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Short Title

Recommendations on multiple testing adjustment in multi-arm trials

Abstract

Multi-arm clinical trials assessing multiple experimental treatments against a shared control group
can offer efficiency advantages over independent trials through assessing an increased number of
hypotheses. Published opinion is divided on the requirement for multiple testing adjustment to
control the familywise type-I error rate (FWER). The probability of afalse positive error in multi-
arm trials compared to equivalent independent trials is affected by the correlation between
comparisons due to sharing control data. We demonstrate that this correlation in fact leadsto a
reduction in the FWER, therefore FWER adjustment is not recommended solely due to sharing
control data. In contrast, the correlation increases the probability of multiple false positive outcomes
across the hypotheses, although standard FWER adjustment methods do not control for this. A
stringent critical value adjustment is proposed to maintain equivalent evidence of superiority in two
correlated comparisons to that obtained within independent trials. FWER adjustment is only
required if thereis an increased chance of making asingle claim of effectiveness by testing multiple
hypotheses; not due to sharing control data. For competing experimental therapies, the correlation
between comparisons can be advantageous as it eliminates bias due to the experimental therapies

being compared to different control populations.

Keywords
multiple testing; multi-arm clinical trial; familywise error rate; type-1 error; multiplicity; shared

control group; correlated comparisons; al pha adjustment



1. Introduction

A typical confirmatory two arm trial would usually compare an experimental treatment against the
current standard within the population of interest. For several reasons, it is advantageous to conduct
multi-arm trials, in which a number of experimental treatments are compared to the current
standard. Firstly, such trials are more efficient since they use the data collected on the control
group more than once so fewer patients are required. Secondly, trial set-up times and costs can be
reduced over running separate trials. Finally, increasing the number of experimental arms increases

the chance of finding a successful treatmenEI

When testing a hypothesisin a phase I11 clinical trial, the chance of afalse positive result, known as
the type-1 error, is required to be stringently controlled. The convention isto set this error, usually
denoted by a, to be no greater than 5% by setting the one-sided p-value to <0.025. If more than one
hypothesisis to be tested within a set, or family, of hypotheses, the chance of afase positive
conclusion occurring anywhere within that set is known as the familywise error rate (FWER). That
is, the FWER is the probability of at |east one false positive conclusion being declared anywhere

within afamily of hypotheses.

There are conflicting viewpoints within the literature on whether the relevant errorsto control in the
case of multi-arm trials are the individual type-1 errors for each hypothesis, known as the pairwise
error rates, or the overall FWER for all hypotheses combined. The crux of theissueis how ‘family’
should be defined; whether all hypotheses belong to afamily simply because they share a protocol
and control group, or whether afamily is a set of hypotheses that are related in that they contribute

towards asingle claim of effectiveness.

The literature on requirement for multiplicity adjustment is often based on philosophical opinions,
rather than statistical theory considering the actual effect on the type-1 error rates of using a shared
control group compared to running independent trials. Some literature, including a points to
consider document from the European Agency for the Evaluation of Medicinal Products (EM EAEI
advocates strong control of the FWER for confirmatory claims because the hypotheses are being
tested within a single experiment, regardless of the relatedness of the hypotheeefﬂ Others argue

that adjustment is not required in al cases, particularly athough not exclusively, where the
experimental arms do not contribute towards a single claim of effectiveness, because the designis
essentially just running a number of different trialﬂ Although most of the literature agrees that the

need for adjustment should be considered and justified in each case, including the International
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Conference on Harmonisation (ICH) E9 guidance of Statistical Principlesfor Clinical Trialﬂ no
literature has been found to give comprehensive guidance from a quantitative, rather than
philosophical, perspective on which situations require type-I error adjustment and which do not.

Discussion points from the Statisticians in the Pharmaceutical Industry multiplicity expert group
state that “the concern with multiplicity isthat, if it is not properly handled, unsubstantiated claims
for the effectiveness of a drug may be made as a consequence of an inflated rate of false positive
conclusions’EI In this manuscript, we therefore break down and quantitatively investigate the
aspects of amulti-arm trial that affect the chance of different types of false positive errorson a
claim of effectivenessin order to make informed recommendations on the need for adjustment. We
begin by providing examples in Section 2, and describing the background to multiplicity concerns
in multi-arm trialsin Section 3. In Section 4 we investigate the effect of the shared control data on
the chance of type-l errors. Section 5 shows the probabilities of type-1 errors after applying common
multiplicity adjustment methods in the case of shared control data, and we compare these to the
errors had the hypotheses been assessed within independent trials. In Section 6 we suggest a
correction to control for the increased probability of multiple type-l errors that advantage the
experimental treatment, which may be necessary where more than one superior outcome within the
protocol could inform the same claim of effectiveness. The paper concludes with adiscussion in
Section 7.

2. Motivational examples

Three examples of multi-arm trials with different types of design and varying levels of relatedness

between the hypotheses are considered in this article.
2.1 MRC COIN

The phase IIl MRC COIN triaEIin previously untreated patients with colorectal cancer had three-
arms and two primary hypotheses. The control treatment was chemotherapy with oxaliplatin and
fluoropyrimidine (OxFP) given continuously (arm Z). One experimental arm included an additional
therapy cetuximab to OxFP (arm A), and the other assessed the chemotherapy OxFP given
intermittently (arm B). Patients were randomised to the three treatment arms with a 1:1:1 ratio, and
the trial objective wasto assess a differencein overall surviva at two years for each of the

comparisons, am AvsZ and aam Bvs Z.



2.2 AMAGINE-1

The phase I1l AMAGINE-1 trial (clinicaltrials.gov identifier: NCT01708590) was run by Amgen /
AstraZeneca from 2012 to 2015. Thetrial assessed the safety and efficacy of brodalumab taken
every two weeks via subcutaneous injection at two doses (140 mg or 210 mg) compared with
placebo in patients with moderate-to-severe plaque psoriasis. The primary hypotheses concerned the
efficacy of brodalumab compared to placebo, as assessed by Static Physician Global Assessment
(sPGA) score and improvement in Psoriasis Area and Severity Index (PASI) at 12 weeks.

2.3 Myeloma XI+ Intensive

The Myeloma XI Intensive trial (Clinical Trials.gov Identifier: NCT01554852) at the University of
L eeds opened to recruitment in 2010, comparing the current standard therapy CTD
(cyclophosphamide, thalidomide and dexamethasone) with CRD (cyclophosphamide, lenalidomide
and dexamethasone) in terms of progression-free survival (PFS) in newly diagnosed patients with
Multiple Myeloma. It was anticipated that recruitment would take up to four years, with the
required number of events occurring within three years after the close of recruitment. During
recruitment, early evidence suggested a new therapy, carfilzomib, added to the existing CRD
regime (CCRD) might improve efficacy. Since it was of interest to assess CCRD as soon as
possible, the follow-on Myeloma X1+ intensive trial was designed without waiting for the results of
the original trial, and opened to recruitment in 2013 following on seamlessly from Myeloma XI.
The Myeloma X1+ trial therefore compared the experimental therapy CCRD to the current standard
control CTD and the previous experimental therapy CRD at a 2:1:1 randomisation in order to
protect thetrial in the case that CRD was found superior and superseded CTD as the standard
therapy before the amended trial had completed and reported.

3. Background to multiplicity concernsin multi-arm trials

3.1 Shared control data

If two experimental treatments, say A and B, are to be compared against the current standard, say Z,
in independent trials, it is accepted that there is no requirement for multiple testing adjustment. If
these two hypotheses are instead assessed within the same protocol, where the data remain entirely
independent and non-overlapping with separate control groups Z: and Z», and the hypotheses are

both powered separately and appropriately (figure 1a), it would be difficult to argue for multiple
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testing adjustment since there is no multiple use of any data. The sharing of a protocol or even a
randomisation system in this case does not affect the probability of an error over that for
independent trials. Westfall et al E’Ireport that it may be plausible that multiplicity problems due to
sharing a protocol could result from “selection effects” such as the method of assessment of the
primary endpoint. However, this could just as easily occur in two independent trials led by the same
trialsteam. Therefore it would seem that there is no additional reason for multiplicity concerns due
to simply sharing a protocol, when separate pieces of confirmatory evidence are not required to be

obtained from distinct teams.

[ Contrgl Z, H Experimental 4 ] [ Control Z, H Experi’r—nental B ]
Hoa Hop

Figure 1a. Illustration of two separate hypotheses being tested within the same protocol. Thereis
no overlap of the use of patients, so the questions are entirely independent. R denotes the point of

randomisation.

A tria of the design displayed in figure 1a may not make practical sense where the eligibility
criteriaand control group for both experimental treatment comparisons are the same. Efficiency can
be greatly improved by comparing both experimental arms to the same group of control patients. If
the treatment difference being sought is the same, then utilising a single control group offers a

saving of 25% of the trial sample size for an even allocation ratio (figure 1b).

Figure 1b. Illustration of a multi-arm design where two separate hypotheses are being asked within
the same protocol and sharing the same control patients. R denotes the point of randomisation.



For the design shown in figure 1b, the hypotheses can be addressed separately and can both be
adequately powered. Given the logic that the use of the same protocol does not cause multiplicity
concerns over the same hypotheses being tested in independent trials, the difference is around the
shared use of the control data. The comparisons are no longer independent, but are correlated based
on the shared comparator groupErI The impact of this correlation can be formally quantified to
inform the necessary adjustment so that the chances of errors do not exceed those for independent
trials. Proschan et a E'exami ne the effects of treatments being compared to a control within the
same trial compared to independent trials, “in terms of the different distributions of the number of
Type-l errors and power”. SeanIconsi ders the conditional probability of atype-I error under the
null hypothesis of “concluding that a given dose is significant given that all other doses tested to
date are significantly different from placebo” when comparing multiple doses against a placebo, as
an alternate way of thinking about the probability of multiple errors within afamily. He notes that
“even where the probabilities of making at least one type-1 error are controlled, conditional error
rates may not be”, but does not make recommendations for multiple testing adjustment based on
this. Very little literature has been published assessing the effect of shared control data on the
probabilities of type-l errors over those in independent trials, and this effect is rarely considered
when assessing the requirement for multiplicity adjustment in multi-arm trials. Extending the work
of Proschan et al. we further investigate the effect of correlation due to shared control datain detail

within this manuscript.
3.2 Increased chance of making a single claim of effectiveness for a therapy

Section 3.1 highlights that a key statistical implication of running a single multi-arm trial compared
to separate trials is due to multiple use of shared control data. However, another factor that could
increase the chance of afalse conclusion over that for independent trialsis the ability to test more
hypotheses than would otherwise have been assessed. The necessity for adjustment in thiscaseisa
largely philosophical, rather than necessarily statistical, argument that has been well addressed in
the literature, albeit with varying opinions, and needs to be considered and justified on atrial-by-
trial basjﬂ

On reviewing the literature, our opinion isthat if the hypotheses contribute towards asingle claim
of effectiveness, for example because they assess different doses of the same therapy with any
success leading to promotion of that therapy, the hypotheses are likely to be considered a ‘family’
and therefore FWER adjustment may be required. If the hypotheses inform different claims of
effectiveness, for example because they are assessing different experimental therapies, FWER

control islikely to be an unnecessary penaltm This does not contradict ICH E9 *Statistical
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Principles for Clinical TrialslT_UI which states that “adjustment should always be considered, and the
details of any adjustment procedure or an explanation of why adjustment is not thought to be
necessary should be set out in the analysis plan.” Hung and WangEIdiSCUSS defining “a relevant
family of hypotheses for which the type-1 error needs to be properly controlled”, and recommend a
“clinical decision tree”, determined in advance, to decide what aspects need to be protected from
type-1 error inflation. The decision on adjustment due to assessing multiple hypotheses should be
made at the design stages for each trial and documented with full justification. Thisimportant
consideration isincorporated into the recommendations on adjustment in multi-arm trials givenin
Section 7.

4. The effect of correlation dueto shared control data

As noted above, whilst the increased chance of making a single claim of effectiveness based on
multiple hypotheses within atrial has been widely discussed in the literature, the effect of
correlation due to multiple use of the shared control data has been less well addressed and does not

appear to be widely understood, and therefore forms the main focus of this manuscript.

We begin by stating some key definitions before exploring the quantification of the effect of the
shared control data

4.1 Definitions of error regions

In two independent hypothesis tests, such asillustrated in the trial design given in figure 1a, the null
hypothesis Hoa assesses therapy A against Z1, with test statistic X,, and the null hypothesis Hos
assesses therapy B against Z», with test statistic X, each with atwo-sided significance level of 0.05.
It can be assumed that the test statistics for each comparison follow a normal distribution when

sample sizes are reasonabl e.

Figure 2 illustrates the joint density for the standardised test statistics in this setting, based on the
probability density function of the standardised bivariate normal distribution with no correlation,
since the tests are independent. The regjection regions for the hypothesis tests are the shaded areas
around the outside of the square, as described by Fernandes and Stonﬂ

The probability of falling within just one of the four shaded rejection regions aong the length of the

edgesis 2.5%. That is, the probability of concluding that either therapy is either falsely inferior or
8



falsely superior to its control therapy is 2.5%. The darker shaded corner regions represent the
probability that both hypotheses have fal se positive outcomes, that is there are two type-I errors.

a) Bivariate Normal Density, correlation=0

Therapy B falsely superior

Therapy A falsely inferior
Therapy A falsely superior

Therapy B falselyinferior
T T T T T
2 -1 0 1 2

Xa

Figure 2. Rgection regions for two independent comparisons plotted on orthogonal axes, with the
standardised test statistic for the null hypothesis Hoa being displayed horizontally, and Hos
displayed vertically.

The amount of false positive error that fallsin different shaded regions within figure 2 may have
different implications depending on the goals of the trial. We have therefore defined various types
of false positive error below, and these will first be quantified in the case of independent

comparisons before exploring the case where there is shared control data.

Familywise Error Rate (FWER):

Recall that the FWER is the overall probability of at least one false positive conclusion anywhere
within a defined set of trial hypotheses. It can be seen from figure 2 that in the case of two
independent comparisons and a two-sided significance level of 0.05, if we consider the two
comparisons as afamily, the FWER is equal to the total shaded region. This can be calculated by



the sum of the four shaded regions around the edges, minus the darker shaded regions that are
double counted in the four corners.
FWER = (4 % 0.025) — (4 * 0.025%) = 0.0975

Note that the FWER can easily be confirmed for independent comparisons, asit can be described
using abinomial distribution since each null hypothesis has a binary outcome associated with it.
Define Y to be the random variable associated with the event that atype-1 error occurs. In the
independent case, with k comparisons and a probability o of finding a significant difference, the

probability of exactly y type-I errors across the k comparisons (y = 1,...,K) can be expressed as:

P(Y=y)= (5) a¥(1—a)y

Since the FWER is the probability of at least one error,
FWER=p(Y>0)=1-p(Y=0)=1-(1—-a)k

So, with two independent comparisons and o. = 0.05 for each asillustrated in figure 2, the FWER is
0.0975, as expected.

Family Multiple Error Rate (FMER):

A second type of false positive error can be defined as the chance of multiple false positive findings

across afamily of hypotheses, which we call the Family Multiple Error Rate (FMER).

The overal error that existsin any family of hypotheses will always equal the sum of the errors for
each hypothesis. With afamily of two (null) hypotheses Hoa and Hog respectively relating to the
comparisons of therapies A and B with control, and a=0.05 for each, the total error will be 0.1. By
probability theory:

P(Hoa) + P(Hop) = P(Hoa U Hop) + P(Hoa N Hop)
P(H,,) isthe probability of atype-I error for the null hypothesis Hoa.
P(H,p) isthe probability of atype-I error for the null hypothesis Hos.
P(Hya U Hyp) isthe overall chance of atype-l error, i.e. the FWER.
P(Hya N Hyp) isthe chance of more than one error occurring from the same pair of null hypotheses,
which isthe FMER.

10



In figure 2, the FMER is represented by the sum of the probabilitiesin the four dark shaded corner
regions. In the case of two fully independent hypotheses tested in two separate trials, the FMER is
4 % 0.025%2 = 0.0025. Therefore FWER + FMER is 0.1, as expected.

Note that the FMER is directly related to the conditional probability of atype-l error P(Hyg|Hy,),
as discussed in Section 3.1, since:
P(Hos N Hop)
P(Hoa)
However, the FMER is easier to interpret in the case of amulti-arm trial due to the hypotheses not

P(HOB|H0A) =

necessarily having any sensible order.

Multiple Superior False Positives (MSFP):

In figure 2, the lower left corner signifies both false positives faling in the regjection region in
favour of the control, thus declaring the experimental treatment significantly inferior (multiple
inferior false positive outcomes), the upper right corner signifies both false positivesfaling in
favour of the experimental treatments (multiple superior false positive (M SFP) outcomes), and the
upper left and lower right corners signify one false positive favouring the control and the other an
experimental treatment. The chance of M SFP errors could be important if the outcomes of the
hypotheses inform a single claim of effectiveness, as discussed in Section 6. In the independent case
with two hypotheses, the probability of a M SFP outcome is 0.025? = 0.000625.

4.2 The effect of positive correlation due to the shared control group

Recall Figure 1billustrating atypical three-arm trial design with two experimental arms, A and B,
and a shared control group Z. Since both treatments are being compared to the same control data,
the comparisons are not independent. That is, if the control group sample, by chance, perform worse
than the true population, thereis an increased probability that both therapies A and B will report a
false positive outcome to conclude that they are superior. The test statistics are therefore positively

correlated, since the outcomes for the control sample will affect both in the same way.

It has previously been shown that the positive correlation between the test statistics reduces the
probability of making at least one type-1 error (the FWER) over cases where thereis no correlation,
such as in independent trias; but the probability of making two or more errorsis higher, such that
“the conditional probability of a Type-I error on one comparison with control, given that a Type-|
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error has been made on another comparison with control, is substantially increased” in the

correlated casg™]*°| We further quantify and expand on these findings in order to inform

recommendations on the need for a multiple testing adjustment in multi-arm trials with correlated
test statistics.

4.3 Calculating the correlation between the test statistics due to sharing control data

Recall from Section 4.1 that in the case of multi-arm trials with independent experimental therapies
and a shared control group, the test statistics for the comparisons, X, and Xz, can be assumed to
follow standardised normal distributions when sample sizes are reasonable. Their joint distribution
therefore follows a standardised bivariate normal with correlation p,5. Relevant theory isgivenin
Follmann et al I"jl

Dunnetﬁl notes that the correlation between the test statisticsis directly linked to the allocation

ratio, as follows:
1

C G
ny ng

wheren; isthesamplesizeingroupi (i = A, B, Z).

If the allocation ratio is 1:1:1, the correlation is 0.5. For an alocation of 2:1:1 in favour of control,
the corrdation is 0.333. With 1:2:2, the correlation is 0.667.

4.4 Calculating the FWER, FMER and MSFP assuming a multivariate normal distribution,

incorporating correlation

The various false positive errors of potential interest in amulti-arm trial can be calculated based on
the assumption of thejoint distribution of the test statistics following a standardised multivariate
normal distribution. The R program in Appendix 1 computes these probabilities in the case of two
or three experimental therapies, allowing varying correlation, in order to calculate the error density
in each of the rgection regions.

The effect of the correlation on the rgjection regions in the case of two experimental treatmentsis
illustrated in figure 3. As the correlation increases, the proportion of error in the lower left and

upper right corners, indicating false positive outcomes in the same direction for both hypotheses,
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also increases. That is, if the shared control group performs better or worse than expected, thereis a
greater chance of an error in both of the hypotheses in the same direction, as expected. The effect of
this correlation on the different types of errors described in Section 4.1 can easily be calculated by

solving the probabilities of the outcomes falling within the relevant rejection regions.

a) Bivariate Normal Density, correlation=0 b) Bivariate Normal Density, correlation=0.333
i Therapy B talsely suparior Thesapy & falsely supenon
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c) Bivariate Normal Density, correlation=0.5 d) Bivariate Normal Density, correlation=0.667
ThEr=py B faisaly supsrion Themapy B falesly stpenion
i ]
i 1
i i
-] -] B E
| B | B
: g £ | ]
b 1 - 1 i
2 : = H ; F
& o 48 H : = o 4B } g
'J‘_ 1 - ‘.':; 1 -%
g § §F /]
E [l 2 & | £
- ; - |
] ]
! :
§ i
r - “I e ral iy T = i o - - TR vt e
Thesapy B falsely Infarior Therazy B fdsely Freror
T T T T T T T T T T
2 ] 2 -2 1 o | 2
h" _|A

Figure 3. lllustration of rejection regions for:
a) two hypotheses, each with individual control data, p=0
b) two hypotheses with shared control data and 2:1:1 randomisation, p=0.333
C) two hypotheses with shared control data and 1:1:1 randomisation, p=0.5
d) two hypotheses with shared control data and 1:2:2 randomisation, p=0.667
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4.5 FWER, FMER and MSFP comparison for multi-armtrials with a shared control group

compared to independent trials

The R program in Appendix 1acan be used to calculate the FWER, FMER and M SFP rates for

different levels of correlation based on the allocation ratio in three-arm trials with two experimental

arms and a shared control. The code has also been extended to calculate the probabilities for four-

arm trials with three experimental arms and a shared control, provided in Appendix 1b. These

probabilities are shown in table 1.

I ndependent Dependent case | Dependent case | Dependent case

case 2:1:1(:1) 1:1:1(:1) 1:2:2(:2)

(Separatetrials) | (2to control) (1 to control)
Correlation (p) 0 0.333 0.5 0.667
Reject Ho for each
individual hypothesis 0.050 0.050 0.050 0.050
(A,Bor C)
Three-arm trial (hypotheses A and B)
FWER: Reject at least

0.0975 0.0946 0.0908 0.0849
oneHqg, A or B
FMER: Reject both
Ho’s A and B (in any 0.0025 0.0054 0.0093 0.0151
direction)
M SFP: Reject both
Ho’s in favour of 0.00063 0.00267 0.00462 0.00753
treatments A and B
Four-arm trial (hypotheses A, B and C)
FWER: Reject at least
0.1426 0.1348 0.1254 0.1124

oneHop, A,Bor C
FMER2: Reject at
least two He’s (in any 0.0072 0.0141 0.0214 0.0301

direction)

14




FMER3: Reject all
threeHo’s A, B and C 0.0001 0.0011 0.0032 0.0076

(in any direction)

M SFP2: Reject at
least two Hos in 0.0018 0.0069 0.0107 0.0150

favour of A, Bor C

M SFP3: Reject all
three Ho’s in favour of 0.00002 0.00056 0.00160 0.00378
A,Band C

Table 1. FWER, FMER and MSFP comparisons for three and four armtrials with a shared control
group and varying allocation ratios, compared to independent 1:1 randomised trials (a=0.05 for

each hypothesis)
FWER:

The FWER islower in all cases with shared control data than the equivalent error when assessing
two independent trials. That is, the correlation between the test statistics reduces the overall
probability of atype-l error occurring across either of the hypotheses over the case where there is
no shared control data, as also shown by Proschan et allﬂ

FMER:

In amulti-arm trial with two hypotheses, the chance of multiple errors has increased from 0.25% for
independent trials to 0.93% in the case with even allocation, an increase of 3.7 times. The message
stays the same as the number of hypotheses increases; in the case with three hypotheses and even
alocation, the chance of any two errorsis now over 2%, which is not trivial. Similar increases are
found with unequal allocation ratios and the trend across the resultant correl ations from these

changing allocation ratios can be clearly seen.

Theincrease in the FMER is due to the increased chance of an error occurring within the correlated
comparisons in the same direction. Thisis caused by a chance deviation in the outcome for the
control sample from the outcome for the true population. The probability of multiple type-I errorsin
opposite directions has decreased, as expected from figure 3, but to alesser extent than the increase
in the chance of errorsin the same direction. Recall that the total error (FWER + FMER) isfixed,

thus the increased FMER explains the reduction in the FWER.
15



MSFP:

With two hypotheses, the M SFP rate has increased from 0.06% in independent trials to 0.46% in the

multi-arm case with even alocation, an increase of 7.7 times. With three hypotheses, the chance of

any two superior false positive outcomes has increased by nearly 6 times to over 1%, and the

chance of three MSFPs is substantially greater than in the independent case, although the

probability isvery small at 0.16%. Again, similar patterns and trends are seen for other allocation

ratios. Thisisintuitively obvious since a chance ‘bad’ outcome in the control sample compared to

the true population would increase the chances of false positives in both hypotheses, but the

magnitude of this effect is now apparent, and is not trivial.

5. An investigation of the effect of multiplicity adjustment methods

Many multiplicity adjustment procedures have been devised to strongly control the FWER for a

number of tests within afamily of hypotheses. The adjustment methods considered here are:

Bonferronﬁl asimple, conservative and popular adjustment method; Holnﬂand HochbergE?I

closed testing methods based on a hierarchical strategy of testing the outcomes ordered by

significance; Dunnett’s

a parametric method that adjusts the Bonferroni boundaries to control

the probability of observing a significant result under Ho at 0.05; and Dunnett and Tamhanﬁl an

adjusted Hochberg step-up multiple test procedure in which the rejection levels are adjusted to
account for the correlation so that the final FWER is 0.05.

Table 2 shows the effects of applying these adjustment methods on the various error rates, using the

example of athree arm trial with 1:1:1 allocation ratio in which the two experimental arms are

compared to a shared control group.

Dependent case, 1:1:1 allocation

Independent

case Un- Bonferroni Holm Hochberg | Dunnett’s t Adjusted

adjusted Hochberg

Reject Ho for
individual
. 0.0500 0.0500 0.0250 0.0271 0.0286 0.0271 0.0296
comparison (A
or B)
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FWER: Reject
at least one Ho, 0.0975 0.0908 0.0465 0.0465 0.0480 0.0502 0.0500
Aor B

FMER: Reject
both Ho’s A and
B (in any
direction)

0.0025 0.0093 0.0035 0.0077 0.0093 0.0039 0.0093

M SFP: Reject
both Ho’s in
favour of 0.00063 0.00462 0.00176 0.00385 0.00462 0.00197 0.00462
treatments A
and B

Table 2. FWER, FMER and MSFP comparisons for three armtrials with two hypotheses (a=0.05
for each), a shared control group and even allocation ratio, after applying various multiple testing
adjustments

FWER:

All adjustment methods control the FWER at 0.05 or less, as expected. In all cases, the chance of
regjecting the null hypothesis for each individual comparison has taken a penalty compared to
running independent trials. The Dunnett’s t and Adjusted Hochberg methods account for the effect
of the correlation due to the shared control data on the FWER, in order to make less conservative

adjustments than the other methods.

FMER:

Although adjustment methods control the probability of falsely rejecting at least one hypothesis, no
method fully controls the chance of multiple errors occurring within the same set of hypotheses to
be what it would have been if the hypotheses had been assessed in independent trials.

With Bonferroni and Dunnett’s t, the probabilities of multiple errors are reduced towards those in
independent trials, but the Holm, Hochberg and Adjusted Hochberg methods based on the closed
testing principle offer very little or no protection of the FMER over no adjustment. The first step of
a step-up procedure isto accept all hypothesesif the least significant is <0.05, so it can easily be
seen why thisisthe case.
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Intuitively, if the critical level is set lower, as with the Bonferroni method, fewer null hypotheses
will be rglected in al comparisons, and therefore the chance of both being rejected will also
decrease. However, since a ‘bad” outcome in the shared control sample would still affect both
comparisons by increasing the chances of afalse positive error, it makes sense that a higher

proportion of paired hypotheses are both rejected when they share a common control.
MSFP:

Since the adjustment methods do not control the FMER, they also do not offer full protection
against the chance of M SFP outcomes. After applying the Bonferroni and Dunnett’s t corrections,
the chance of two superior false positive errorsis still inflated by approximately 3 times over that

with independent trials, and following the Hochberg adjustments this rises to over 7 times.

The above results highlight that multiple testing adjustment methods only control the probability of
the overal FWER to that for asingle hypothesis. They do not offer control over the chance of
multiple false positive errors, which is the probability that is increased over that had the hypotheses
been assessed in independent trials.

6. Controlling the probability of multiple superior false positive outcomes

We have shown that in the case where two superior hypotheses may both be used to jointly inform a
claim of effectiveness, the overall chance of both having afalse positive outcome in favour of the
experimental treatments (MSFP) isinflated in amulti-arm trial over that chance occurring in
independent trials. In addition, applying multiple testing correction methods do not reduce the

chance of MSFP outcomes to the same level as in two independent trials.

The FDA guidance on ‘Providing Clinical Evidence of Effectiveness for Human Drug and
Biological Productsﬁlsuggests that it is feasible for multiple hypotheses from within a single study
to be accepted as evidence of effectivenessif thetrial is designed appropriately. In this case, it
would be important that the probability of multiple conclusions of superiority (MSFP) is not
inflated over that for independent studies. The example of the AMAGINE-1 trial described in
Section 2.2 assesses two doses of an experimental treatment against placebo. If these doses were
investigated in independent trials, both trial outcomes may be used to inform a claim of
effectiveness, but the penalty for assessing these within amulti-arm trial in terms of inflation of the

M SFP rate has not been investigated or quantified. Thisisasimilar issue to that discussed by Shun
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et aﬁ in which they require the overall ‘positive rejection region’ in a large pivotal trial to be

controlled to the same level asin two smaller pivotal trials.
6.1 Critical valuesto control the MSFP rate in the case of threearms

In two independent trials, the chance of two superior false positive outcomes is 0.000625 (Section
4.1). Since the joint distribution can be described using a bivariate normal (Section 4.4), this can be
used to obtain the exact critical value that returns a probability of 0.000625. This principleissimilar
to the work of Follmann et a., which relies on the multivariate normal assumption of the test
statistics to estimate critical values that strongly protect the type-I error rate in the case of multi-
armed trials with interim Iookﬂ The R code to calculate the critical value is provided in Appendix
2.

Inthe 1:1:1 case, the critical value required to protect the MSFP rate at 0.000625 is 0.0118. In the
2:1:1 caseitis0.0195, and in the 1:2:2 case it is 0.0069, as shown in Table 3. That is, if two
hypotheses are assessed in a multi-arm trial with a shared control group, and are to be used to
jointly inform aclaim of effectiveness; in order to control the probability of two superior false
positive outcomes to the level in independent trias, the p-values for both hypotheses are required to
be less than these adjusted critical values. It can be seen that with thislevel of control, the FWER is

reduced to much lower than 5%.

Independent case Dependent Dependent Dependent Dependent
No adjustment case case2:1:1 case1:1:1 case1:2:2
No o = 0.0195 o =0.0118 o, = 0.0069
adjustment
Reject Ho for
individual
comparison (A 0.050 0.050 0.0195 0.0118 0.0069
or B)
FWER: Reject
at least oneHo, A 0.0975 0.0908 0.0377 0.0224 0.0125
or B
M SFP: Reject
both Ho’s in 0.000625 0.00462 0.000623 0.000624 0.000628
favour of
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treatments A
and B

Table 3. Adjusted critical valuesto control the chance of a MSFP error in a three-armtrial to that

for two independent 1:1 randomised trials

6.2 The effect of MSFP control on the power and sample size

If atrial is designed to allow two superior outcomes to be used as evidence to inform asingle claim
of effectiveness, the power is required to be maintained for each hypothesis as it would for
independent trials, requiring an increased sample size. As an example, take a confirmatory trial with
asurvival primary endpoint and analysis based on the log-rank test for equality based on an
exponentia survival distribution. Assume that the estimated median survival in the control group is
36 months, and that a clinically relevant difference would be an improvement to 48 months
(HR=0.75). In atwo-arm trial, with arecruitment period of 48 months and an additional 36 month
follow-up period, 408 patients are required per arm (1:1) to achieve 508 events for 90% power with
atype-| error rate of 5%.

If there are two experimental arms of interest in the population, athree-arm trial may be considered
rather than two independent trials. In the scenario of running independent trials, the total sample
sizefor the two trials assuming 1:1 allocations would be 1632, and in the multi-arm trial thisis
reduced to 1224 with no adjustment. Adjusting to control the chance of M SFP outcomes reduces
the power from 90% to 77%, and to account for thislossin power the sample size would need to be
increased by 37% to 1680, which makes the multi-arm trial slightly larger than running two
independent trials. There may still be benefits of running a multi-arm trial, however, in terms of
reducing the total number of patients receiving the control therapy as well as the time and cost of

only needing to set-up and run asingle trial.

7. Discussion

Multi-arm trials can be efficient and therefore advantageous over running independent trials.
However, there are conflicting viewsin the literature on how to appropriately control the
probability of afalse positive error. A lack of proper control of the FWER could lead to an
unacceptable chance of an ineffective treatment being recommended to be taken forward into
practice; but unnecessary control of the FWER could affect the efficiency of atria, requiring

increased patient numbers and resources. FWER adjustment without increasing the sample size to
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maintain power could lead to a superior treatment being denied. Each of these scenarios raises

ethical concerns.

False positive error rates may be affected in multi-arm trials compared to independent trials due to
either: correlation between the comparisons caused by the shared use of the control data; or an
increased chance of making a claim of effectiveness because of an increased ability to test afamily
of hypotheses. It is a common misconception that FWER adjustment is necessary due to sharing
control data. When considering the designs illustrated in Figures 1aand 1b, some might assume that
the overall FWER for the family of hypotheses, Hoa and Hos, would be larger in Figure 1b where
there is acommon control group. However, we have confirmed that the FWER isin fact smaller in
Figure 1b than in Figure 1a. The common control group instead has the effect of increasing the
chances of more than one false positive outcome within the family of hypotheses; although FWER
adjustment methods do not control for this. The necessity for a FWER adjustment is therefore only
dependent on whether assessing multiple hypotheses within amulti-arm trial has increased the
chance of making a single claim of effectiveness.

We have formalised the implications of running a multi-arm trial with shared control data on the
probabilities of various types of false positive errors, considering the effects of multiple testing
adjustment methods on these probabilities, in order to make informed recommendations on the
requirement for adjustment. The findings are summarised below. In addition, aflow diagram to aid
the determination of the requirement for a multiple testing adjustment in a multi-arm trial is
provided in Figure 4. Note that the decisions on the need for error control with respect to the
interpretation of the trial results should be agreed and documented in advance in the protocol and
statistical analysis plan.
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Do the hypotheses inform a
single claim of
effectiveness?

No Yes
FWER adjustment is not necessary Are all hypotheses

* The FWER is not inflated over the overall required to be

type | error rates had the hypotheses superior?

been assessed in separate trials.
* Having a shared control group may be an

advantage in removing bias caused by

comparisons to different control samples. No Yes

FWER adjustment may be necessary FWER adjustment is not necessary,

* The FWER is not inflated due to the shared use of control data in but a multiple superior false

a multi-arm trial over that if the hypotheses had been assessed positive (MSFP) adjustment may be

in two independent trials.

* The FWER will, however, require adjustment if there is an
increased chance of success for a single claim of effectiveness
caused by assessing multiple hypotheses.

* Not adjusting for multiple testing needs to be carefully justified
in advance, accounting for the trial rationale, the number of
hypotheses and their research goals.

* The chance of MSFP outcomes is increased due to having a
shared control group, even after FWER adjustment, and may
require more stringent control.

required

* If all hypotheses are required to be
superior, the FWER cannot be inflated.

* The chance of multiple false positive
errors is inflated due to the shared
control group, and the MSFP rate would
need to be controlled if superior findings
contribute as separate pieces of evidence
towards a single claim of effectiveness.

Figure 4. Decision diagram to determine the requirement for a multiple testing adjustment in multi-

armtrials

7.1 Familywise Error Rate (FWER) in the case where each hypothesis informs a different claim of

effectiveness

Consider the case in which multiple hypotheses are being assessed in the same trial with a shared
control group, but each hypothesis informs a different claim of effectiveness. An obvious example
iswhere the experimental arms assess entirely different therapies. A further example isthe MRC
COIN triaEIi ntroduced in Section 2.1. OXFP is present in all treatment arms, however since one
primary hypothesis addresses the addition of an experimental therapy to OxFP and the other
addresses areduction in duration of OxFP therapy, these do not contribute towards the same claim
of effectiveness. In this case, the chance of afalse positive outcome for either claim of effectiveness

is not increased by the presence of the other hypothesis.

Since we have confirmed that the correlation between comparisons due to the shared control data

has the effect of reducing the overal chance of at |east one false positive finding (FWER) over that

chance had the same questions been asked in independent hypothesis tests, FWER adjustment is not
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necessary due to the shared control sample. These findings remain valid in the case of imbalanced

randomisations, and also where there are more than two experimental therapies.

Therefore, adjusting to control the FWER in this case is an unnecessary penalty. It does not make
sense here to consider the type-I error rate for the trial as awhole since any claim of effectivenessis
only informed by a single hypothesis test. Note that if the experimental therapies are competing
against each other for approval in the trial population, the correlation due to the shared control
group is an advantage. If in two independent trials one of the control samples performs worse than
the true population, the associated experimental group has an increased chance of being significant
and taken forward. However, in the equivalent multi-arm case, bias due to comparisons to different
control samplesisremoved. It ismore likely that efficacious experimental therapies would be

considered against each other directly without the influence of variationsin the control samples.

7.2 Familywise Error Rate (FWER) in the case where the hypotheses inform a single claim of
effectiveness

We have shown that the FWER is not inflated due to running a multi-arm trial with a shared control
group. However, it should be noted that FWER adjustment may be required if the efficiency of
running a multi-arm trial leads to more hypotheses being included than would have otherwise been
assessed in independent trials. If these hypotheses inform the same claim of effectiveness, for
exampleif the experimental arms assess different doses or combinations of the same experimental
therapy, the overall chance of afalse positive result anywhere within the family of hypothesesis
clearly increased over that for asingle hypothesis. In this case, thereis general agreement in the
literature that FWER control is recommendec[lsi nce the type-1 error rate can be considered for the
claim of effectiveness as awhole, rather than for each individual hypothesis. Note that it also
follows that the power in this case can be considered to be the overall chance of observing at |east
one true positive outcome, and thiswill also be increased by testing multiple hypotheses. Therefore,
the penalty caused by applying the FWER adjustment may be compensated to some extent by the

gainin overal power.

An example hereisthe AMAGINE-1 trial (Section 2.2) assessing two doses of brodalumab
compared to placebo. Since aregjection of the primary hypotheses for each comparison could lead to
aclam of effectiveness for brodalumab, there are two chances for afalse positive result with

respect to that claim, and therefore FWER adjustment is recommended.
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7.3 Familywise Error Rate (FWER) in the case where all hypotheses are required to have superior

outcomes in order to make a claim of effectiveness

If al trial hypotheses are required to be positive in order to make a claim of effectiveness, thereis
essentially only one overarching hypothesis being tested. In this case, there is only one chance for
an overall false positive outcome for the trial, so the chance of ‘at least one’ error cannot be

inflated, and therefore no FWER adjustment is necessary.

For example, the Myeloma X+ Intensive trial (Section 2.3) compared the four-drug regime CCRD
against the current standard control CTD, aswell as the previously assessed three-drug regime CRD
(which is CCRD excluding carfilzomib). Since CCRD will only be recommended for approval if it
is better than both CTD and CRD, both hypotheses are required to be significant in order to

recommend CCRD for use in practice. In this case, no adjustment is required.

7.4 Multiple Superior False Positives (MSFP) in the case where multiple superior outcomes could

be used as separate pieces of evidence towards a single claim of effectiveness

In Section 7.2 we discuss the case where multiple hypotheses are being assessed in the same trial
with ashared control group, with each hypothesis being tested and reported individually. If
superiority in more than one of these hypotheses could contribute as separate pieces of evidence
towards a claim of effectiveness for atherapy, a more stringent adjustment is required for the

evidence to be equivalent to that obtained from two independent trials, as discussed in Section 6.

We have shown that the correlation due to the shared control group increases the chance of falsely
declaring more than one experimental treatment group to be superior to the shared control group
(MSFP) inamulti-arm trial over that chance had the hypotheses been assessed in independent trials.
Standard multiple testing adjustment methods do not adequately control for this. We have proposed
acritical value adjustment to control the chance of M SFP outcomesin athree-arm tria in order for

the evidence to be equivalent to that obtained from two independent trials.

Care should always be taken in reporting and interpretation if more than one hypothesis within a

multi-arm trial with shared control group is positive.
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Appendix la: R codeto calculate the probabilitiesfor therg ection regions based on two
correlated comparisons, assuming a bivariate normal distribution.

#Install library first use
setInternet?2 (TRUE)
install.packages ("mvtnorm")
library (mvtnorm)

#Bivariate normal case (2 experimental arms)

#set correlation
corr <- 0

fcorrelation matrix
corrmat <- matrix(c(l,corr,corr,1l),ncol=2,byrow=TRUE)

#Exactly 1 error (calculate probabilities for the edges
#fexcluding the corners of the square)

# Left hand side
leftside <- pmvnorm(lower=c(-Inf,-1.96), upper=c(-1.96,1.96), corr = corrmat )

# Right hand side
rightside <- pmvnorm(lower=c(1.96,-1.96), upper=c(Inf,1.96), corr = corrmat )

# Top edge
topside <- pmvnorm(lower=c(-1.96,1.96), upper=c(1.96,Inf), corr = corrmat )

# Bottom edge
bottomside <- pmvnorm(lower=c(-1.96,-Inf), upper=c(l1.96,-1.96), corr = corrmat )

# Total chance of exactly 1 error
oneonly=leftside+rightside+topside+bottomside

#Exactly 2 errors (calculate probabilities in each of the 4 corners of the
square)

# Lower left corner
lowleft <- pmvnorm(lower=c(-Inf,-Inf), upper=c(-1.96,-1.96), corr = corrmat )

# Lower right corner
lowright <- pmvnorm(lower=c(1.96,-Inf), upper=c(Inf,-1.96), corr = corrmat )

# Upper Left corner
upleft <- pmvnorm(lower=c(-Inf,1.96), upper=c(-1.96,Inf), corr = corrmat )

# Upper Right corner
upright <- pmvnorm(lower=c(1.96,1.96), upper=c(Inf,Inf), corr = corrmat )

# Total chance of exactly 2 errors
twoonly <- lowleft+lowright+upleft+upright

# FWER
FWER <- oneonly+twoonly

# Probability of any two errors (FMER)
FMER <- twoonly

# MSFP probability of two superior false positives
MSFP <- upright

#Output results
corrmat
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FWER
FMER
MSFEFP

Appendix 1b: R codeto calculatethe probabilities for theregection regions based on three
correlated comparisons, assuming a trivariate normal distribution.

# Install library first use
setInternet?2 (TRUE)
install.packages ("mvtnorm")
library (mvtnorm)

# Trivariate normal case (3 experimental arms)

#set correlation
corr <- 0.5

#correlation matrix
corrmat <- matrix(c(l,corr,corr,corr,l,corr,corr,corr,l),ncol=3,byrow=TRUE)

#Exactly 1 error (illustrated by the 6 side face of a cube minus the upper and
lower 5% around the edges)

Oneonlyl <- pmvnorm(lower=c(-1.96,-1.96,-Inf), upper=c(1.96,1.96,-1.96), corr =
corrmat )

Oneonly2 <- pmvnorm(lower=c(-1.96,-1.96,1.96), upper=c(1.96,1.96,Inf), corr =
corrmat )

Oneonly3 <- pmvnorm(lower=c(-Inf,-1.96,-1.96), upper=c(-1.96,1.96,1.96), corr =
corrmat )

Oneonly4 <- pmvnorm(lower=c(1.96,-1.96,-1.96), upper=c(Inf,1.96,1.96), corr =
corrmat )

Oneonly5 <- pmvnorm(lower=c(-1.96,-Inf,-1.96), upper=c(l1.96,-1.96,1.96), corr =
corrmat )

Oneonly6 <- pmvnorm(lower=c(-1.96,1.96,-1.96), upper=c(l1.96,Inf,1.96), corr =
corrmat )

# Total chance of exactly 1 error
Oneonly=0Oneonlyl+Oneonly2+Oneonly3+Oneonly4+Oneonly5+Oneonly6

#Exactly 2 errors (illustrated by the 12 edges of a cube minus the upper and
lower 5% in the corners)

# the 3 edges that corner the triple rejection in favour of control (lower left
front)

onlyllx <- pmvnorm(lower=c(-1.96,-Inf,-Inf), upper=c(1.96,-1.96,-1.96), corr =
corrmat )

onlylly <- pmvnorm(lower=c(-Inf,-1.96,-Inf), upper=c(-1.96,1.96,-1.96), corr
corrmat )

onlyllz <- pmvnorm(lower=c(-Inf,-Inf,-1.96), upper=c(-1.96,-1.96,1.96), corr =
corrmat )

# the 3 edges that corner the triple rejection in favour of the experimental
arms (upper right back)

onlyurx <- pmvnorm(lower=c(-1.96,1.96,1.96), upper=c(1.96,Inf,Inf), corr =
corrmat )

onlyury <- pmvnorm(lower=c(1.96,-1.96,1.96), upper=c(Inf,1.96,Inf), corr =
corrmat )

onlyurz <- pmvnorm(lower=c(1.96,1.96,-1.96), upper=c(Inf,Inf,1.96), corr
corrmat )

#0ff edges (l=lower u=upper f=front b=back l=left r=right):
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onlylrz <- pmvnorm(lower=c(1.96,-Inf,-1.96), upper=c(Inf,-1.96,1.96), corr =
corrmat )
onlyfry <- pmvnorm(lower=c(1.96,-1.96,-Inf), upper=c(Inf,1.96,-1.96), corr =
corrmat )
onlylbx <- pmvnorm(lower=c(-1.96,-Inf,1.96), upper=c(1.96,-1.96,Inf), corr =
corrmat )
onlyufx <- pmvnorm(lower=c(-1.96,1.96,-Inf), upper=c(l1.96,Inf,-1.96), corr =
corrmat )
onlyulz <- pmvnorm(lower=c(-Inf,1.96,-1.96), upper=c(-1.96,Inf,1.96), corr =
corrmat )
onlybly <- pmvnorm(lower=c(-Inf,-1.96,1.96), upper=c(-1.96,1.96,Inf), corr =
corrmat )

# Total chance of exactly 2 errors

Twoonly <-
onlyllx+onlylly+onlyllz+onlyurx+onlyury+tonlyurz+onlylrz+onlyfry+onlylbx+onlyufx+
onlyulz+onlybly

# Exactly 3 errors (Calculate probabilities in each of the 8 corners of a cube)
x1lylzl <- pmvnorm(lower=c (-Inf,-Inf,-Inf), upper=c(-1.96,-1.96,-1.96), corr =
corrmat )

x2ylzl <- pmvnorm(lower=c(l1.96,-Inf,-Inf), upper=c(Inf,-1.96,-1.96), corr =
corrmat )
x1ly2z1 <- pmvnorm(lower=c(-Inf,1.96,-Inf), upper=c(-1.96,Inf,-1.96), corr =
corrmat )
x1lylz2 <- pmvnorm(lower=c(-Inf,-Inf,1.96), upper=c(-1.96,-1.96,Inf), corr =
corrmat )

x2y2z1 <- pmvnorm(lower=c(1.96,1.96,-Inf), upper=c(Inf,Inf,-1.96), corr =
corrmat )
x2ylz2 <- pmvnorm(lower=c(l1.96,-Inf,1.96), upper=c(Inf,-1.96,Inf), corr =
corrmat )
x1ly2z2 <- pmvnorm(lower=c(-Inf,1.96,1.96), upper=c(-1.96,Inf,Inf), corr =
corrmat )

x2y2z2 <- pmvnorm(lower=c(1.96,1.96,1.96), upper=c(Inf,Inf,Inf), corr = corrmat
)

# Total chance of exactly 3 errors
Threeonly <- x1ylzl+x2ylzl+xly2z1+x1ylz2+x2y2z1+x2y1z2+x1y222+x2y222
#FWER - the overall error region of the sides, edges and corners

FWER=Oneonly+Twoonly+Threeonly

# Probability of at least any two errors
twoerr <- Twoonly+Threeonly

# Probability of three errors - sum of the corner regions
threeerr <- Threeonly

# Two MSFP - probability of at least two superior false positives

# Sum of the 3 edges meeting the upper right back

#(i.e. two false positives along the plane of the third distribution) # and the
upper right corner

TwoMSFP <- onlyurxtonlyury+tonlyurz+x2y2z2

# Three MSFP - probability of three positive false positives
ThreeMSFP <- x2y2z2

#Output results
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corrmat
FWER
twoerr
threeerr
TwoMSFP
ThreeMSFP

Appendix 2: R codeto calculatetherejection region required to control the probability of two
M SFP errorsbased on correlated comparisonsto that for independent trials, assuming a
multivariate normal distribution.

# Install library first use
setInternet2 (TRUE)
install.packages ("mvtnorm")
library (mvtnorm)

#The MSFP is the upper right corner of the rejection regions in
#figure 2 (based on the standardised bivariate normal) .
#The MSFP needs to be controlled at 0.000625 (0.025**2)

#set correlation
corr <- 0.5

#correlation matrix
corrmat <- matrix(c(l,corr,corr,l),ncol=2,byrow=TRUE)

#Solve the critical value for the upper right corner
#equalling 0.000625

upperx <- gmvnorm(p=0.000625,tail=c ("upper.tail™),corr=corrmat)
uppertail <- upperx$quantile

adjcval <- 2* (l-pnorm(uppertail))

adjcval
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