network of 3 local PeNBs. This represents a

more challenging secondary spectrum sharing task,

where, in addition to the performance of the sta-

dium small cells and the AeNB, the primary user

QoS guarantees have to be taken into account. We

assume that the primary users are those that are

served by the local PeNBs depicted in Figure 1.

A key challenging aspect of the cellular environment

considered in this paper is its dynamic nature. We as-

sume that the stadium network is able to dynamically

adapt its topology to temporal non-uniform variations in

the stadium traffic load. In the secondary spectrum shar-

ing scenario, the dynamic nature of the environment is

also caused by periodic deployments of the AeNB. All

of these paradigms are explained in more detail in the

following subsections.

2.2. Dynamic Topology Management

Topology management is an increasingly popular

area of research, especially in green communications,

where a trade-off between the QoS provided to the

users and the energy savings of the network is achieved

by dynamically switching various base stations on/off,

e.g. (Marsan et al., 2009; Rehan and Grace, 2013). A

simple illustrative example discussed by Marsan et al.

(2009) is portrayed in Figure 2. It involves a classical

hexagonal cell layout. There, all base stations surround-

ing the middle one temporarily enter a sleep mode at

times when the traffic load is lower, e.g. night time.

The users from all seven cells can then be served by

the middle base station that would expand its coverage

area accordingly. Employing such topology manage-

ment schemes can result in significant energy savings,

since a major part of energy in telecommunications sys-

tems is consumed by base stations (Marsan et al., 2009;

Richter et al., 2009).

2.3. Dynamic Non-Uniform Traffic Load

Another source of the network’s dynamic nature con-

sidered in this study is the presence of a dynamically

moving traffic hotspot area. For example, a rapid in-

crease in the traffic load in a specific part of the stadium

small cell network may be observed if a particular event

happens close to the given area, e.g. teams walking out

at the opening ceremony of the Olympic Games or a

goal at a football match etc. In such cases, the topology

management algorithm would cause the network to be

fully switched on in the hotspot area (left side of Figure

2), and only partially deployed in other areas of lower
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Decrease in
traffic load

Figure 2: A simple topology management case, where a number of base stations is switched off after a decrease in the overall traffic load

traffic intensity (right side of Figure 2). Furthermore,

we assume that the geographical location of this hotspot

area varies with time. This makes the wireless environ-

ment asymmetric and dynamic in both the offered traffic

distribution and the network topology.

2.4. Rapidly Deployable Aerial Platform

The second simulation scenario described in Sub-

section 2.1 also involves a local primary LTE network

and a cognitive eNB on an aerial platform (AeNB) for

wide area coverage. The AeNB can be switched on and

off several times throughout the duration of the event

Reynaud et al. (2014). For example, it can be switched

on for providing the event organizers with a dedicated

access network when required, and switched off to have

its batteries recharged or to minimise the energy con-

sumption in general. Therefore the additional challenge

faced by the cognitive stadium network is to adapt to

these sudden changes in their radio environment, while

not affecting the QoS in the local primary system.

3. Distributed Q-Learning Based Dynamic Spec-

trum Access

This paper investigates a flexible, distributed ap-

proach to DSA based on reinforcement learning (RL).

In distributed RL based DSA the learning is performed

by a number of individual wireless devices, for example,

base stations in a cellular network. There, the task of ev-

ery base station is to learn to prioritise among the avail-

able spectrum resources only through trial-and-error,

with no frequency planning involved, and with no co-

ordination with other base stations, e.g. (Morozs et al.,

2014b). In this way, frequency reuse patterns emerge

autonomously using distributed artificial intelligence

with no requirement for any prior knowledge of a given

wireless environment.

3.1. Reinforcement Learning

RL is a model-free type of machine learning which is

aimed at learning the desirability of taking any available

action in any state of the environment only through trial-

and error (Sutton and Barto, 1998). This desirability of

an action is represented by a numerical value, normally

referred to as the Q-value - the expected cumulative re-

ward for taking a particular action in a particular state,

as shown in the equation below:

Q(s, a) = E

[

T
∑

t=0

γtrt

]

(1)

where Q(s, a) is the Q-value of action a in state s, rt is

the numerical reward received t time steps after action

a is taken in state s, T is the total number of time steps

until the end of the learning process or episode, and γ ∈
(0, 1) is a discount factor.

The job of an RL algorithm is to estimate Q(s, a)
values for every action in every state, which are then

stored in an array known as the Q-table. In some cases

where an environment does not have to be represented

by states, only the action space and a 1-dimensional

Q-table Q(a) can be considered (Claus and Boutilier,

1998). The job of an RL algorithm then becomes sim-

pler, it aims to estimate an expected value of a single

reward for each action available to the learning agent:

Q(a) = E[rt] (2)

3.2. Stateless Q-learning

One of the most successful and widely used RL

algorithms is Q-learning. In particular, a simple

stateless variant of this algorithm, as formulated by

Claus and Boutilier (1998), has been shown to be effec-

tive for several distributed DSA learning problems, e.g.

(Chu et al., 2015; Morozs et al., 2014b). Figure 3 shows

a flowchart for one file transmission of how distributed
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stateless Q-learning can be applied to DSA in cellular

systems.

Each eNB (i.e. LTE base station) maintains a Q-table

Q(a) such that every subchannel a has an expected re-

ward or Q-value associated with it. The Q-value repre-

sents the desirability of assigning a particular subchan-

nel to a file transmission. Upon each file arrival, the

eNB either assigns a subchannel to its transmission or

blocks it if all subchannels are occupied. It decides

which subchannel to assign based on the current Q-table

and the greedy action selection strategy described by the

following equation:

â = argmax
a

(Q(a)), a ∈ A′, A′ ⊂ A (3)

where â is the subchannel chosen for assignment out of

the set of currently unoccupied subchannels A′, Q(a)
is the Q-value of subchannel a, and A is the full set of

subchannels.

The values in the Q-tables are initialised to zero, so all

eNBs start learning with equal choice among all avail-

able subchannels. A Q-table is updated by the corre-

sponding eNB each time it attempts to assign a sub-

channel to a file transmission in the form of a pos-

itive or a negative reinforcement. The recursive up-

date equation for stateless Q-learning, as defined by

Claus and Boutilier (1998), is given below:

Q(a)← (1− α)Q(a) + αr (4)

where Q(a) represents the Q-value of the subchannel a,

r is the reward associated with the most recent trial and

is determined by a reward function, and α ∈ (0, 1] is

the learning rate parameter which weights recent experi-

ence with respect to previous estimates of the Q-values.

The reward function, which is generally applica-

ble to a wide range of RL problems and which has

been successfully applied to DSA problems in the past

(Jiang et al., 2011; Morozs et al., 2015), returns two val-

ues:

• r = −1 (negative reinforcement), if the file trans-

mission failed due to an insufficient Signal-to-

Interference-plus-Noise Ratio (SINR) on the se-

lected subchannel.

• r = 1 (positive reinforcement), if the file is suc-

cessfully transmitted, i.e. SINR did not drop below

the minimum transmission threshold.

The choice of the learning rate values for this

type of distributed Q-learning based DSA problems

is investigated by us in (Morozs et al., 2014a). We

Start

Finish

Any subchannels

available?

Pick the best available subchannel based on Q-table

Assign subchannel

Tx successful?

Positive reinforcement

Negative reinforcement

Schedule retransmission

Yes

No

Yes

No

Figure 3: Flowchart of the distributed stateless Q-learning based DSA

algorithm

found that the best performance is achieved by using

the Win-or-Learn-Fast (WoLF) variable learning rate

(Bowling and Veloso, 2002) described by the following

equation:

α =

{

0.01 r = 1
0.1 r = −1

(5)

There, the learning rate α is 0.01 for successful trials

(when r = 1), and α = 0.1 for failed trials (r = −1).

In this way, the learning agents are learning faster when

“losing” and more slowly when “winning”.

4. Distributed Case-Based Q-Learning

In this paper we investigate case-based RL as the ap-

proach for enhancing the stability of RL based DSA

algorithms in challenging, dynamic wireless environ-

ments, such as those introduced in Section 2. The gen-

eral principles of the case-based RL methodology are

described in the following subsection.

4.1. Case-Based Reinforcement Learning

Case-based RL is a combination of RL and case-

based reasoning (CBR). CBR is broadly defined as

the process of solving new problems by using the so-

lutions to similar problems solved in the past, e.g.

(Rashedi et al., 2014; Zhu et al., 2015). Figure 4 shows

a flow diagram of the processes involved in case-based
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Environment
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Identify
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Update
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Q-Table

External
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Outputs

Information

State

State

Q-Table

Q-Table

Action

Outputs

Case

Policy

Figure 4: Block diagram of case-based reinforcement learning

RL. It also demonstrates that it is an extension of clas-

sical single-agent RL introduced in Section 3, i.e. the

latter can be viewed as a special case of case-based RL.

The unfilled blocks and solid lines in Figure 4 consti-

tute a flow diagram of a classical RL algorithm. There is

an outer output-state-action loop, where the outputs of

the environment are sampled to yield the environment

state information, and the best action is then chosen

for the current state based on the policy of the learn-

ing agent. In the context of DSA, the output of interest

is whether or not a given transmission is blocked, in-

terrupted or successfully completed, and the action is a

spectrum resource allocated to it. There is also an inner

learning loop, whose role is to learn a good policy to be

used by the learning agent. It achieves this goal by ob-

serving the actions taken by the learning agent and their

outcomes, and directly estimating the entries in the Q-

table, e.g. using (4) in the case of stateless Q-learning.

A policy is then derived from the estimated Q-table and

used for choosing an action in the current environment

state, e.g. as shown in (3).

The highlighted blocks and dotted arrows represent

additional functionality afforded by CBR to enable the

system to learn several solutions to different cases of the

environment at once. It introduces another parallel in-

ner loop which continuously observes the input/output

relationship of the environment, and identifies its cur-

rent model or case. It may also have access to other

information supplied from elsewhere to aid the identifi-

cation process. The idea is that for different cases of the

environment the estimated models will be sufficiently

different to be detected by the identification algorithm,

and for every identified model of the environment there

will be a stored Q-table associated with it. In this way, a

case-based RL algorithm will always know what phase

the environment is currently in and will be able to use a

Q-table most suitable for it.

4.2. Case Identification

A crucial part of the case-based RL process is an ap-

propriate mechanism for case identification, such that

the dynamically changing environment could be de-

scribed by a finite number of distinct configurations,

i.e. cases. We propose extending an approach devel-

oped by us in (Morozs et al., 2013) for a simple 9 base

station network with three distinct topology configura-

tions, each forming its own case. There, the network

topology based case identification approach assumed

that every base station was aware of its surrounding net-

work topology, i.e. an information source equivalent to

the “external information” node from Figure 4 was em-

ployed. This is also the case with the case identifica-

tion approach proposed in this subsection. We assume

that a small-scale radio environment map (REM) is pe-

riodically broadcast to every learning agent, i.e. base

station. This is a realistic assumption in the context of

DSA, since REM is one of the widely used key features

in cognitive wireless networks (McLean et al., 2014).

All changes in the network environment described in

Section 2 of this paper involve changes in the network

topology, e.g. triggered by the temporally and spatially

variable traffic load or the periodically deployed eNB

on the aerial platform. Therefore, the network topol-

ogy based case identification is also applicable in this

study. However, the large-scale temporary event net-

works with time-varying asymmetric traffic loads con-

sidered in this paper have a significantly larger number

of different topology configurations, compared to a pur-

posely simple illustrative problem investigated by us in

(Morozs et al., 2013).

In order to limit the potential number of identifiable

topology cases and to make this approach scalable and

generally applicable to any cellular system, we propose

the topology identification process that is localised to

the second order neighbourhood (2ON) of a given eNB.

We define the 2ON of an eNB as the set of its neighbour-

ing eNBs and all their neighbouring eNBs as illustrated

in Figure 5 for a generic hexagonal cell layout.

The 2ON based topology identification process de-

picted in Figure 5 is localised enough to be scalable

and generally applicable in arbitrary cellular networks,

yet not too limited to disregard valuable information

about the radio environment surrounding a given eNB.

To use the example in Figure 5, the spectrum manage-

ment policy of the middle eNB will be heavily influ-

enced by the on/off configurations of its neighbouring

eNBs with their own cognitive spectrum management

policies. Equivalently, the latter will be significantly in-

fluenced by all of their own neighbouring eNBs, thus
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eNB

OnOff

Figure 5: Example of a second order neighbourhood (2ON) used for

case identification by the middle eNB

potentially having a noticeable impact on the original

middle eNB. It is also possible to extend this argument

to higher orders of neighbouring eNBs. However, their

impact on the original eNB in question is likely to be

diminishing. In future adaptations of the approach pro-

posed in this paper further neighbourhoods of eNBs, up

to the whole network topology, can also be included in

the case identification process without the loss of gen-

erality.

Similarly to the method used in (Morozs et al., 2013),

we propose expressing the on/off configurations of a

given eNB’s 2ON as a binary string, each bit corre-

sponding to a particular eNB in the 2ON. For example,

the following binary string would be used to describe

the asymmetric topology case surrounding the middle

eNB in Figure 5:

T2ON = 1010000100111111112 (6)

where T2ON is the binary string describing the network

topology surrounding the given eNB. The order of the

bits in T2ON corresponds to the sequence of the eNBs

in the 2ON depicted in Figure 5 counting from the left-

hand column of eNBs downwards and excluding the

middle eNB itself.

4.3. Case Retrieval

Another fundamentally important function that has to

be performed by an intelligent CBR agent is case re-

trieval. It involves selecting a solution, e.g. a Q-table,

that corresponds to the most appropriate stored case to

be used at any given moment as shown in Figure 4. To

facilitate this functionality, a method for comparing a

currently identified case with the stored cases and cal-

culating a degree of similarity between them is required.

Since every case is expressed in terms of the on/off con-

figuration of the 2ON of a given eNB, we define the

similarity measure between any two cases as the num-

ber of eNBs in the 2ON with the same on/off status. In

order to calculate it, first, the given eNB derives a bi-

nary string Tsame indicating which eNBs in the 2ON

are active/idle in both compared cases. It is done by

performing a bitwise exclusive NOR operation between

the binary strings describing the current case T current
2ON

and one already stored in the case base T stored
2ON :

Tsame = T current
2ON ⊕ T stored

2ON (7)

The similarity measure β is then calculated by adding

up the bits in Tsame as follows:

β =

N
∑

n=1

Tsame(n) (8)

where Tsame(n) is the n’th bit of Tsame, and N is the

number of eNBs in the 2ON.

Finally, for any currently identified case our proposed

retrieval function will return a stored case using the fol-

lowing principle:

k̂ = argmax
k

(βk), k ∈ {1, 2, ...,K} (9)

where k̂ is the index of the retrieved case, βk is the

similarity measure between the k’th stored case and the

currently identified case, and K is the total number of

stored cases.

4.4. Multi-Criteria Case Identification

The case identification and retrieval technique de-

scribed in this section so far only considers the topol-

ogy of a homogeneous network. For example, it is ap-

plicable to an isolated stadium small cell network from

Figure 1. However, in the spectrum sharing scenario

from Subsection 2.1, which also involves a dynami-

cally deployable aerial eNB (AeNB), the network envi-

ronment becomes heterogeneous. This requires an ex-

tension to the proposed case identification and retrieval

framework.

The presence/absence of an entity such as the wide

area coverage AeNB in the network environment can be

viewed as a separate major criterion for case identifica-

tion, in addition to the localised homogeneous topolo-

gies depicted in Figure 5. Therefore, we propose a bias

variable βbias for the case similarity assessment for-

mula given in (8), such that the cases with the same

AeNB status are recognised as more similar to each
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other, than those with a different AeNB status. The

presence/absence of the AeNB is chosen to be a pri-

mary criterion for case identification and retrieval, since

it represents a significantly more substantial change in

the radio environment than changes in the active/idle

mode of an eNB’s local 2ON from Figure 5. Therefore,

the proposed extended multi-criteria similarity measure

formula is the following:

β =

N
∑

n=1

Tsame(n) + βbias (10)

where the bias variable βbias > N , i.e. a value higher

than the maximum possible unbiased similarity mea-

sure, when the AeNB status of the two given cases is

the same, and βbias = 0 otherwise.

4.5. Case-Based Q-Learning Algorithm

Algorithm 1 summarises the steps of our proposed

case-based Q-learning approach to DSA in dynamic cel-

lular environments. The extra functionality specific to

CBR is described by steps 5, 6, 7 and 11. If these steps

are taken out, the algorithm simplifies down to classical

stateless Q-learning described in Section 3.

Algorithm 1 Subchannel assignment using case-based

Q-learning in dynamic cellular environments

1: for every new file arrival do

2: if all subchannels are occupied then

3: Block transmission

4: else

5: Identify current case k

6: Find most similar stored case k̂ using (9)

7: Retrieve Q-table Q(a) associated with k̂

8: Assign a subchannel using Q(a) and (3)

9: Observe outcome, calculate reward r = ±1
10: Update Q(a) using (4)

11: Store Q(a) in case base, associate it with k

12: end if

13: end for

5. Simulation Results

This section presents the results from a number of

simulation experiments that assess the performance of

our proposed case-based Q-learning approach to DSA.

The event-driven system-level simulation model was

custom-built in C++ to simulate the temporary event

network scenario introduced in Section 2. This simu-

lation model was used by us in a number of simulation

studies in the past, e.g. (Morozs et al., 2014b, 2015).

This section is organised as follows:

• Subsection 5.1 describes the parameters and as-

sumptions used in our simulation model in order

to make our study reproducible.

• Subsections 5.2 and 5.3 describe the spectrum

management policies we simulate in the primary

and the secondary network, including the DSA

schemes we use for baseline comparison.

• Subsection 5.4 explains how we implement traf-

fic load based topology management, introduced

in Subsection 2.2, in our simulation experiments.

Afterwards, the rest of the section covers the results

from three separate simulation experiments that corre-

spond to the three different sources of the dynamic na-

ture of wireless environments introduced in Section 2:

• In the experiment in Subsection 5.5 we add a dy-

namically moving traffic hotspot area to the sta-

dium network to see how well our proposed case-

based Q-learning DSA algorithm copes with small,

frequent changes in the radio environment.

• The experiment in Subsection 5.6 simulates a time-

varying network-wide traffic load in the stadium

network. In contrast with the moving hotspot area

scenario, this experiment introduces large, infre-

quent changes in the radio environment.

• Finally, the experiment in Subsection 5.7 involves

dynamic spectrum sharing among the stadium net-

work, the dynamically deployable aerial eNB and

the primary network.

The three simulation experiments summarised above

provide a diverse set of simulation scenarios for a thor-

ough empirical evaluation of the performance of the

case-based Q-learning algorithm in different dynamic

radio environments. The experiments involve small,

frequent environment changes as well as large, less

frequent changes. Furthermore, the network topology

is symmetric in some cases, but asymmetric in oth-

ers. Also, the first two experiments involve a stan-

dalone homogeneous stadium network (i.e. the first

spectrum management scenario from Subsection 2.1),

whereas the last simulation experiment investigates dy-

namic spectrum sharing in the presence of incumbent

users (the second spectrum management scenario from

Subsection 2.1).
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Table 1: Simulation model parameters and assumptions

Parameter Value

Channel bandwidth 20 MHz: 100 LTE virtual resource blocks (VRBs)

Subchannel bandwidth 4 VRBs: 4 × 180 kHz (3GPP, 2013)

Frequency band 2.6 GHz

UE receiver noise floor 94 dBm (290 K temperature, 20 MHz bandwidth, 7 dB noise figure)

Stadium propagation model WINNER II B3 (Kyösti et al., 2008)

Outdoor propagation model WINNER II C1 (Kyösti et al., 2008)

Stadium-outdoor propagation model Combined WINNER II C4 with C1 term (Kyösti et al., 2008)

AeNB-ground propagation model Free space + 8dB log-normal shadowing

Traffic model 3GPP FTP Traffic Model 1 (3GPP, 2010), file size - 4.2 Mb (≈0.5 MB)

Retransmission scheduling Uniform random back-off between 0 and 960 ms

Link model 3GPP Truncated Shannon Bound model (3GPP, 2012)

Primary eNB Tx power 10 dBW

Assumptions

UEs inside the stadium are associated with a small cell or aerial eNB with a minimum estimated downlink pathloss,

based on the Reference Signal Received Power (RSRP)

UEs outside the stadium are associated with a primary or aerial eNB based on the strongest RSRP. The reference

signal Tx power of the primary eNB is 13 dB higher than that of the AeNB

Cognitive small cell and aerial eNBs employ open loop power control, using a constant Rx power of -74 dBm (20

dB Signal-to-Noise Ratio)

The minimum Signal-to-Interference-plus-Noise Ratio (SINR) allowed to support data transmission is 1.8 dB

One subchannel (4 VRBs) is allocated to every data transmission

5.1. Simulation Model Parameters and Assumptions

The temporary event network scenario introduced in

Subsection 2.1 involves an aerial eNB (AeNB) and a

network of small cell eNBs inside a stadium, both of

which coexist with a local network of primary eNBs

(PeNBs) operating in the area.

The stadium small cell network architecture is shown

in Figure 6. There, the users are located in a circular

spectator area 53.7 - 113.7m from the centre of the sta-

dium. It is covered by 78 eNBs arranged in three rings

at 1m height, e.g. with antennas attached to the backs of

the seats or to the railings between different row levels.

The seat width is assumed to be 0.5m, and the space

between rows is 1.5m, which yields the total capacity

of 43,103 seats. 25% of the stadium capacity is filled

with randomly distributed wireless subscribers, i.e. ≈
10,776 user equipments (UEs). In the secondary spec-

trum sharing scenario 500 primary UEs are randomly

distributed outside the stadium in a circular area from

the stadium boundary out to 1.5km from the stadium

centre point, producing an overall offered traffic of 20

Mb/s. The AeNB is located above the stadium centre

point at 300m altitude. The coordinates of the PeNBs

eNodeB

Nominal cell range

Stadium boundaries

Figure 6: Stadium network architecture (Morozs et al., 2014b)
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are (−600,−750), (100, 750) and (750,−800) metres

with respect to the centre point of the stadium. The other

parameters and assumptions of the simulation model are

listed in Table 1.

5.2. Spectrum Management in the Primary Network

The primary system is assumed to employ a dynamic

inter-cell interference coordination (ICIC) scheme typi-

cal for conventional LTE networks (Fraimis et al., 2010;

Sesia et al., 2011). There, all three PeNBs exchange

their current spectrum usage as Relative Narrowband

Transmit Power (RNTP) messages every 20 ms, and ex-

clude the subchannels currently used by the other two

eNBs from their available subchannel list. We assume

that they always try to assign an available subchannel

with the lowest index if any, e.g. they always scan the

availability of the subchannels in the same order from

the 1st subchannel to the last. In this way, the primary

network would make its spectrum usage less random

and more appropriate for the cognitive cellular system

to share, which is in the interests of both the primary

and the secondary system. However, the cased-based

Q-learning scheme proposed in this paper does not as-

sume this and would also work regardless of the spec-

trum management strategy of the primary system.

5.3. Spectrum Management in the Secondary Network

In addition to implementing the proposed case-based

Q-learning algorithm in the secondary network, its

performance is compared with the following baseline

schemes (also implemented in the secondary network):

• “Dynamic ICIC” - all systems use ICIC signalling

as described above for the primary system. The

stadium eNBs receive ICIC messages from the

AeNB and from their neighbouring small cells.

They only report subchannels used at a Tx power

above -3 dB with respect to the average power in

the cell, and choose randomly among the subchan-

nels deemed “safe”. The AeNB randomly assigns

subchannels not used by the primary system, based

on the ICIC messages of the latter.

• “Q-learning” - the AeNB and the stadium small

cells run the distributed Q-learning algorithm de-

scribed in Subsection 3.2.

The “dynamic ICIC” approach represents a heuris-

tic baseline DSA scheme, typical for LTE networks

(Fraimis et al., 2010; Sesia et al., 2011), whereas the

“Q-learning” approach represents a pure RL based ap-

proach without the CBR functionality added to it.

(a) 5/6 eNBs active (b) 2/3 eNBs active

(c) 1/3 eNBs active (d) 1/6 eNBs active

Figure 7: Traffic load based partial deployments of the stadium net-

work (centralised topology management)

5.4. Topology Management

Figure 7 shows how the principle of traffic load de-

pendent dynamic topology management described in

Subsection 2.2 is adapted to the stadium small cell net-

work used in simulation experiments in this paper. The

following relationship between the network-wide of-

fered traffic density (OTD) and the topology patterns

from Figure 7 is used:

• all eNBs are active if OTD > 27 Gbps/km2

• 5/6 eNBs are active if OTD ∈ (21, 27] Gbps/km2

• 2/3 eNBs are active if OTD ∈ (15, 21] Gbps/km2

• 1/3 eNBs are active if OTD ∈ (8, 15] Gbps/km2

• 1/6 eNBs are active if OTD ≤ 8 Gbps/km2

In this way the stadium network is able to provide ad-

equate QoS to the users across a wide range of traf-

fic loads, whilst achieving significant energy savings

when the offered traffic is low by employing these par-

tial small cell network deployments.
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Hotspot area

Figure 8: Asymmetric network topology due to a localised increase in

offered traffic

5.5. Simulation Experiment 1: Stadium Network with a

Moving Traffic Hotspot Area

In addition to the network-wide traffic load varia-

tions, another feature of the simulation scenario inves-

tigated in this paper is the presence of a traffic hotspot

area within the stadium that changes its geographical

location with time. An example of such a hotspot area

and its effect on the topology of the stadium network is

shown in Figure 8. If an increased user activity in the 60

degree sector is observed, while the offered traffic den-

sity is lower elsewhere, the topology management algo-

rithm detects the possibility of deploying all available

eNBs in the hotspot area and keeping a number of them

switched off according to one of the partial deployment

patterns from Figure 7.

Figure 9 shows the probability of retransmission time

response in the stadium small cell network inspected in-

dividually with its own dedicated spectrum (20 MHz

LTE channel). The location of the 60o hotspot area is

randomly changed every 100,000 transmissions to one

of its six possible locations - {0o, 60o, 120o, 180o, 240o,

300o}. The offered traffic density within the hotspot

is 34 Gbps/km2, and 13 Gbps/km2 elsewhere. The

topology management algorithm is assumed to detect a

change in the offered traffic distribution with a delay of

5000 file transmissions. The plots are obtained by aver-

aging every data point using the results from 50 simu-

lations with different randomly generated UE locations

and initial traffic. P (retransmission) is calculated as

follows:
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Figure 9: Probability of retransmission in the small cell stadium net-

work with a dynamically moving traffic hotspot

P (retransmission) =
Nr

Nr +Ns

(11)

whereNr is the number of retransmissions andNs is the

number of successfully completed tranmissions during

a given sampling period.

Firstly, both Q-learning based schemes significantly

outperform the dynamic ICIC approach. This demon-

strates the effectiveness of applying distributed RL to

DSA in cellular networks. Secondly, although the clas-

sical Q-learning and case-based Q-learning schemes

start at the identical QoS level, the latter goes on to grad-

ually improve its performance in the dynamic environ-

ment faced by it. In contrast, the classical Q-learning

process is disturbed by the environment changes fre-

quently enough not to show any notable performance

improvement over time. As a result, by the end of the

simulation the proposed case-based Q-learning scheme

shows an ≈22% reduction in the number of retransmis-

sions compared to the classical Q-learning alternative.

5.6. Simulation Experiment 2: Temporal Network-Wide

Traffic Variations in the Stadium Network

A further challenge introduced into the simulation ex-

periments hereafter is the variable network-wide traffic

load shown in Figure 10. These variations in the offered

traffic density trigger the network topology changes ac-

cording to the topology management scheme described

in Subsection 5.4. Figure 11a shows the probability of

retransmission time response of the stadium network

with such uniform temporal variations in the network-

wide traffic load. Due to the uniform nature and a lower

number of possible topology cases compared to the dy-

namic traffic hotspot scenario from the previous sub-

section, the difference in performance between case-

based Q-learning and classical Q-learning is larger than

11
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Figure 10: Temporal variations in the stadium network-wide offered

traffic density
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(b) With a dynamic hot spot area

Figure 11: Probability of retransmission in the stadium network with

temporal variations in the network-wide offered traffic

that observed in Figure 9. It is especially pronounced

at times shortly after the network topology transitions.

There, incorporating CBR into the learning process of-

ten results in as much as a two-fold reduction in the

probability of retransmission.

Figure 11b shows the probability of retransmission

time response of the stadium network both with uniform

variations in the offered traffic density and with the dy-

namically moving traffic hotspot area. There, in contrast

to the results in Figure 11a, the increase in the complex-

ity of the problem and the number of network topol-

ogy cases reduces the magnitude of the performance

improvements gained by case-based Q-learning. Nev-

ertheless, the CBR functionality is still able to provide

a consistent noticeable decrease in the number of re-

transmissions experienced by the UEs in the stadium

network.

5.7. Simulation Experiment 3: Spectrum Sharing with

Dynamic Aerial Platform Deployment

The last set of simulation results discussed in this pa-

per considers the performance of both the primary and

the secondary network in the full spectrum sharing sce-

nario described in Subsection 2.1. In addition to the

dense stadium small cell network, it involves an aerial

eNB (AeNB) and a local network of primary eNBs

(PeNBs), all sharing the same 20 MHz LTE channel.

The stadium small cell network includes both dynamic

environment features investigated in the previous sub-

sections:

• a dynamically moving 34 Gbps/km2 offered traffic

density area depicted in Figure 8

• an updated version of the temporal variations in the

network-wide traffic load shown in Figure 12

The variable network-wide traffic loads are slightly

lower than those used in the previous experiments, since

the 20 MHz LTE channel is no longer fully dedicated

to the stadium network, but is shared with the primary

system and the cognitive AeNB. The latter is running a

classical Q-learning algorithm described in Subsection

3.2 and is periodically deployed and redeployed into the

network.

Figure 13 shows how the probability of retransmis-

sion changes over time in the two independent sec-

ondary systems involved in the spectrum sharing sce-

nario - the stadium small cell network and the AeNB.

All simulations start with the AeNB switched off, and

the vertical dash-dot lines in Figure 13a mark the times

when it is switched on and off again. It shows that

the performance gap between case-based and classical

Q-learning in the stadium network is further reduced

due to an even more complicated scenario, the presence

of an interfering primary network and a higher num-

ber of possible network topologies. However, Figure

13b shows that employing the case-based Q-learning

approach in the stadium network dramatically improves

the QoS achieved by the AeNB shortly after it is

switched on for the second and third time. This is due
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Figure 12: Temporal variations in the stadium network-wide offered

traffic density in the full spectrum sharing scenario
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(b) Aerial eNB

Figure 13: Probability of retransmission in the stadium network and

the Aerial eNB in a dynamically changing radio environment

to the capability of cognitive small cell networks to dis-

tinguish between various network topologies, including

whether or not the AeNB is switched on. In this way, the

stadium small cells are able to revert their Q-learning

DSA policies to those most appropriate for the AeNB

to share spectrum with them, resulting in the QoS im-

provement in both of these secondary access networks.

Table 2: Primary user quality of service (QoS) with and without the

presence of the secondary network (SN)

QoS metric (Mb/s) No SN With SN

Mean user throughput (UT) 3.03 3.07

95th percentile UT 3.16 3.16

5th percentile UT 2.76 2.90

Mean UT 0-100m from sta-

dium

2.95 2.93

An essential requirement for cognitive cellular sys-

tems is to ensure that they do not have a harmful effect

on the QoS in the primary system. Table 2 compares

the QoS provided to the users outside of the stadium

with and without the presence of the stadium users and

the secondary network. It describes the statistical distri-

bution of user throughput (UT) achieved by the primary

network. The equation for calculating UT for any given

UE, as defined by 3GPP (2010), is given below:

UT =

∑F

f=1
Sf

∑F

f=1
Tf

(12)

where F is the number of files downloaded by the given

UE, Sf is the size of the f th file, and Tf is the time it

took to download it.

Table 2 shows that the introduction of the secondary

stadium network and the AeNB results in an insignif-

icant degradation in the average probability of retrans-

mission and the mean UT provided to the primary users

in the 100 m vicinity of the stadium. Interestingly,

it even achieves an improvement in the 5th percentile

UT, which represents the minimum UT provided to at

least 95% of the users and which is an important met-

ric for ensuring fair QoS distribution across the whole

network. This is because the AeNB manages to provide

higher quality opportunistic links to some primary users

than those that could be provided by the local eNBs.

The results in Table 2 emphatically show that it is pos-

sible to develop a temporary heterogeneous cognitive

network that is capable of servicing a dramatic increase

in the mobile data capacity (546 Mb/s overall through-

put compared to 19.8 Mb/s in the primary system only),

but with no need for additional spectrum and with no

degradation in the primary user QoS.

6. Conclusion

The case-based Q-learning technique proposed in this

paper is an effective and feasible approach to DSA
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in dynamic cellular environments. Large-scale system

level simulations of a stadium small cell network with

an asymmetric time-variant topology show that aug-

menting classical Q-learning with the CBR functional-

ity in this way results in increased adaptability of the

cognitive cellular system to changes in its radio environ-

ment. For example, it is capable of achieving a two-fold

reduction in the number of retransmissions, compared to

a classical Q-learning approach, shortly after transitions

between different network topologies. However, as the

complexity of the dynamic environment and the possi-

ble number of network topologies increase, the perfor-

mance gap between classical and case-based Q-learning

decreases. Nevertheless, the proposed case-based Q-

learning approach achieves a consistent improvement in

the system QoS and its stability in the dynamic cellular

environment considered. Both case-based and classical

Q-learning DSA methods also dramatically outperform

a heuristic dynamic ICIC approach typical for current

LTE systems.

Simulations of a spectrum sharing scenario, where

the stadium small cell network shares the same LTE

channel with a cognitive aerial eNB and a local primary

network, show that the proposed approach achieves a

significant improvement in the reliability of the aerial

eNB, whilst maintaining a small yet consistent QoS im-

provement inside the stadium, compared to the classi-

cal Q-learning algorithm. Furthermore, these simula-

tions show that the cognitive cellular system that em-

ploys the case-based Q-learning DSA scheme with only

secondary access to an LTE channel, is able to accom-

modate a 28-fold increase in the total primary and sec-

ondary system throughput, but with no need for addi-

tional spectrum and with no degradation in the QoS of

the primary users.

Finally, one of the directions for further work on

the case-based Q-learning approach to DSA presented

in this paper is developing a theoretical framework for

it, e.g. using game theory (Alnwaimi et al., 2015) or

Bayesian networks (Morozs et al., 2016). While our

study provides a thorough empirical evaluation of the

proposed algorithm using large scale simulations, a the-

oretical model could help gain additional, deeper insight

into the potential performance gains and limitations of

case-based Q-learning.
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