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Recommendations on multiple testing adjustment in multi-arm trials with a shared control 

group 

 

Short Title 

Recommendations on multiple testing adjustment in multi-arm trials 

 

Abstract 

Multi-arm clinical trials assessing multiple experimental treatments against a shared control group 

can offer efficiency advantages over independent trials through assessing an increased number of 

hypotheses. Published opinion is divided on the requirement for multiple testing adjustment to 

control the familywise type-I error rate (FWER). The probability of a false positive error in multi-

arm trials compared to equivalent independent trials is affected by the correlation between 

comparisons due to sharing control data. We demonstrate that this correlation in fact leads to a 

reduction in the FWER, therefore FWER adjustment is not recommended solely due to sharing 

control data. In contrast, the correlation increases the probability of multiple false positive outcomes 

across the hypotheses, although standard FWER adjustment methods do not control for this. A 

stringent critical value adjustment is proposed to maintain equivalent evidence of superiority in two 

correlated comparisons to that obtained within independent trials. FWER adjustment is only 

required if there is an increased chance of making a single claim of effectiveness by testing multiple 

hypotheses; not due to sharing control data. For competing experimental therapies, the correlation 

between comparisons can be advantageous as it eliminates bias due to the experimental therapies 

being compared to different control populations. 

 

Keywords 

multiple testing; multi-arm clinical trial; familywise error rate; type-I error; multiplicity; shared 

control group; correlated comparisons; alpha adjustment 
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1. Introduction 

 

A typical confirmatory two arm trial would usually compare an experimental treatment against the 

current standard within the population of interest. For several reasons, it is advantageous to conduct 

multi-arm trials, in which a number of experimental treatments are compared to the current 

standard.  Firstly, such trials are more efficient since they use the data collected on the control 

group more than once so fewer patients are required.  Secondly, trial set-up times and costs can be 

reduced over running separate trials. Finally, increasing the number of experimental arms increases 

the chance of finding a successful treatment1.  

 

When testing a hypothesis in a phase III clinical trial, the chance of a false positive result, known as 

the type-I error, is required to be stringently controlled. The convention is to set this error, usually 

denoted by Į, to be no greater than 5% by setting the one-sided p-value to <0.025. If more than one 

hypothesis is to be tested within a set, or family, of hypotheses, the chance of a false positive 

conclusion occurring anywhere within that set is known as the familywise error rate (FWER). That 

is, the FWER is the probability of at least one false positive conclusion being declared anywhere 

within a family of hypotheses. 

 

There are conflicting viewpoints within the literature on whether the relevant errors to control in the 

case of multi-arm trials are the individual type-I errors for each hypothesis, known as the pairwise 

error rates, or the overall FWER for all hypotheses combined. The crux of the issue is how ‘family’ 

should be defined; whether all hypotheses belong to a family simply because they share a protocol 

and control group, or whether a family is a set of hypotheses that are related in that they contribute 

towards a single claim of effectiveness.  

 

The literature on requirement for multiplicity adjustment is often based on philosophical opinions, 

rather than statistical theory considering the actual effect on the type-I error rates of using a shared 

control group compared to running independent trials. Some literature, including a points to 

consider document from the European Agency for the Evaluation of Medicinal Products (EMEA)2,  

advocates strong control of the FWER for confirmatory claims because the hypotheses are being 

tested within a single experiment, regardless of the relatedness of the hypotheses3, 4. Others argue 

that adjustment is not required in all cases, particularly although not exclusively, where the 

experimental arms do not contribute towards a single claim of effectiveness, because the design is 

essentially just running a number of different trials5-9. Although most of the literature agrees that the 

need for adjustment should be considered and justified in each case, including the International 
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Conference on Harmonisation (ICH) E9 guidance of Statistical Principles for Clinical Trials10, no 

literature has been found to give comprehensive guidance from a quantitative, rather than 

philosophical, perspective on which situations require type-I error adjustment and which do not. 

 

Discussion points from the Statisticians in the Pharmaceutical Industry multiplicity expert group 

state that “the concern with multiplicity is that, if it is not properly handled, unsubstantiated claims 

for the effectiveness of a drug may be made as a consequence of an inflated rate of false positive 

conclusions”11. In this manuscript, we therefore break down and quantitatively investigate the 

aspects of a multi-arm trial that affect the chance of different types of false positive errors on a 

claim of effectiveness in order to make informed recommendations on the need for adjustment.  We 

begin by providing examples in Section 2, and describing the background to multiplicity concerns 

in multi-arm trials in Section 3. In Section 4 we investigate the effect of the shared control data on 

the chance of type-I errors. Section 5 shows the probabilities of type-I errors after applying common 

multiplicity adjustment methods in the case of shared control data, and we compare these to the 

errors had the hypotheses been assessed within independent trials. In Section 6 we suggest a 

correction to control for the increased probability of multiple type-I errors that advantage the 

experimental treatment, which may be necessary where more than one superior outcome within the 

protocol could inform the same claim of effectiveness.  The paper concludes with a discussion in 

Section 7. 

 

2. Motivational examples 

 

Three examples of multi-arm trials with different types of design and varying levels of relatedness 

between the hypotheses are considered in this article.  

 

2.1 MRC COIN  

 

The phase III MRC COIN trial12 in previously untreated patients with colorectal cancer had three-

arms and two primary hypotheses. The control treatment was chemotherapy with oxaliplatin and 

fluoropyrimidine (OxFP) given continuously (arm Z). One experimental arm included an additional 

therapy cetuximab to OxFP (arm A), and the other assessed the chemotherapy OxFP given 

intermittently (arm B). Patients were randomised to the three treatment arms with a 1:1:1 ratio, and 

the trial objective was to assess a difference in overall survival at two years for each of the 

comparisons, arm A vs Z and arm B vs Z.  
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 2.2 AMAGINE-1  

 

The phase III AMAGINE-1 trial (clinicaltrials.gov identifier: NCT01708590) was run by Amgen / 

AstraZeneca from 2012 to 2015. The trial assessed the safety and efficacy of brodalumab taken 

every two weeks via subcutaneous injection at two doses (140 mg or 210 mg) compared with 

placebo in patients with moderate-to-severe plaque psoriasis. The primary hypotheses concerned the 

efficacy of brodalumab compared to placebo, as assessed by Static Physician Global Assessment 

(sPGA) score and improvement in Psoriasis Area and Severity Index (PASI) at 12 weeks.  

 

2.3 Myeloma XI+ Intensive 

 

The Myeloma XI Intensive trial (ClinicalTrials.gov Identifier: NCT01554852) at the University of 

Leeds opened to recruitment in 2010, comparing the current standard therapy CTD 

(cyclophosphamide, thalidomide and dexamethasone) with CRD (cyclophosphamide, lenalidomide 

and dexamethasone) in terms of progression-free survival (PFS) in newly diagnosed patients with 

Multiple Myeloma. It was anticipated that recruitment would take up to four years, with the 

required number of events occurring within three years after the close of recruitment. During 

recruitment, early evidence suggested a new therapy, carfilzomib, added to the existing CRD 

regime (CCRD) might improve efficacy. Since it was of interest to assess CCRD as soon as 

possible, the follow-on Myeloma XI+ intensive trial was designed without waiting for the results of 

the original trial, and opened to recruitment in 2013 following on seamlessly from Myeloma XI. 

The Myeloma XI+ trial therefore compared the experimental therapy CCRD to the current standard 

control CTD and the previous experimental therapy CRD at a 2:1:1 randomisation in order to 

protect the trial in the case that CRD was found superior and superseded CTD as the standard 

therapy before the amended trial had completed and reported. 

 

3. Background to multiplicity concerns in multi-arm trials 

 

3.1 Shared control data 

 

If two experimental treatments, say A and B, are to be compared against the current standard, say Z, 

in independent trials, it is accepted that there is no requirement for multiple testing adjustment. If 

these two hypotheses are instead assessed within the same protocol, where the data remain entirely 

independent and non-overlapping with separate control groups Z1 and Z2, and the hypotheses are 

both powered separately and appropriately (figure 1a), it would be difficult to argue for multiple 
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testing adjustment since there is no multiple use of any data. The sharing of a protocol or even a 

randomisation system in this case does not affect the probability of an error over that for 

independent trials. Westfall et al.13 report that it may be plausible that multiplicity problems due to 

sharing a protocol could result from “selection effects” such as the method of assessment of the 

primary endpoint. However, this could just as easily occur in two independent trials led by the same 

trials team. Therefore it would seem that there is no additional reason for multiplicity concerns due 

to simply sharing a protocol, when separate pieces of confirmatory evidence are not required to be 

obtained from distinct teams.  

 

 

Figure 1a. Illustration of two separate hypotheses being tested within the same protocol. There is 

no overlap of the use of patients, so the questions are entirely independent.  R denotes the point of 

randomisation. 

 

A trial of the design displayed in figure 1a may not make practical sense where the eligibility 

criteria and control group for both experimental treatment comparisons are the same. Efficiency can 

be greatly improved by comparing both experimental arms to the same group of control patients.  If 

the treatment difference being sought is the same, then utilising a single control group offers a 

saving of 25% of the trial sample size for an even allocation ratio (figure 1b). 

 

 

Figure 1b. Illustration of a multi-arm design where two separate hypotheses are being asked within 

the same protocol and sharing the same control patients.  R denotes the point of randomisation. 
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For the design shown in figure 1b, the hypotheses can be addressed separately and can both be 

adequately powered. Given the logic that the use of the same protocol does not cause multiplicity 

concerns over the same hypotheses being tested in independent trials, the difference is around the 

shared use of the control data. The comparisons are no longer independent, but are correlated based 

on the shared comparator group14. The impact of this correlation can be formally quantified to 

inform the necessary adjustment so that the chances of errors do not exceed those for independent 

trials. Proschan et al.15 examine the effects of treatments being compared to a control within the 

same trial compared to independent trials, “in terms of the different distributions of the number of 

Type-I errors and power”. Senn16 considers the conditional probability of a type-I error under the 

null hypothesis of  “concluding that a given dose is significant given that all other doses tested to 

date are significantly different from placebo” when comparing multiple doses against a placebo, as 

an alternate way of thinking about the probability of multiple errors within a family. He notes that 

“even where the probabilities of making at least one type-I error are controlled, conditional error 

rates may not be”, but does not make recommendations for multiple testing adjustment based on 

this. Very little literature has been published assessing the effect of shared control data on the 

probabilities of type-I errors over those in independent trials, and this effect is rarely considered 

when assessing the requirement for multiplicity adjustment in multi-arm trials. Extending the work 

of Proschan et al. we further investigate the effect of correlation due to shared control data in detail 

within this manuscript. 

 

3.2 Increased chance of making a single claim of effectiveness for a therapy  

 

Section 3.1 highlights that a key statistical implication of running a single multi-arm trial compared 

to separate trials is due to multiple use of shared control data. However, another factor that could 

increase the chance of a false conclusion over that for independent trials is the ability to test more 

hypotheses than would otherwise have been assessed. The necessity for adjustment in this case is a 

largely philosophical, rather than necessarily statistical, argument that has been well addressed in 

the literature, albeit with varying opinions, and needs to be considered and justified on a trial-by-

trial basis4-8.  

On reviewing the literature, our opinion is that if the hypotheses contribute towards a single claim 

of effectiveness, for example because they assess different doses of the same therapy with any 

success leading to promotion of that therapy, the hypotheses are likely to be considered a ‘family’ 

and therefore FWER adjustment may be required. If the hypotheses inform different claims of 

effectiveness, for example because they are assessing different experimental therapies, FWER 

control is likely to be an unnecessary penalty5, 6. This does not contradict ICH E9 ‘Statistical 
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Principles for Clinical Trials’10, which states that “adjustment should always be considered, and the 

details of any adjustment procedure or an explanation of why adjustment is not thought to be 

necessary should be set out in the analysis plan.” Hung and Wang 17 discuss defining “a relevant 

family of hypotheses for which the type-I error needs to be properly controlled”, and recommend a 

“clinical decision tree”, determined in advance, to decide what aspects need to be protected from 

type-I error inflation. The decision on adjustment due to assessing multiple hypotheses should be 

made at the design stages for each trial and documented with full justification. This important 

consideration is incorporated into the recommendations on adjustment in multi-arm trials given in 

Section 7.  

 

4. The effect of correlation due to shared control data 

 

As noted above, whilst the increased chance of making a single claim of effectiveness based on 

multiple hypotheses within a trial has been widely discussed in the literature, the effect of 

correlation due to multiple use of the shared control data has been less well addressed and does not 

appear to be widely understood, and therefore forms the main focus of this manuscript. 

 

We begin by stating some key definitions before exploring the quantification of the effect of the 

shared control data. 

 

4.1 Definitions of error regions 

 

In two independent hypothesis tests, such as illustrated in the trial design given in figure 1a, the null 

hypothesis H0A assesses therapy A against Z1, with test statistic ஺ܺ, and the null hypothesis H0B 

assesses therapy B against Z2, with test statistic ܺ஻, each with a two-sided significance level of 0.05. 

It can be assumed that the test statistics for each comparison follow a normal distribution when 

sample sizes are reasonable. 

 

Figure 2 illustrates the joint density for the standardised test statistics in this setting, based on the 

probability density function of the standardised bivariate normal distribution with no correlation, 

since the tests are independent. The rejection regions for the hypothesis tests are the shaded areas 

around the outside of the square, as described by Fernandes and Stone14. 

 

The probability of falling within just one of the four shaded rejection regions along the length of the 

edges is 2.5%. That is, the probability of concluding that either therapy is either falsely inferior or 
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falsely superior to its control therapy is 2.5%. The darker shaded corner regions represent the 

probability that both hypotheses have false positive outcomes, that is there are two type-I errors.  
 

 

 

Figure 2. Rejection regions for two independent comparisons plotted on orthogonal axes, with the 

standardised test statistic for the null hypothesis H0A being displayed horizontally, and H0B 

displayed vertically. 

 

The amount of false positive error that falls in different shaded regions within figure 2 may have 

different implications depending on the goals of the trial. We have therefore defined various types 

of false positive error below, and these will first be quantified in the case of independent 

comparisons before exploring the case where there is shared control data. 

 

Familywise Error Rate (FWER): 

 

Recall that the FWER is the overall probability of at least one false positive conclusion anywhere 

within a defined set of trial hypotheses. It can be seen from figure 2 that in the case of two 

independent comparisons and a two-sided significance level of 0.05, if we consider the two 

comparisons as a family, the FWER is equal to the total shaded region. This can be calculated by 
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the sum of the four shaded regions around the edges, minus the darker shaded regions that are 

double counted in the four corners.  ܴܧܹܨ ൌ ሺͶ כ ͲǤͲʹͷሻ െ ሺͶ כ ͲǤͲʹͷଶሻ ൌ ͲǤͲͻ͹ͷ 

 

Note that the FWER can easily be confirmed for independent comparisons, as it can be described 

using a binomial distribution since each null hypothesis has a binary outcome associated with it. 

Define Y to be the random variable associated with the event that a type-I error occurs. In the 

independent case, with k comparisons and a probability Į of finding a significant difference, the 

probability of exactly y type-I errors across the k comparisons (y = 1,…,k) can be expressed as: ܲሺܻ ൌ ሻݕ ൌ ൬݇ݕ൰ ௬ሺͳߙ െ   ሻ௞ି௬ߙ
 

Since the FWER is the probability of at least one error,  ܴܧܹܨ ൌ ሺܻ݌ ൐ Ͳሻ ൌ ͳ െ ሺܻ݌ ൌ Ͳሻ ൌ ͳ െ ሺͳ െ  ሻ௞ߙ

 

So, with two independent comparisons and Į = 0.05 for each as illustrated in figure 2, the FWER is 

0.0975, as expected. 

 

Family Multiple Error Rate (FMER):  

 

A second type of false positive error can be defined as the chance of multiple false positive findings 

across a family of hypotheses, which we call the Family Multiple Error Rate (FMER).  

 

The overall error that exists in any family of hypotheses will always equal the sum of the errors for 

each hypothesis. With a family of two (null) hypotheses H0A and H0B respectively relating to the 

comparisons of therapies A and B with control, and Į=0.05 for each, the total error will be 0.1. By 

probability theory: PሺH଴୅ሻ ൅ PሺH଴୆ሻ ൌ PሺH଴୅ ׫ H଴୆ሻ ൅ PሺH଴୅ ת H଴୆ሻ PሺH଴୅ሻ is the probability of a type-I error for the null hypothesis H0A. ܲሺH଴୆ሻ is the probability of a type-I error for the null hypothesis H0B. PሺH଴୅ ׫ H଴୆ሻ is the overall chance of a type-I error, i.e. the FWER. PሺH଴୅ ת H଴୆ሻ is the chance of more than one error occurring from the same pair of null hypotheses, 

which is the FMER. 
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In figure 2, the FMER is represented by the sum of the probabilities in the four dark shaded corner 

regions. In the case of two fully independent hypotheses tested in two separate trials, the FMER is Ͷ כ ͲǤͲʹͷଶ ൌ ͲǤͲͲʹͷ. Therefore FWER + FMER is 0.1, as expected.  

 

Note that the FMER is directly related to the conditional probability of a type-I error  ܲሺܪ଴஻ȁܪ଴஺ሻ, 

as discussed in Section 3.1, since: ܲሺܪ଴஻ȁܪ଴஺ሻ ൌ ܲሺܪ଴஺ ת ଴஺ሻܪ଴஻ሻܲሺܪ  

However, the FMER is easier to interpret in the case of a multi-arm trial due to the hypotheses not 

necessarily having any sensible order.   

 

Multiple Superior False Positives (MSFP): 

 

In figure 2, the lower left corner signifies both false positives falling in the rejection region in 

favour of the control, thus declaring the experimental treatment significantly inferior (multiple 

inferior false positive outcomes), the upper right corner signifies both false positives falling in 

favour of the experimental treatments (multiple superior false positive (MSFP) outcomes), and the 

upper left and lower right corners signify one false positive favouring the control and the other an 

experimental treatment.  The chance of MSFP errors could be important if the outcomes of the 

hypotheses inform a single claim of effectiveness, as discussed in Section 6. In the independent case 

with two hypotheses, the probability of a MSFP outcome is 0.0252 = 0.000625.  

 

4.2 The effect of positive correlation due to the shared control group 

 

Recall Figure 1b illustrating a typical three-arm trial design with two experimental arms, A and B, 

and a shared control group Z. Since both treatments are being compared to the same control data, 

the comparisons are not independent. That is, if the control group sample, by chance, perform worse 

than the true population, there is an increased probability that both therapies A and B will report a 

false positive outcome to conclude that they are superior. The test statistics are therefore positively 

correlated, since the outcomes for the control sample will affect both in the same way. 

 

It has previously been shown that the positive correlation between the test statistics reduces the 

probability of making at least one type-I error (the FWER) over cases where there is no correlation, 

such as in independent trials; but the probability of making two or more errors is higher, such that 

“the conditional probability of a Type-I error on one comparison with control, given that a Type-I 
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error has been made on another comparison with control, is substantially increased” in the 

correlated case15, 16. We further quantify and expand on these findings in order to inform 

recommendations on the need for a multiple testing adjustment in multi-arm trials with correlated 

test statistics. 

 

4.3 Calculating the correlation between the test statistics due to sharing control data 

 

Recall from Section 4.1 that in the case of multi-arm trials with independent experimental therapies 

and a shared control group, the test statistics for the comparisons, ஺ܺ and ܺ஻, can be assumed to 

follow standardised normal distributions when sample sizes are reasonable.  Their joint distribution 

therefore follows a standardised bivariate normal with correlation ߩ஺஻. Relevant theory is given in 

Follmann et al.18.  

 

Dunnett19 notes that the correlation between the test statistics is directly linked to the allocation 

ratio, as follows:  ߩ஺஻ ൌ ͳටቀ݊௓݊஺ ൅ ͳቁ ቀ݊௭݊஻ ൅ ͳቁ 

where ݊௜  is the sample size in group i (i = A, B, Z). 

 

If the allocation ratio is 1:1:1, the correlation is 0.5. For an allocation of 2:1:1 in favour of control, 

the correlation is 0.333. With 1:2:2, the correlation is 0.667. 

 

4.4 Calculating the FWER, FMER and MSFP assuming a multivariate normal distribution, 

incorporating correlation  

 

The various false positive errors of potential interest in a multi-arm trial  can be calculated based on 

the assumption of  the joint distribution of the test statistics following a standardised multivariate 

normal distribution. The R program in Appendix 1 computes these probabilities in the case of two 

or three experimental therapies, allowing varying correlation, in order to calculate the error density 

in each of the rejection regions.  

 

The effect of the correlation on the rejection regions in the case of two experimental treatments is 

illustrated in figure 3. As the correlation increases, the proportion of error in the lower left and 

upper right corners, indicating false positive outcomes in the same direction for both hypotheses, 



13 
 

also increases. That is, if the shared control group performs better or worse than expected, there is a 

greater chance of an error in both of the hypotheses in the same direction, as expected. The effect of 

this correlation on the different types of errors described in Section 4.1 can easily be calculated by 

solving the probabilities of the outcomes falling within the relevant rejection regions. 

 

 

Figure 3. Illustration of rejection regions for: 

a) two hypotheses, each with individual control data, ȡ=0 

b) two hypotheses with shared control data and 2:1:1 randomisation, ȡ=0.333 

c) two hypotheses with shared control data and 1:1:1 randomisation, ȡ=0.5 

d) two hypotheses with shared control data and 1:2:2 randomisation, ȡ=0.667 
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4.5 FWER, FMER and MSFP comparison for multi-arm trials with a shared control group 

compared to independent trials 

 

The R program in Appendix 1a can be used to calculate the FWER, FMER and MSFP rates for 

different levels of correlation based on the allocation ratio in three-arm trials with two experimental 

arms and a shared control. The code has also been extended to calculate the probabilities for four-

arm trials with three experimental arms and a shared control, provided in Appendix 1b. These 

probabilities are shown in table 1. 

 

 Independent 

case 

(Separate trials) 

Dependent case 

2:1:1(:1)  

(2 to control) 

Dependent case 

1:1:1(:1)  

 

Dependent case 

1:2:2(:2)  

(1 to control) 

Correlation (ȡ) 0 0.333 0.5 0.667 

Reject H0 for each 

individual hypothesis 

(A, B or C) 

0.050 0.050 0.050 0.050 

Three-arm trial (hypotheses A and B) 

FWER: Reject at least 

one H0, A or B 
0.0975 0.0946 0.0908 0.0849 

FMER: Reject both 

H0’s A and B (in any 

direction)  

0.0025 0.0054 0.0093 0.0151 

MSFP: Reject both 

H0’s in favour of 

treatments A and B  

0.00063 0.00267 0.00462 0.00753 

Four-arm trial (hypotheses A, B and C) 

FWER: Reject at least 

one H0, A, B or C 
0.1426 0.1348 0.1254 0.1124 

FMER2: Reject at 

least two H0’s (in any 

direction) 

0.0072 0.0141 0.0214 0.0301 
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FMER3: Reject all 

three H0’s A, B and C 

(in any direction) 

0.0001 0.0011 0.0032 0.0076 

MSFP2: Reject at 

least two H0’s in 

favour of A, B or C  

0.0018 0.0069 0.0107 0.0150 

MSFP3: Reject all 

three H0’s in favour of 

A, B and C  

0.00002 0.00056 0.00160 0.00378 

Table 1. FWER, FMER and MSFP comparisons for three and four arm trials with a shared control 

group and varying allocation ratios, compared to independent 1:1 randomised trials (Į=0.05 for 

each hypothesis) 

 

FWER: 

 

The FWER is lower in all cases with shared control data than the equivalent error when assessing 

two independent trials. That is, the correlation between the test statistics reduces the overall 

probability of a type-I error occurring across either of the hypotheses over the case where there is 

no shared control data, as also shown by Proschan et al.15.  

 

FMER: 

 

In a multi-arm trial with two hypotheses, the chance of multiple errors has increased from 0.25% for 

independent trials to 0.93% in the case with even allocation, an increase of 3.7 times. The message 

stays the same as the number of hypotheses increases; in the case with three hypotheses and even 

allocation, the chance of any two errors is now over 2%, which is not trivial. Similar increases are 

found with unequal allocation ratios and the trend across the resultant correlations from these 

changing allocation ratios can be clearly seen. 

 

The increase in the FMER is due to the increased chance of an error occurring within the correlated 

comparisons in the same direction. This is caused by a chance deviation in the outcome for the 

control sample from the outcome for the true population. The probability of multiple type-I errors in 

opposite directions has decreased, as expected from figure 3, but to a lesser extent than the increase 

in the chance of errors in the same direction. Recall that the total error (FWER + FMER) is fixed, 

thus the increased FMER explains the reduction in the FWER.  
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MSFP: 

 

With two hypotheses, the MSFP rate has increased from 0.06% in independent trials to 0.46% in the 

multi-arm case with even allocation, an increase of 7.7 times. With three hypotheses, the chance of 

any two superior false positive outcomes has increased by nearly 6 times to over 1%, and the 

chance of three MSFPs is substantially greater than in the independent case, although the 

probability is very small at 0.16%.  Again, similar patterns and trends are seen for other allocation 

ratios. This is intuitively obvious since a chance ‘bad’ outcome in the control sample compared to 

the true population would increase the chances of false positives in both hypotheses, but the 

magnitude of this effect is now apparent, and is not trivial.  

 

5. An investigation of the effect of multiplicity adjustment methods 

 

Many multiplicity adjustment procedures have been devised to strongly control the FWER for a 

number of tests within a family of hypotheses. The adjustment methods considered here are: 

Bonferroni20, a simple, conservative and popular adjustment method; Holm21 and Hochberg22, 

closed testing methods based on a hierarchical strategy of testing the outcomes ordered by 

significance; Dunnett’s t19, a parametric method that adjusts the Bonferroni boundaries to control 

the probability of observing a significant result under H0 at 0.05; and Dunnett and Tamhane23, an 

adjusted Hochberg step-up multiple test procedure in which the rejection levels are adjusted to 

account for the correlation so that the final FWER is 0.05.  

 

Table 2 shows the effects of applying these adjustment methods on the various error rates, using the 

example of a three arm trial with 1:1:1 allocation ratio in which the two experimental arms are 

compared to a shared control group. 

 

 
Independent 

case 

Dependent case, 1:1:1 allocation 

Un-

adjusted 

Bonferroni Holm Hochberg Dunnett’s t Adjusted 

Hochberg 

Reject H0 for 

individual 

comparison (A 

or B) 

0.0500 0.0500 0.0250 0.0271 0.0286 0.0271 0.0296 
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FWER: Reject 

at least one H0, 

A or B  

0.0975 0.0908 0.0465 0.0465 0.0480 0.0502 0.0500 

FMER: Reject 

both H0’s A and 

B (in any 

direction) 

0.0025 0.0093 0.0035 0.0077 0.0093 0.0039 0.0093 

MSFP: Reject 

both H0’s in 

favour of 

treatments A 

and B 

0.00063 0.00462 0.00176 0.00385 0.00462 0.00197 0.00462 

Table 2. FWER, FMER and MSFP comparisons for three arm trials with two hypotheses (Į=0.05 

for each), a shared control group and even allocation ratio, after applying various multiple testing 

adjustments 

 

FWER: 

 

All adjustment methods control the FWER at 0.05 or less, as expected. In all cases, the chance of 

rejecting the null hypothesis for each individual comparison has taken a penalty compared to 

running independent trials. The Dunnett’s t and Adjusted Hochberg methods account for the effect 

of the correlation due to the shared control data on the FWER, in order to make less conservative 

adjustments than the other methods.  

 

FMER: 

 

Although adjustment methods control the probability of falsely rejecting at least one hypothesis, no 

method fully controls the chance of multiple errors occurring within the same set of hypotheses to 

be what it would have been if the hypotheses had been assessed in independent trials.  

 

With Bonferroni and Dunnett’s t, the probabilities of multiple errors are reduced towards those in 

independent trials, but the Holm, Hochberg and Adjusted Hochberg methods based on the closed 

testing principle offer very little or no protection of the FMER over no adjustment. The first step of 

a step-up procedure is to accept all hypotheses if the least significant is <0.05, so it can easily be 

seen why this is the case. 
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Intuitively, if the critical level is set lower, as with the Bonferroni method, fewer null hypotheses 

will be rejected in all comparisons, and therefore the chance of both being rejected will also 

decrease. However, since a ‘bad’ outcome in the shared control sample would still affect both 

comparisons by increasing the chances of a false positive error, it makes sense that a higher 

proportion of paired hypotheses are both rejected when they share a common control.  

 

MSFP: 

 

Since the adjustment methods do not control the FMER, they also do not offer full protection 

against the chance of MSFP outcomes. After applying the Bonferroni and Dunnett’s t corrections, 

the chance of two superior false positive errors is still inflated by approximately 3 times over that 

with independent trials, and following the Hochberg adjustments this rises to over 7 times. 

 

The above results highlight that multiple testing adjustment methods only control the probability of 

the overall FWER to that for a single hypothesis. They do not offer control over the chance of 

multiple false positive errors, which is the probability that is increased over that had the hypotheses 

been assessed in independent trials.  

 

6. Controlling the probability of multiple superior false positive outcomes  

 

We have shown that in the case where two superior hypotheses may both be used to jointly inform a 

claim of effectiveness, the overall chance of both having a false positive outcome in favour of the 

experimental treatments (MSFP) is inflated in a multi-arm trial over that chance occurring in 

independent trials. In addition, applying multiple testing correction methods do not reduce the 

chance of MSFP outcomes to the same level as in two independent trials. 

 

The FDA guidance on ‘Providing Clinical Evidence of Effectiveness for Human Drug and 

Biological Products’24 suggests that it is feasible for multiple hypotheses from within a single study 

to be accepted as evidence of effectiveness if the trial is designed appropriately. In this case, it 

would be important that the probability of multiple conclusions of superiority (MSFP) is not 

inflated over that for independent studies. The example of the AMAGINE-1 trial described in 

Section 2.2 assesses two doses of an experimental treatment against placebo. If these doses were 

investigated in independent trials, both trial outcomes may be used to inform a claim of 

effectiveness, but the penalty for assessing these within a multi-arm trial in terms of inflation of the 

MSFP rate has not been investigated or quantified.  This is a similar issue to that discussed by Shun 
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et al25, in which they require the overall ‘positive rejection region’ in a large pivotal trial to be 

controlled to the same level as in two smaller pivotal trials.  

 

6.1 Critical values to control the MSFP rate in the case of three arms 

 

In two independent trials, the chance of two superior false positive outcomes is 0.000625 (Section 

4.1). Since the joint distribution can be described using a bivariate normal (Section 4.4), this can be 

used to obtain the exact critical value that returns a probability of 0.000625. This principle is similar 

to the work of Follmann et al., which relies on the multivariate normal assumption of the test 

statistics to estimate critical values that strongly protect the type-I error rate in the case of multi-

armed trials with interim looks18.  The R code to calculate the critical value is provided in Appendix 

2.  

 

In the 1:1:1 case, the critical value required to protect the MSFP rate at 0.000625 is 0.0118. In the 

2:1:1 case it is 0.0195, and in the 1:2:2 case it is 0.0069, as shown in Table 3. That is, if two 

hypotheses are assessed in a multi-arm trial with a shared control group, and are to be used to 

jointly inform a claim of effectiveness; in order to control the probability of two superior false 

positive outcomes to the level in independent trials, the p-values for both hypotheses are required to 

be less than these adjusted critical values. It can be seen that with this level of control, the FWER is 

reduced to much lower than 5%. 

 

 Independent case  

No adjustment  

Dependent 

case  

No 

adjustment 

Dependent 

case 2:1:1 

Į = 0.0195 

Dependent 

case 1:1:1 

Į = 0.0118 

Dependent 

case 1:2:2 

Į = 0.0069 

Reject H0 for 

individual 

comparison (A 

or B) 

0.050 0.050 0.0195 0.0118 0.0069 

FWER: Reject 

at least one H0, A 

or B 

0.0975 0.0908 0.0377 0.0224 0.0125 

MSFP: Reject 

both H0’s in 

favour of 

0.000625 0.00462 0.000623 0.000624 0.000628 
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treatments A 

and B 

Table 3. Adjusted critical values to control the chance of a MSFP error in a three-arm trial to that 

for two independent 1:1 randomised trials 

 

6.2 The effect of MSFP control on the power and sample size 

 

If a trial is designed to allow two superior outcomes to be used as evidence to inform a single claim 

of effectiveness, the power is required to be maintained for each hypothesis as it would for 

independent trials, requiring an increased sample size. As an example, take a confirmatory trial with 

a survival primary endpoint and analysis based on the log-rank test for equality based on an 

exponential survival distribution. Assume that the estimated median survival in the control group is 

36 months, and that a clinically relevant difference would be an improvement to 48 months 

(HR=0.75). In a two-arm trial, with a recruitment period of 48 months and an additional 36 month 

follow-up period, 408 patients are required per arm (1:1) to achieve 508 events for 90% power with 

a type-I error rate of 5%.  

 

If there are two experimental arms of interest in the population, a three-arm trial may be considered 

rather than two independent trials. In the scenario of running independent trials, the total sample 

size for the two trials assuming 1:1 allocations would be 1632, and in the multi-arm trial this is 

reduced to 1224 with no adjustment. Adjusting to control the chance of MSFP outcomes reduces 

the power from 90% to 77%, and to account for this loss in power the sample size would need to be 

increased by 37% to 1680, which makes the multi-arm trial slightly larger than running two 

independent trials. There may still be benefits of running a multi-arm trial, however, in terms of 

reducing the total number of patients receiving the control therapy as well as the time and cost of 

only needing to set-up and run a single trial. 

 

7. Discussion 

 

Multi-arm trials can be efficient and therefore advantageous over running independent trials. 

However, there are conflicting views in the literature on how to appropriately control the 

probability of a false positive error. A lack of proper control of the FWER could lead to an 

unacceptable chance of an ineffective treatment being recommended to be taken forward into 

practice; but unnecessary control of the FWER could affect the efficiency of a trial, requiring 

increased patient numbers and resources. FWER adjustment without increasing the sample size to 
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maintain power could lead to a superior treatment being denied. Each of these scenarios raises 

ethical concerns.  

 

False positive error rates may be affected in multi-arm trials compared to independent trials due to 

either: correlation between the comparisons caused by the shared use of the control data; or an 

increased chance of making a claim of effectiveness because of an increased ability to test a family 

of hypotheses. It is a common misconception that FWER adjustment is necessary due to sharing 

control data. When considering the designs illustrated in Figures 1a and 1b, some might assume that 

the overall FWER for the family of hypotheses, H0A and H0B, would be larger in Figure 1b where 

there is a common control group. However, we have confirmed that the FWER is in fact smaller in 

Figure 1b than in Figure 1a. The common control group instead has the effect of increasing the 

chances of more than one false positive outcome within the family of hypotheses; although FWER 

adjustment methods do not control for this. The necessity for a FWER adjustment is therefore only 

dependent on whether assessing multiple hypotheses within a multi-arm trial has increased the 

chance of making a single claim of effectiveness.  

 

We have formalised the implications of running a multi-arm trial with shared control data on the 

probabilities of various types of false positive errors, considering the effects of multiple testing 

adjustment methods on these probabilities, in order to make informed recommendations on the 

requirement for adjustment. The findings are summarised below. In addition, a flow diagram to aid 

the determination of the requirement for a multiple testing adjustment in a multi-arm trial is 

provided in Figure 4. Note that the decisions on the need for error control with respect to the 

interpretation of the trial results should be agreed and documented in advance in the protocol and 

statistical analysis plan.  
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Figure 4. Decision diagram to determine the requirement for a multiple testing adjustment in multi-

arm trials  

 

7.1 Familywise Error Rate (FWER) in the case where each hypothesis informs a different claim of 

effectiveness 

 

Consider the case in which multiple hypotheses are being assessed in the same trial with a shared 

control group, but each hypothesis informs a different claim of effectiveness. An obvious example 

is where the experimental arms assess entirely different therapies. A further example is the MRC 

COIN trial12 introduced in Section 2.1. OxFP is present in all treatment arms, however since one 

primary hypothesis addresses the addition of an experimental therapy to OxFP and the other 

addresses a reduction in duration of OxFP therapy, these do not contribute towards the same claim 

of effectiveness. In this case, the chance of a false positive outcome for either claim of effectiveness 

is not increased by the presence of the other hypothesis. 

 

Since we have confirmed that the correlation between comparisons due to the shared control data 

has the effect of reducing the overall chance of at least one false positive finding (FWER) over that 

chance had the same questions been asked in independent hypothesis tests, FWER adjustment is not 
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necessary due to the shared control sample. These findings remain valid in the case of imbalanced 

randomisations, and also where there are more than two experimental therapies. 

 

Therefore, adjusting to control the FWER in this case is an unnecessary penalty. It does not make 

sense here to consider the type-I error rate for the trial as a whole since any claim of effectiveness is 

only informed by a single hypothesis test. Note that if the experimental therapies are competing 

against each other for approval in the trial population, the correlation due to the shared control 

group is an advantage. If in two independent trials one of the control samples performs worse than 

the true population, the associated experimental group has an increased chance of being significant 

and taken forward. However, in the equivalent multi-arm case, bias due to comparisons to different 

control samples is removed. It is more likely that efficacious experimental therapies would be 

considered against each other directly without the influence of variations in the control samples.  

 

7.2 Familywise Error Rate (FWER) in the case where the hypotheses inform a single claim of 

effectiveness 

 

We have shown that the FWER is not inflated due to running a multi-arm trial with a shared control 

group. However, it should be noted that FWER adjustment may be required if the efficiency of 

running a multi-arm trial leads to more hypotheses being included than would have otherwise been 

assessed in independent trials. If these hypotheses inform the same claim of effectiveness, for 

example if the experimental arms assess different doses or combinations of the same experimental 

therapy, the overall chance of a false positive result anywhere within the family of hypotheses is 

clearly increased over that for a single hypothesis. In this case, there is general agreement in the 

literature that FWER control is recommended7 since the type-I error rate can be considered for the 

claim of effectiveness as a whole, rather than for each individual hypothesis. Note that it also 

follows that the power in this case can be considered to be the overall chance of observing at least 

one true positive outcome, and this will also be increased by testing multiple hypotheses. Therefore, 

the penalty caused by applying the FWER adjustment may be compensated to some extent by the 

gain in overall power.   

 

An example here is the AMAGINE-1 trial (Section 2.2) assessing two doses of brodalumab 

compared to placebo. Since a rejection of the primary hypotheses for each comparison could lead to 

a claim of effectiveness for brodalumab, there are two chances for a false positive result with 

respect to that claim, and therefore FWER adjustment is recommended.  
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7.3 Familywise Error Rate (FWER) in the case where all hypotheses are required to have superior 

outcomes in order to make a claim of effectiveness 

 

If all trial hypotheses are required to be positive in order to make a claim of effectiveness, there is 

essentially only one overarching hypothesis being tested. In this case, there is only one chance for 

an overall false positive outcome for the trial, so the chance of ‘at least one’ error cannot be 

inflated, and therefore no FWER adjustment is necessary. 

 

For example, the Myeloma XI+ Intensive trial (Section 2.3) compared the four-drug regime CCRD 

against the current standard control CTD, as well as the previously assessed three-drug regime CRD 

(which is CCRD excluding carfilzomib). Since CCRD will only be recommended for approval if it 

is better than both CTD and CRD, both hypotheses are required to be significant in order to 

recommend CCRD for use in practice. In this case, no adjustment is required. 

 

7.4 Multiple Superior False Positives (MSFP) in the case where multiple superior outcomes could 

be used as separate pieces of evidence towards a single claim of effectiveness 

 

In Section 7.2 we discuss the case where multiple hypotheses are being assessed in the same trial 

with a shared control group, with each hypothesis being tested and reported individually. If 

superiority in more than one of these hypotheses could contribute as separate pieces of evidence 

towards a claim of effectiveness for a therapy, a more stringent adjustment is required for the 

evidence to be equivalent to that obtained from two independent trials, as discussed in Section 6.  

 

We have shown that the correlation due to the shared control group increases the chance of falsely 

declaring more than one experimental treatment group to be superior to the shared control group 

(MSFP) in a multi-arm trial over that chance had the hypotheses been assessed in independent trials. 

Standard multiple testing adjustment methods do not adequately control for this. We have proposed 

a critical value adjustment to control the chance of MSFP outcomes in a three-arm trial in order for 

the evidence to be equivalent to that obtained from two independent trials.  

 

Care should always be taken in reporting and interpretation if more than one hypothesis within a 

multi-arm trial with shared control group is positive. 
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Appendix 1a: R code to calculate the probabilities for the rejection regions based on two 
correlated comparisons, assuming a bivariate normal distribution. 
 
#Install library first use 

setInternet2(TRUE) 

install.packages("mvtnorm") 

library(mvtnorm) 

 

#Bivariate normal case (2 experimental arms) 

 

#set correlation 

corr <- 0 

 

#correlation matrix 

corrmat <- matrix(c(1,corr,corr,1),ncol=2,byrow=TRUE) 

 

#Exactly 1 error (calculate probabilities for the edges  

#excluding the corners of the square) 

 

# Left hand side 

leftside <- pmvnorm(lower=c(-Inf,-1.96), upper=c(-1.96,1.96), corr = corrmat ) 

 

# Right hand side 

rightside <- pmvnorm(lower=c(1.96,-1.96), upper=c(Inf,1.96), corr = corrmat ) 

 

# Top edge 

topside <- pmvnorm(lower=c(-1.96,1.96), upper=c(1.96,Inf), corr = corrmat ) 

 

# Bottom edge 

bottomside <- pmvnorm(lower=c(-1.96,-Inf), upper=c(1.96,-1.96), corr = corrmat ) 

 

# Total chance of exactly 1 error 

oneonly=leftside+rightside+topside+bottomside 

 

#Exactly 2 errors (calculate probabilities in each of the 4 corners of the 

square) 

 

# Lower left corner 

lowleft <- pmvnorm(lower=c(-Inf,-Inf), upper=c(-1.96,-1.96), corr = corrmat ) 

 

# Lower right corner 

lowright <- pmvnorm(lower=c(1.96,-Inf), upper=c(Inf,-1.96), corr = corrmat ) 

 

# Upper Left corner 

upleft <- pmvnorm(lower=c(-Inf,1.96), upper=c(-1.96,Inf), corr = corrmat ) 

 

# Upper Right corner 

upright <- pmvnorm(lower=c(1.96,1.96), upper=c(Inf,Inf), corr = corrmat ) 

 

# Total chance of exactly 2 errors 

twoonly <- lowleft+lowright+upleft+upright 

 

# FWER 

FWER <- oneonly+twoonly  

 

# Probability of any two errors (FMER) 

FMER <- twoonly  

 

# MSFP probability of two superior false positives 

MSFP <- upright 

 

#Output results 

corrmat 
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FWER  

FMER  

MSFP  

 

 
Appendix 1b: R code to calculate the probabilities for the rejection regions based on three 
correlated comparisons, assuming a trivariate normal distribution. 
 
# Install library first use 

setInternet2(TRUE) 

install.packages("mvtnorm") 

library(mvtnorm) 

 

# Trivariate normal case (3 experimental arms) 

 

#set correlation 

corr <- 0.5 

 

#correlation matrix  

corrmat <- matrix(c(1,corr,corr,corr,1,corr,corr,corr,1),ncol=3,byrow=TRUE) 

 

#Exactly 1 error (illustrated by the 6 side face of a cube minus the upper and 

lower 5% around the edges) 

 

Oneonly1 <- pmvnorm(lower=c(-1.96,-1.96,-Inf), upper=c(1.96,1.96,-1.96), corr = 

corrmat ) 

Oneonly2 <- pmvnorm(lower=c(-1.96,-1.96,1.96), upper=c(1.96,1.96,Inf), corr = 

corrmat ) 

Oneonly3 <- pmvnorm(lower=c(-Inf,-1.96,-1.96), upper=c(-1.96,1.96,1.96), corr = 

corrmat ) 

Oneonly4 <- pmvnorm(lower=c(1.96,-1.96,-1.96), upper=c(Inf,1.96,1.96), corr = 

corrmat ) 

Oneonly5 <- pmvnorm(lower=c(-1.96,-Inf,-1.96), upper=c(1.96,-1.96,1.96), corr = 

corrmat ) 

Oneonly6 <- pmvnorm(lower=c(-1.96,1.96,-1.96), upper=c(1.96,Inf,1.96), corr = 

corrmat ) 

 

# Total chance of exactly 1 error 

Oneonly=Oneonly1+Oneonly2+Oneonly3+Oneonly4+Oneonly5+Oneonly6 

 

#Exactly 2 errors (illustrated by the 12 edges of a cube minus the upper and 

lower 5% in the corners) 

 

# the 3 edges that corner the triple rejection in favour of control (lower left 

front) 

onlyllx <- pmvnorm(lower=c(-1.96,-Inf,-Inf), upper=c(1.96,-1.96,-1.96), corr = 

corrmat ) 

onlylly <- pmvnorm(lower=c(-Inf,-1.96,-Inf), upper=c(-1.96,1.96,-1.96), corr = 

corrmat ) 

onlyllz <- pmvnorm(lower=c(-Inf,-Inf,-1.96), upper=c(-1.96,-1.96,1.96), corr = 

corrmat ) 

 

# the 3 edges that corner the triple rejection in favour of the experimental 

arms (upper right back) 

onlyurx <- pmvnorm(lower=c(-1.96,1.96,1.96), upper=c(1.96,Inf,Inf), corr = 

corrmat ) 

onlyury <- pmvnorm(lower=c(1.96,-1.96,1.96), upper=c(Inf,1.96,Inf), corr = 

corrmat ) 

onlyurz <- pmvnorm(lower=c(1.96,1.96,-1.96), upper=c(Inf,Inf,1.96), corr = 

corrmat ) 

 

#Off edges (l=lower u=upper f=front b=back l=left r=right): 
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onlylrz <- pmvnorm(lower=c(1.96,-Inf,-1.96), upper=c(Inf,-1.96,1.96), corr = 

corrmat ) 

onlyfry <- pmvnorm(lower=c(1.96,-1.96,-Inf), upper=c(Inf,1.96,-1.96), corr = 

corrmat ) 

onlylbx <- pmvnorm(lower=c(-1.96,-Inf,1.96), upper=c(1.96,-1.96,Inf), corr = 

corrmat ) 

onlyufx <- pmvnorm(lower=c(-1.96,1.96,-Inf), upper=c(1.96,Inf,-1.96), corr = 

corrmat ) 

onlyulz <- pmvnorm(lower=c(-Inf,1.96,-1.96), upper=c(-1.96,Inf,1.96), corr = 

corrmat ) 

onlybly <- pmvnorm(lower=c(-Inf,-1.96,1.96), upper=c(-1.96,1.96,Inf), corr = 

corrmat ) 

 

# Total chance of exactly 2 errors 

Twoonly <- 

onlyllx+onlylly+onlyllz+onlyurx+onlyury+onlyurz+onlylrz+onlyfry+onlylbx+onlyufx+

onlyulz+onlybly  

 

# Exactly 3 errors (Calculate probabilities in each of the 8 corners of a cube) 

x1y1z1 <- pmvnorm(lower=c(-Inf,-Inf,-Inf), upper=c(-1.96,-1.96,-1.96), corr = 

corrmat ) 

 

x2y1z1 <- pmvnorm(lower=c(1.96,-Inf,-Inf), upper=c(Inf,-1.96,-1.96), corr = 

corrmat ) 

x1y2z1 <- pmvnorm(lower=c(-Inf,1.96,-Inf), upper=c(-1.96,Inf,-1.96), corr = 

corrmat ) 

x1y1z2 <- pmvnorm(lower=c(-Inf,-Inf,1.96), upper=c(-1.96,-1.96,Inf), corr = 

corrmat ) 

 

x2y2z1 <- pmvnorm(lower=c(1.96,1.96,-Inf), upper=c(Inf,Inf,-1.96), corr = 

corrmat ) 

x2y1z2 <- pmvnorm(lower=c(1.96,-Inf,1.96), upper=c(Inf,-1.96,Inf), corr = 

corrmat ) 

x1y2z2 <- pmvnorm(lower=c(-Inf,1.96,1.96), upper=c(-1.96,Inf,Inf), corr = 

corrmat ) 

 

x2y2z2 <- pmvnorm(lower=c(1.96,1.96,1.96), upper=c(Inf,Inf,Inf), corr = corrmat 

) 

 

# Total chance of exactly 3 errors 

Threeonly <- x1y1z1+x2y1z1+x1y2z1+x1y1z2+x2y2z1+x2y1z2+x1y2z2+x2y2z2 

 

 

#FWER – the overall error region of the sides, edges and corners 
FWER=Oneonly+Twoonly+Threeonly  

 

# Probability of at least any two errors  

twoerr <- Twoonly+Threeonly 

 

# Probability of three errors - sum of the corner regions 

threeerr <- Threeonly  

 

# Two MSFP - probability of at least two superior false positives 

# Sum of the 3 edges meeting the upper right back  

#(i.e. two false positives along the plane of the third distribution) # and the 

upper right corner 

 

TwoMSFP <- onlyurx+onlyury+onlyurz+x2y2z2 

 

# Three MSFP - probability of three positive false positives 

ThreeMSFP <- x2y2z2 

 

#Output results 
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Appendix 2: R code to calculate the rejection region required to control the probability of two 
MSFP errors based on correlated comparisons to that for independent trials, assuming a 
multivariate normal distribution. 
 
# Install library first use 

setInternet2(TRUE) 

install.packages("mvtnorm") 

library(mvtnorm) 

 
#The MSFP is the upper right corner of the rejection regions in  

#figure 2 (based on the standardised bivariate normal).  

#The MSFP needs to be controlled at 0.000625 (0.025**2) 

 

#set correlation 

corr <- 0.5 

 

#correlation matrix 

corrmat <- matrix(c(1,corr,corr,1),ncol=2,byrow=TRUE) 

 

#Solve the critical value for the upper right corner  

#equalling 0.000625 

upperx <- qmvnorm(p=0.000625,tail=c("upper.tail"),corr=corrmat) 

uppertail <- upperx$quantile 

adjcval <- 2*(1-pnorm(uppertail)) 

adjcval 

 


