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Abstract 

This paper considers dampers comprising collections of viscoelastic particles that are subjected to 

vibrations whose amplitude is such that slip between particles is negligible. Energy dissipation occurs 

primarily by viscoelastic processes within each particle and is maximised when standing waves are set 

up in the granular medium. In this work, the medium is represented as an equivalent viscoelastic solid 

and predictions of performance employ models constructed using standard finite element software. Two 

numerical approaches are considered: one uses the Direct Frequency Response and the other uses 

standard modal analysis in conjunction with analytical expressions for energy dissipation based on the 

wave equation. The performance of these prediction techniques is compared with measured behaviour 

from experiments on a box-shaped structure and a hollow composite tube assembly. The computational 

efficiency of the modal technique allowed a brief investigation of the effects of uncertainties in the 

actual nature of the granular arrangement. Results show that both prediction methods give a reasonable 

level of accuracy. Differences between predicted and measured behaviour are shown to be of the same 

order as the uncertainty in the prediction itself. For the systems considered, it is shown that the methods 

are appropriate for acceleration amplitudes up to almost that of gravity. 
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1 Introduction 

When a granular medium is subjected to vibration, energy is dissipated through inelastic deformation 

and friction between individual particles. If the granular medium is placed in a cavity that is integral to 

or attached to a vibrating structure, it can provide useful levels of damping. Performance depends on 

many parameters including vibration frequency and amplitude.  

One type of granular damper that has been studied extensively is the particle damper. Here the particles 

are small and hard, often metallic or ceramic, and the important energy dissipation mechanisms are 

friction and inelastic losses at the interface. This type of granular system, is not discussed here. Instead, 

this paper considers the damping obtained from granular systems where loss of contact or slip between 

particles is rare and damping arises from energy dissipation within the particle. Under such conditions, 

it has been shown that a granular medium consisting of relatively large and flexible polymeric spheres 

can provide very high levels of structural damping. This occurs for vibration modes of the host structure 

that occur in frequency ranges where standing waves are present within the granular medium. Under 

these conditions, excitation of the host structure leads to significant interaction with the vibration modes 

within the granular medium which act in a similar way to tuned mass dampers. 

Granular dampers employing standing waves in a collection of viscoelastic particles were first described 

publicly in a patent application by House and Hilliar (1990). Subsequently experimental studies were 

used to demonstrate the effectiveness of the method on hollow beams (Oyadiji, 1996; Pamley et al, 

2001; Rongong and Tomlinson, 2002). Theoretical methods, based on representing the granular 

medium as an equivalent solid, have been used to provide estimates of modal damping (Pamley et al, 

2001; Rongong and Tomlinson, 2002) and frequency response (Varanasi and Nayfeh) of hollow beams. 

These analyses were inspired by the original work of Ungar and Kerwin (1964) who derived expressions 

for the energy loss in thick viscoelastic layers bonded to metal plates. 

 At very high levels of excitation, even for highly damped soft particles, the equivalent solid assumption 

becomes invalid. The amplitude at which particles begin to separate is related to the ratio of vibration 

acceleration to gravitational acceleration.  It has been shown that separation first starts to occur under 

conditions where an internal resonance occurs in the granular medium and the location of the separation 

is at the maximum deflection point of the internal wave (Poschel et al 2000). For motion parallel to 

gravity, separation can occur when the acceleration ratio is less than unity.  

Numerical studies involving the Discrete Element Method have also been carried out for granular 

dampers consisting of soft, high loss particles (Darabi and Rongong, 2012). In this approach, the 

properties of individual particles (including mass, complex stiffness and friction) were defined and the 

energy dissipation estimated for large collections of these particles subjected to prescribed vibration. 

While this type of analysis gives considerable insight into the effects of individual parameters affecting 

performance, it is not suitable for optimisation of engineering structures containing granular dampers 
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because of the high computational cost involved. There is currently need for a prediction method for 

viscoelastic granular dampers that is compatible with large finite element models of irregular structures. 

This aim of this paper is to develop and evaluate approaches that are appropriate for high loss particles 

subjected at low amplitude vibrations (where inter-particle separation and slip are minimal) and energy 

dissipation is dominated by viscoelastic losses in the particles. These approaches provide predictions of 

energy loss in the medium and the resulting frequency response of the damped host structure. As the 

prediction methods model the granular medium as an equivalent viscoelastic solid, the paper considers 

the limits of applicability of such an approximation as the amplitude increases. 

2 Methodology and Objectives 

The focus of this work was to develop straightforward approaches for predicting the performance of 

granular dampers in engineering structures at low amplitude using computational resources normally 

available to practising engineers. The fundamental assumption used was that at low vibration levels, 

the majority of the particles would not separate and therefore their behaviour could be represented by a 

viscoelastic solid. While a procedure that couples the vibration of the flexible host structure to a 

viscoelastic discrete element code is likely to provide a more physically representative (and therefore 

possibly more general) solution, such tools are currently not widely available and the computational 

cost would be prohibitively high for design optimisation studies. Instead, the approach taken was to 

provide closed-form equations that can be used alongside standard finite element analysis procedures. 

The work presented here uses one granular system involving relatively large spheres made of an 

elastomeric material. Experimental and numerical studies are carried out when granules are used to fill 

two different types of structure: a rigid box and a hollow cylindrical beam. The similarity between the 

experimental and numerical results is used to validate the prediction procedures discussed in the paper. 

While, in the studies carried out, excitation is applied in a direction perpendicular to gravity, significant 

differences in results for excitation in other directions are not expected as the vibration amplitude 

remains small. 

The finite element models employed, for both the equivalent viscoelastic solid and the host structure, 

were constructed using quadratic brick elements with reduced integration. The mesh density was set in 

each direction such that there were at least 8 elements to approximate the shortest wavelengths 

considered. While in this work the commercial software Abaqus was used, any other code that could 

run elastic natural frequency extraction routines and frequency domain forced vibration analysis would 

have given the same results.  

The paper is structured around the need to achieve four principal objectives which are described briefly 

below.  
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1. To obtain properties of an equivalent viscoelastic solid from tests on the bulk material from which 

the granules are made. This includes efforts to account for uncertainty arising from the variable 

nature of typical granular arrangements and is discussed in Section 3. 

2. To evaluate methods to predict the energy dissipation within a granular medium subjected to low 

amplitude vibration. This is carried out using a rigid box filled with viscoelastic particles and is 

presented in Section 4.  

3. To develop and validate methods for predicting the damped frequency response of structures that 

are more complicated than rectangular beams. This activity is described in Section 5, where a 

composite tube with heavy metal end caps is subjected to transverse vibrations.  

4. To explore the limits to which predictions based on the equivalent solid approximation are valid. 

This was investigated experimentally by altering the vibration amplitude of the composite tube 

assembly and is described in Section 6.  

3 Equivalent viscoelastic solid 

As the vibration amplitude considered in this work is relatively low, it was possible to consider the 

granular medium as an equivalent viscoelastic solid. This is an important simplification as it allows 

predictions to be made using standard finite element software. For consistency, the granular medium 

considered here was composed of nominally identical spheres (each 15.1 mm in diameter) made from 

an elastomeric polymer selected to have its transition zone near room temperature. The procedure 

undertaken to obtain equivalent properties is described here including efforts to account for 

uncertainties arising from the precise nature of the granular arrangement. 

3.1 Viscoelastic behaviour 

As this work concentrated on frequency domain behaviour, the complex modulus approach was 

considered adequate. This is written as, 

 * 1v vE E j           (1) 

where vE  is the elastic modulus, v  is the loss factor and 1j   . Note that causality is satisfied if 

the loss factor tends to zero at low frequency. 

For the polymeric material used, information regarding the temperature and frequency dependence of 

the complex modulus was condensed into its viscoelastic master curve. This curve was constructed by 

applying the temperature-frequency superposition principle (Ferry, 1980) to measured data obtained 

using Dynamic Mechanical Thermal Analysis (DMTA) equipment. The method assumes that the 

modulus and loss factor at temperature T  can be obtained from known frequency dependent properties 

at a reference temperature rT  by multiplying the frequency scale by a shift factor   that is specific for 
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that material at that particular temperature. To account for the increase in stored energy with 

temperature, and additional scaling is required for the elastic modulus such that, 

rv
r

T
E E

T
           (2) 

where rE  is sometimes referred to as the reduced modulus. Thus the complex modulus at any 

temperature and frequency can be recovered if curves defining the reduced modulus and loss factor 

against frequency are constructed and a suitable curve linking temperature and frequency shift is 

specified. 

For the material considered here, a cuboid specimen (11.54.53.5 mm) was cut from one of the 

polymer spheres. It was bonded between two parallel plates on the DMTA machine, as shown in Figure 

1, and excited in a tension-compression mode. The upper plate was controlled to move sinusoidally 

with amplitude 9.2 m and the resulting force signal was used to find the complex stiffness of the 

specimen and hence the Young’s modulus and the loss factor for the material. Characterisation was 

carried out at a number of frequencies between 1 and 30 Hz over a temperature range 60 to 60 C. 

  

Figure 1: DMTA characterisation of polymer specimen using Metravib VA2000 equipment 

The frequency dependent reduced modulus and loss factor curves were obtained at a reference 

temperature 17rT   C, by defining and optimising the shift factor for each temperature. The 

optimisation routine used the Differential Evolution algorithm and aimed to minimise the distance from 

individual data points to smooth, spline-based curves. The resulting curves are presented in tabular form 

in Table 1. The quality of fit of individual points to the master curves can be seen in Figure 2 from 

which it can be concluded that there is relatively low scatter. 
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Figure 2: Fit of individual data points to complex modulus curves presented in Table 1 

Note that to recover properties at a desired frequency Hz  and temperatureT , first the reduced 

frequency should be found by applying the correct frequency shift. The shift factor for the desired 

temperature is found by interpolation of the shift curve in Table 1. Thus, 

10 , 10 10log ( ) log ( ) log ( )r Hz Hz           (3) 

Reduced modulus and loss factor are be obtained by interpolation of the complex modulus curve in 

Table 2 after which the actual elastic modulus is calculated using Equation 2.  

Table 1: Viscoelastic properties of polymeric material 

Frequency / temperature shift 
curve 

 Complex modulus curve 

T , C 
10log ( )  10 ,log ( )r Hz  10log ( )rE  10log ( )v  

   -60     5.2330    -3.5848     6.2017    -0.9705 
   -52     3.9814    -2.8585     6.2685    -0.9676 
   -44     2.8592    -2.1321     6.3142    -0.8590 
   -36     1.8582    -1.4058     6.3697    -0.6662 
   -28     0.9706    -0.6795     6.4574    -0.3819 
   -20     0.1884     0.0468     6.6348    -0.1520 
   -12    -0.4964     0.7731     6.9456    -0.0079 
    -4    -1.0916     1.4994     7.3179     0.0604 
     4    -1.6052     2.2258     7.6934     0.0667 
    12    -2.0453     2.9521     8.0797     0.0344 
    20    -2.4196     3.6784     8.4526    -0.0234 
    28    -2.7363     4.4047     8.7777    -0.0992 
    36    -3.0032     5.1310     9.0769    -0.1943 
    44    -3.2283     5.8574     9.3519    -0.3230 
    52    -3.4195     6.5837     9.5541    -0.5264 
    60    -3.5848     7.3100     9.6743    -0.7055 
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3.2 Equivalent properties for a granular system 

The average density of a granular system is, 

v              (4) 

where v  is the mean density of each particle and   is the packing fraction.  As the energy dissipation 

contribution of inter-particle friction is ignored, the loss factor for the equivalent solid can be assumed 

to be the same as the loss factor for the original viscoelastic material, hence, 

v              (5) 

The effective Young’s modulus and Poisson’s ratio of a granular system are known to be much lower 

than that of the bulk material. The approach taken in this paper was to use expressions for an equivalent 

solid based on randomly packed identical spheres derived by Walton (1987). For rough spheres 

subjected to an applied hydrostatic pressure p , the effective Poisson’s ratio for the equivalent solid   

is given by,  

2(5 3 )
v

v







          (6) 

and the associated Young’s modulus, 

1
2 2 2 3

2 2

31 2

2 (1 )
vE N p

E


 
 

   
        (7) 

where v  and vE  are the Poisson’s ratio and the elastic part of the Young’s modulus of the material 

that the spheres are formed of, and N  the average number of contact points per particle (the 

coordination number). From Equation 7 it can be seen that in addition to the properties of the polymer 

material itself, there are three parameters that control behaviour: the packing fraction, the coordination 

number and the confining pressure. These are discussed briefly in the following sections. 

Packing fraction and coordination number 

The specific way in which the particles are ordered within a cavity affects the packing ratio and the 

coordination number. For regular arrangements, this can be calculated theoretically: for example, a face-

centred cubic (FCC) arrangement has a packing factor 0.74   and coordination number 12N   

while for a cubic arrangement 0.524   and 6N  . Random arrangements have been studied 

numerically and experimentally by many researchers (Iwata and Homma, 1974; Nolan and Kavanagh, 

1992; Zamponi, 2008). It has been shown that packing is affected by factors such as friction, applied 

pressure and size ratio between particle and container. Quoted values for mono-sized, randomly packed 

spheres typically occur in the ranges 0.52   to 0.64 and 4N   to 6 . 
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Confining pressure 

In a cavity filled with particles, even under static conditions, the pressure (and hence the deflection) 

varies with depth because of gravity loading. The granular system redirects some of the load to the 

cavity walls so that the pressure in a deep fill is less than would be in an equivalent fluid. One of the 

earliest models linking pressure to depth was provided by Janssen (1895) and the subject has remained 

an active area of research since. For the purposes of this work, Janssen’s approach was considered 

adequate to provide the confining pressure (in Equation 7) and therefore, 

(1 )gShg
p e

S



            (8) 

where g  is the acceleration due to gravity,  gh  is the depth in the direction of gravity,  and   is an 

empirical load redirection factor that depends on the granular medium itself. S  is the shape factor of 

the container and is the ratio of the perimeter to the area of the container cross-section perpendicular to 

gravity. 

3.3 Specification of parameters 

The equations in Section 3.2 show that even with considerable simplification, there remain a significant 

number of parameters required to obtain an equivalent solid model. As some of these can vary 

depending of the exact nature of the packing and others are not straightforward to measure exactly, an 

attempt was made to take into account the resulting uncertainty. The field of uncertainty quantification 

is extensive but is not discussed in detail here. Instead, a brief justification is provided for the approach 

employed. From the literature and qualitative observations, it was clear that the parameters affecting 

the arrangement of particles lie within typical ranges with more results near the mean value and a 

relatively small number of outliers.  For this reason the distribution was assumed Gaussian and the 

range of values based on  2 standard deviations (approximately 95% of all results). Uncertainty was 

then accounted for using 1000 different simulations with parameters selected randomly assuming a 

Gaussian distribution. Alternatives to this approach would be to assume random distribution within a 

range whose endpoints are uncertain, or to approach the problem from an info-gap theory perspective 

(Ben-Haim, 2001).  However, as the purpose of this exercise was to help judge the accuracy of 

modelling approaches against inherent variability in the system rather than a dedicated evaluation of 

uncertainty, the method used was considered adequate. Values selected for parameters are given in 

Table 2.  
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Table 2: Parameters used to define the granular material 

 
Parameter 

Symbol Mean value Standard 
deviation 

Packing ratio  0.58 0.03 
Coordination number N 6 1 
Redirection factor  0.65 0.075 
Friction coefficient  1 0.1 
Temperature, C T 22 2 
Gravity, m/s2 g 9.81 0 
Density of polymer, kg/m3 v 1170 0 

 

It can be seen in Table 2 that the temperature is also taken as a variable parameter. While this is not a 

specific property of the granular medium, the properties of the viscoelastic material were very sensitive 

to temperature it and it was not possible to define it more precisely in the laboratory conditions. Other 

parameters including dimensions were given crisp values. It was assumed that the ranges considered 

for coordination number and packing fraction would account for variations in the depth caused by the 

randomness of the particle locations. 

4 Energy dissipation 

This section reports a comparison between experimentally measured and numerically predicted energy 

dissipation provided by a granular medium. In this study, the viscoelastic spheres discussed in Section 

2 were placed in an open sided box and vibrated perpendicular to gravity over a relatively wide 

frequency range at low overall amplitude. The test configuration was the same as used elsewhere to 

characterise moderately low frequency, high amplitude damping in granular systems (Darabi and 

Rongong, 2012). The suspension arrangement minimises energy losses from sources other than the 

granular material. 

4.1 Rigid box 

The open-sided box was constructed using polymethyl methacrylate (PMMA) blocks, each of thickness 

30 mm, to create a cavity with dimensions 18012040 mm. The box was suspended with the open 

side facing upwards using supports with sufficient flexibility to approximate free boundary conditions. 

Excitation was applied horizontally in line with the longest dimension of the cavity as shown in Figure 

3. 
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Figure 3: Rigid box configuration 

The design of the box ensured that its fundamental resonance was much higher than the frequency range 

of interest for this study (between 10 and 400 Hz). This allowed investigation of the performance of the 

granular medium itself as the vibration of the boundaries did not change with position.  Additionally, 

as the box was shallow and had an open face, the level of confinement experienced by the particles was 

relatively low.  

4.2 Physical experiment 

The box was suspended using nylon line and light metal springs in series. The suspension modes were 

found to occur at frequencies below 5 Hz. Sinusoidal excitation was provided via an electrodynamic 

exciter attached to one end of the box through a slender drive rod. The applied force was measured with 

a piezoelectric transducer and the acceleration near the excitation point measured with a small 

piezoelectric accelerometer. Force and acceleration signals were obtained for excitation amplitudes of 

10, 1 and 0.1 m over a range of frequencies between 10 and 400 Hz. The experiment was first 

conducted with the container empty in order to find the phase error due to the boundary conditions and 

electronics. This error, although relatively small (5% at 350 Hz), was subtracted from measurement to 

provide the corrected contribution of the granular medium. The container was filled with 260 randomly 

placed particles and tests repeated. The dissipated power was obtained from, 

 1
| || | cos

2real F VP F V            (9) 

where F  and F  are respectively the amplitude and corrected phase angle of the force signal and V  

and V  the amplitude and corrected phase angle of the velocity. Note that the frequency domain velocity 

information was obtained from the Fourier Transform of accelerometer readings divided by j  where 

  is the excitation frequency in radians/second. The power dissipated at different amplitudes and 

frequencies is presented in Figure 4. 
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Figure 4: Measured power dissipation at different vibration amplitudes 

As the dissipated power spans a very wide range of values, the final comparison between experiment 

and prediction was made using an equivalent viscous damper (that is, a grounded viscous damper that 

would dissipate power at an equivalent rate) so that results at different frequencies could be 

conveniently plotted on the same figure. The equivalent viscous damper is defined as, 

2

2 real
eq

P
c

V
           (10) 

4.3 Properties of equivalent solid 

One of the parameters affecting the Young’s modulus of the equivalent solid is the confining pressure: 

the relationship is described in Equation 7. The Janssen estimation for pressure using Equation 8 and 

properties defined in Table 2 for this container is shown in Figure 5. Uncertainty bounds of two standard 

deviations (approximately 95%) are also shown.  

 

Figure 5: Pressure distribution in the box configuration (dashed lines show 2 bound) 

Examination of Figure 5 shows that even for a shallow container, the pressure is not purely hydrostatic 

– the high coefficient of friction results in some redistribution of the load to the container walls. Also, 
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in this experiment, the viscoelastic spheres were of significant size in comparison to the container depth 

resulting in a variation of true depth across the surface. Thus, considering Equations 7 and 8 together, 

the equivalent modulus of the granular medium varied throughout its volume and could vary depending 

on the exact arrangement of particles. As such a variation in depth and modulus was inconvenient for 

use with standard finite element analyses, the approach taken was to use properties at a depth of 18.7 

mm – the mean depth obtained from the number of spheres and the fill ratio. Based on this 

approximation, an average pressure of 103.7 Pa and standard deviation 6.7 Pa were used in subsequent 

calculations. 

The equivalent complex modulus for the granular fill, obtained using Equations 5 to 7 is shown in 

Figure 6. Note that the equivalent density had a mean value of 679 kg/m3 and a standard deviation of 

35 kg/m3. 

 

Figure 6: Equivalent properties of granular fill in the open-sided box (dashed lines show 2 

bounds) 

4.4 Direct frequency response 

With the complex modulus specified, one way to estimate the energy dissipation was to calculate the 

dissipated power when the system is subjected to sinusoidal base motion. To account for frequency 

dependence in the viscoelastic material, a Direct Frequency Response (DFR) calculation was performed 

on a finite element model of a block representing the equivalent viscoelastic material. The block was 

restrained on the five faces that would have contacted the inside of the box. Base motion was then 

prescribed at this boundary. The reaction force for displacement amplitude vector X  was,   

2F j X     K K M         (11) 
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where K , K  and M  are the complex stiffness and mass matrices of the finite element model. The 

equivalent viscous damper was obtained from this information using Equations 9 and 10. Note that in 

the frequency domain V j X . 

The direct frequency response is computationally expensive as it requires the inversion of the 

impedance matrix for the full system at every desired frequency. Calculations were only attempted 

using the mean value for modulus rather than for all 1000 variations.  

4.5 Modal approach 

A procedure using properties of the vibration modes of the granular medium was also investigated. 

Normal eigenvalue analysis routines do not allow for frequency dependence of the modulus. As the 

finite element model involved a single material only – the equivalent solid – it was reasonable to assume 

that mode shapes were not affected by modulus and the natural frequencies varied according to, 

,n re

re

f f

f

e

n

r

E

E


 

          (12) 

where ,n ref  is the natural frequency for a reference condition where the Young’s modulus was refE

and the density ref . With this assumption, the vibration due to the base excitation of each mode could 

be summed. Hence, the force required to produce a given base motion amplitude X  can be obtained 

for A modes using, 

2
2

1

1 2

1 2

A
a a

a
a a a a

j r
F X m

r j r




 
    

        (13) 

where am  is the effective modal mass, ar  the ratio of the excitation frequency to the natural frequency 

of each mode and a  the modal damping. Note that the modal damping in this case can be obtained 

from the material loss factor using, 

 
2a

            (14) 

In the work reported here, the first 1000 vibration modes of the block were found to span the desired 

frequency range 0 to 400 Hz. Because of Equations 12 and 14, only one eigenvalue extraction 

calculation was necessary. Subsequently, predictions were made for each of the 1000 variations in 

material property. Power and hence equivalent viscous damper values were then found.   

4.6 Results 

The equivalent dampers for experiment, DFR and modal methods are presented in Figure 7. It can be 

seen that the measured results at different amplitudes lie close to the predicted values. The DFR result 
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lies within the uncertainty bound of the modal method but it lies towards the lower boundary. The 

sudden rise in damping above approximately 60 Hz relates to the presence of the first wave mode in the 

granular material. Predictions above 400 Hz were not attempted as more modes would have been 

required from the eigenvalue extraction routine. 

 

Figure 7: Equivalent damper for box subjected to horizontal excitation 

Deformed shapes, from the DFR calculation, are presented in Figure 8 to show the increasing 

complexity of the standing waves as the frequency increases. It is interesting to note that significant 

vertical movement of the granular material occurs for this configuration. 

 

 

Figure 8: Section views of deformations within the granular medium at different frequencies 

5 Composite tube assembly 

In the previous section, it was shown that the equivalent solid model could be used in conjunction with 

standard finite element analysis to predict energy dissipation in granular materials subjected to low 

amplitude vibration. In this section, efforts are made to predict the frequency response of a typical 

engineering structure damped using a granular fill. 

5.1 Composite tube assembly 

This configuration involved a circular-section, roll-wrapped, carbon fibre composite tube fitted with 

heavy aluminium end caps. The tube was 1255 mm in length with an inner diameter of 50.7 mm and a 
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mean wall thickness of 1.8 mm. Push-fitting solid aluminium caps, whose dimensions are shown in 

Figure 9, were attached to the ends. The entire system was suspended vertically from the upper end cap 

while excitation was applied horizontally on the lower cap. 

 

Figure 9: Composite tube assembly 

Features of this configuration that made it interesting for this study include: 

1. Non-parallel walls in the direction of forcing, 

2. A deep cavity allowing for a significant build-up of static pressure within the granular medium, 

3. A multi-part structure with different materials – specified in Table 3.  

Table 3: Properties of composite tube assembly 

Part Property Unit  Value 
Tube E (along tube) GPa 85 
 E (other directions) GPa 19 
 Shear modulus GPa 4.6 
 Poisson’s ratio  0.14 
 Density kg/m3 1600 
End cap E GPa 70 
 Density kg/m3 2700 
 Poisson’s ratio  0.33 

 

This configuration was intended to provide suitably challenging conditions for the prediction methods 

to be tested under. 

5.2 Experimental results 

The composite tube assembly was suspended vertically using similar nylon line and helical springs as 

the box described in Section 3. As with the box, suspension modes were found to occur below 5 Hz. 

Vibration input was supplied by an electrodynamic exciter capable of delivering 100 N peak sine force. 

This was attached to the lower end cap in a radial direction through a force transducer. The response 
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was measured at both end caps at positions diametrically opposite the force transducer using miniature 

accelerometers.  

Low amplitude, band-limited random excitation was applied to the structure and the acquisition system 

was set to obtain the frequency response function (FRF) based on 100 averages using a Hann window. 

For conciseness, results presented here focus on results obtained using the accelerometer attached to 

the same end cap as which forcing was applied. However, it was verified that measurements taken at 

the other end cap would have provided the same conclusions. 

FRFs for the composite tube assembly empty and full of the granular material are presented in Figure 

10. For the empty system, lightly damped resonances can be seen at 159, 492 and 921 Hz. When 

approximately 1.7 kg of spherical particles was used to fill the tube, the higher frequency resonances 

vanished while the damping ratio of the first resonance increased from 0.001 to 0.064. This level of fill, 

where the added mass of particles is approximately the same as the mass of the host structure, is not 

often practical for use. However, it was considered useful for this study as it provided an extreme case 

for the simulation methods to deal with.  

 

Figure 10: Measured frequency response of composite tube assembly 

5.3 Predicted results 

The frequency response of the tube was predicted using FE analysis and employing the equivalent solid 

assumption. Responses were calculated using both the DFR routine and a modal approach which is 

described below.  

Material properties 

The depth of the tube and the high coefficient of friction between particles meant that the pressure 

reached a limiting value at depths exceeding 0.1 metres – see Figure 11. Hence most of the granular 

material was at uniform pressure. For subsequent calculations therefore a nominal value of pressure 

was used for each simulation. This was defined as the average pressure through the volume after 

ignoring 5% of the fill lying nearest to the top surface. 
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Figure 11: Pressure distribution in tube with depth (dashed lines show the 2 bounds) 

Complex modulus data were obtained for each of the 1000 variations of material properties using 

Equation 7. The mean and range of these properties with frequency is shown on Figure 12. 

 

Figure 12: Equivalent properties of granular fill in the composite tube assembly (dashed lines 

show the 2 bounds) 

Response prediction 

Because of computational expense, the DFR calculation was only carried out for one set of material 

properties – the average values. A modal approach was developed to allow faster evaluation of the 

results. Unlike the box discussed in the previous section, it was not possible to extract the vibration 

modes of a filled tube directly and adjust values according to exact modulus and density. This was 

because the size of the cavity meant that there were a very large number of wave modes in the granular 

medium: the 1500th vibration mode had a natural frequency below 300 Hz. Also, because the structure 

was made of several different materials, direct scaling would have been inaccurate. Instead, the 
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approach taken here involved combining analysis originally developed for thick, soft viscoelastic layers 

with FE based modal analysis of the empty structure. 

Ungar and Kerwin (1964) were the first to show that vibration levels in a metal-viscoelastic structure 

can be reduced if standing waves are induced within the viscoelastic portion. They developed 

expressions for the energy stored and dissipated in a thick viscoelastic layer attached to a flat metal 

plate subjected to out-of-plane vibrations. Defining x  and u  to be the position and displacement 

perpendicular to the plate surface, they represented the motion within the layer using the wave equation, 

2
2

2
0

d u
k u

dx
            (15) 

where at frequency  , the complex wavenumber is, 

1

2(1 )(1 2 )

(1 )
k k jk

E

  


        
       (16) 

For a layer of thickness 2h  subjected to base plate motion of 0u , noting that the strain at the free surface 

is zero, they showed that the deflection in the layer is given by, 
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from which they derived expressions for peak kinetic energy and work done per cycle. These 

expressions were defined per unit area of the plate i.e. the area perpendicular to the direction of motion.  

Subsequently, House and Hilliar (1990) recognised that the deflection of material enclosed between 

face plates could be represented by the same equation because of symmetry, provided that 2h  was set 

as the distance from one wall to the centreline and the face plates did not move relative to one another. 

For these conditions, the average energy dissipation per radian is given by, 
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     (18) 

where h  the full depth of the granular medium in the direction of motion. In the same way, the peak 

kinetic energy in the granular medium is, 
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While previous studies have generally focused on systems with parallel faces such as layered plates and 

box section beams, it is possible to approximate behaviour for cavities with non-parallel faces because 

the energy expressions are defined per unit area. Consider a segment depth h  through the entire 

structure in line with the applied excitation which has area s  perpendicular to the excitation. If the 

walls at each end move by the same amount, Equations 18 and 19 can be applied to that segment. 

Summing over the entire area perpendicular to the excitation, the system loss factor can be defined as, 

energy dissipated per radian

peak strain energy
s

s b

D

T T





 





      (20) 

where bT  is the kinetic energy in the host structure.  

In the most general case, the host structure is subject to resonant vibration. If the cavity is extensive, 

different parts may move by significantly different amounts.  To keep the analysis simple, it was 

assumed in this work that the walls of the cavity directly opposite each other did not move relative to 

one another, effectively neglecting squashing or stretching of the cavity. The average motion of a unit 

segment of the cavity is therefore given as, 

 0
Tu q            (21) 

where   is the vector of average mode shapes of the cavity walls and q  is the vector of coefficients 

describing the participation of individual modes in a particular vibration. Also, noting that at resonance 

the damping ratio is half the value of the loss factor, it can be expressed as, 
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where s  is the specific mode shape at the cavity segment considered and 2
b  is the average squared 

mode shape of the entire host structure. 

In this way, it was possible to account for the damping from the granular material using the finite 

element model for the empty host structure. However, as the added mass of the granular material was 

significant, natural frequencies, modal masses and mode shapes of the host structure would have been 

changed considerably. In this work, to account for this, the mass of the granular fill was distributed 

evenly around the boundary of the cavity by increasing the density of the composite material to account 

for the added particles. The mass of the segment of composite tube encasing the particles was 0.579 kg. 

To account for the addition of 1.7 kg of particles, the density of these elements was raised to 6224 

kg/m3.  

Within the frequency range of interest, the tube displayed three types of vibration mode: flexure (similar 

to a beam), torsion (with significant circumferential deflection) and modes where the tube walls bend. 
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Examples of these mode types are presented in Figure 13 while natural frequencies of the lower modes 

are presented in Table 4. 

 

Figure 13: Mode types for the tube assembly 

Table 4: Natural frequencies of the tube assembly 

Mode 
Number 

Mode type Natural frequency, 
Hz 

  Empty Full 
1,2 Flexure 156 101 

3 Torsion 272 227 
4,5 Flexure 489 278 

6 Torsion 797 494 
7,8 Flexure 936 510 

9,10 Tube wall 1164 590 
11,12 Tube wall 1191 604 
13,14 Tube wall 1259 638 
15,16 Tube wall 1380 701 
17,18 Flexure 1382 766 

 

The frequency response was then calculated from the modal data using, 
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where am  is the modal mass, ,a in  and ,a out  are the mode shape at forcing and measurement point 

respectively. Frequency responses for the 1000 variations in material properties calculated using this 

method can be seen in Figure 14. It can be seen that the scatter in the FRF was relatively low.  
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Figure 14: Predicted FRF curves modal data (all 1000 variations) 

5.4 Comparison between measured and predicted behaviour 

Frequency responses produced from the two numerical approaches are compared with the 

experimentally obtained response in Figure 15. For clarity, only the average modal response curve is 

shown on this plot.  

 

Figure 15: Comparison of FRF prediction methods against measured 

It can be seen that all three curves lie relatively close to one another – particular if one considers the 

response before the granular fill was added (Figure 10). The DFR result is somewhat closer to the 

experiment. However, this is not wholly surprising considering the simplifications involved in the 

modal approach. Careful observation shows that the largest errors in the modal method occur at 

frequencies near the torsion modes (227 and 494 Hz) that involve significant deformation of the tube 

cross-section which makes the average motion assumption less accurate. 

It is interesting to observe what is happening inside the granular medium as the tube vibrates. Cross 

sectional views of the tube at different frequencies are shown in Figure 16. Note that the excitation 

direction is parallel with the horizontal axis in this figure. 
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Figure 16: Section view of filled tube at different frequencies taken from DFR analysis 

At low frequencies, the centre of the granular medium moves more or less in phase with the walls. As 

the frequency increases, the centre tends to deflect more than the walls and the phase difference 

increases. At 170 Hz, the frequency at which the loss factor is maximised according to Equation 20, the 

motion of the centre is 180 out of phase with the walls and of a similar magnitude. As the frequency 

increases further, the motion of the centre reduces towards zero and deformation of the granular fill 

involves higher order waves in the radial direction. 

6 Limits of applicability 

The work has shown that the prediction methods discussed in this work provide good estimates of 

energy dissipation and host structure vibration. For the box structure, it can be seen from Figure 7 that 

the prediction remains accurate for acceleration levels as high as 6 m/s2. It was considered important to 

investigate the acceleration amplitude to which such methods are valid. The composite tube assembly 

was used for this experimental study. 

The main difference between the testing done here and that reported in Section 5 was that amplitude-

controlled sinusoidal forcing was used instead of random. As only the first resonance near 100 Hz was 

detectable, stepped-sine testing was concentrated around this frequency. Results for natural frequency 

and modal damping ratio are presented in Figures 17 and 18.    

 

Figure 17: Natural frequency of first mode 
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Figure 18: Damping ratio of first mode 

It can be seen from the results that when the acceleration increases beyond approximately 4 m/s2, results 

start to deviate from the prediction: natural frequencies drop at higher amplitudes and damping ratios 

increase due to the added contribution of friction at the interfaces. For this mode, vibration at the tube 

midpoint is around 16% higher than at the measurement point. Also, from Equation 17, it can be found 

that the ratio of the motion at the centre of the fill to the tube wall is approximately 2.2. The condition 

under which the equivalent solid approximation begins to fail is therefore approximately the point at 

which the largest motion in the bulk of the granular material exceeds gravity. This is consistent with 

the findings of Poschel et al (2000). 

7 Conclusions 

This paper set out to develop and evaluate prediction methods for viscoelastic granular dampers under 

low amplitude vibrations that are compatible with commercial finite element analysis software and can 

be used for irregular cavities. The work has demonstrated two methods that achieve this to reasonable 

accuracy. Both rely on modelling the medium as a solid and on obtaining equivalent elastic properties. 

One method uses the Direct Frequency Response and although computationally expensive, will provide 

reliable predictions. The other approach involves combining standard eigenvalue-based mode 

extraction routines with theoretical approximations that yield modal damping ratios. This approach is 

inexpensive in terms of computing effort. 

The effectiveness of these methods was demonstrated by comparing predictions with experimental 

results from two very different experimental configurations. An rigid open box was used to study the 

energy dissipation over a range of frequencies. This showed that dissipation increased once standing 

waves were generated in the granular medium. A composite tube with heavy metallic ends was used to 

show the effectiveness of the methods in the predicting frequency response of a structure damped using 

viscoelastic granules. In both cases, the predictions matched the measured results with reasonable 

accuracy. 
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A numerical study showed that while the arrangement of the granular system could vary significantly, 

the overall effect on the energy dissipation and damping were not dramatic. Experiments also showed 

that for the particles considered, equivalent solid type behaviour was observed up to approximately the 

acceleration due to gravity. Damping tended to increase as the amplitude rose beyond this. This result 

shows that in this type of granular system, energy is dissipated primarily within the particles at low 

amplitudes however frictional losses become significant when the bulk acceleration levels within the 

granular medium approach that of gravity.    
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