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Abstract

Understanding responses of forests to increasing CO2 and temperature is an important challenge, but no easy task.

Tree rings are increasingly used to study such responses. In a recent study, van der Sleen et al. (2014) Nature

Geoscience, 8, 4 used tree rings from 12 tropical tree species and find that despite increases in intrinsic water use

efficiency, no growth stimulation is observed. This challenges the idea that increasing CO2 would stimulate

growth. Unfortunately, tree ring analysis can be plagued by biases, resulting in spurious growth trends. While

their study evaluated several biases, it does not account for all. In particular, one bias may have seriously affected

their results. Several of the species have recruitment patterns, which are not uniform, but clustered around one

specific year. This results in spurious negative growth trends if growth rates are calculated in fixed size classes, as

‘fast-growing’ trees reach the sampling diameter earlier compared to slow growers and thus fast growth rates tend

to have earlier calendar dates. We assessed the effect of this ‘nonuniform age bias’ on observed growth trends

and find that van der Sleen’s conclusions of a lack of growth stimulation do not hold. Growth trends are – at least

partially – driven by underlying recruitment or age distributions. Species with more clustered age distributions

show more negative growth trends, and simulations to estimate the effect of species’ age distributions show

growth trends close to those observed. Re-evaluation of the growth data and correction for the bias result in sig-

nificant positive growth trends of 1–2% per decade for the full period, and 3–7% since 1950. These observations,

however, should be taken cautiously as multiple biases affect these trend estimates. In all, our results highlight

that tree ring studies of long-term growth trends can be strongly influenced by biases if demographic processes

are not carefully accounted for.
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Introduction

Understanding the response of forests to global change

is important as forests are an integral part of the global

carbon cycle (Booth et al., 2012), taking up more than a

quarter of the annual CO2 emissions from fossil fuel

burning (Pan et al., 2011; Le Qu�er�e et al., 2013). Forests

thus act as an important brake on the rate of CO2

increase in the atmosphere and greenhouse warming.

The primary cause for the net carbon uptake by forests

globally is believed to be a beneficial effect of elevated

atmospheric CO2 on plant photosynthesis and stomatal

conductance (Lloyd & Farquhar, 1996), leading to long-

term growth increases at the stand level (Lewis et al.,

2009; Phillips et al., 2009; B€untgen et al., 2014). How-

ever, despite the important role of forests for global cli-

mate, there is very little information on the magnitude

and duration of growth changes in individual trees,

and the effect of CO2 on in situ tree growth remains dis-

puted (see Muller-Landau, 2009; Clark et al., 2010;

Wright, 2013).

Growth trends in trees derived from plot studies are

often based on relatively short records and are thus of

limited use to conclusively determine the drivers

behind the observed responses. One seemingly ideal

solution is the use of tree rings as they provide informa-

tion on trees’ growth rates over much longer periods

and allow extending growth series to preindustrial

times. Tree ring records are also relatively easy to col-

lect and ring widths can be measured with great preci-

sion. In addition, tree rings allow simultaneous

measurements of stable carbon isotopes, providing

insights on changes in tree functioning, such as changes

in the intrinsic water use efficiency. The greater the

plant water use efficiency, the more carbon is fixed per

unit water lost, and hence, increases in intrinsic water

use efficiency are expected to promote plant growth if

water use remains the same (Franks et al., 2013). As a

result, various recent studies have strongly advocated
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the use of tree rings to study trees’ responses to climate

and CO2 and to assess the role of forests in the global

carbon cycle (Zuidema et al., 2013; Babst et al., 2014).

In a recent study, Van der Sleen et al. (2014) showed

that intrinsic water use efficiency (iWUE) derived from

tree ring carbon isotopes increased across 12 tropical

tree species from three continents in recent decades.

Differently from other studies, they have properly

accounted for changes in iWUE through tree ontogeny

(size and age, see McDowell et al., 2011), and thus, this

result is more credible than similar results from other

studies using carbon isotopes to infer trends in iWUE

(Franks et al., 2013). A surprising second finding of

their study is that increases in iWUE do not result in

significant growth increases. Instead, in a more detailed

analysis on long-term growth patterns of these species,

they concluded that growth rates mostly decreased

over time (Groenendijk et al., 2015). This is contrary to

expectations and to findings of stand-level growth

increases from monitoring studies in South America

and Africa (Lewis et al., 2009; Phillips et al., 2009; Brie-

nen et al., 2015).

The authors evaluate to what extent well-documen-

ted biases in their tree ring data affect their results and

conclude that it is very unlikely that these prevented

the detection of long-term growth trends. However,

they did not account for the effect of one possible

cause for their outcome, which is underlying age dis-

tributions clustered around a particular age. Several of

their species show little recruitment over recent times

(see Vlam, 2014), resulting in an age distribution simi-

lar to that shown in Fig. 1a. Such unimodal distribu-

tions may result in masking possible growth

stimulation if growth rates are calculated in fixed size

classes. The reason is simple and can be understood

from an extreme case where all trees in the population

are born in the same year somewhere in the distant

past (red and green lines in Fig. 1b). Persistent growth

differences result in fast-growing individuals reaching

the size class in which growth rates are calculated at a

younger age compared to slow growers. Therefore,

when tracking growth rates back in time, fast growth

rates tend to have younger calendar dates when reach-

ing a fixed size compared to slow growth rates. The

result is an apparent negative growth trend over time

(Fig. 1c). This bias only occurs in approaches such as

applied by van der Sleen et al. (2014) if growth rates

are calculated in a fixed size class. This effect was first

described by Vlam (2014), and its possible influence on

growth trend evaluations was discussed by Groe-

nendijk et al. (2015). However, a formal assessment of

the magnitude of this bias on apparent trends in the

studies of van der Sleen et al. (2014) and Groenendijk

et al. (2015) has not been performed.

We here examine and quantify the effect of non-

uniform recruitment on growth trends presented by

van der Sleen and Groenendijk using various

approaches. The outline of this article is as follows: we

first illustrate the effect of the bias using stochastic sim-

ulations of tree ring trajectories (cf. Fig. 1). We then

address the question as to what degree observed trends

can be explained by uneven age structures. In the last

section, we use two approaches to remove the effect of

uneven age structures from the data, and re-evaluate

the growth trends observed in their species. The article

ends with a discussion of the results and general impli-

cations for tree ring studies aiming to detect growth

trends.

How do clustered age distributions affect growth

trends?

We first illustrate the magnitude of the effect of a clus-

tered age distribution on historical tree growth recon-

structions when calculating growth in a fixed size class

as performed by van der Sleen et al. (2014) and Groe-

nendijk et al. (2015). We do this by sampling simula-

tions of individual growth trajectories based on

observed growth data of Cedrela odorata from Bolivia

(see Brienen et al., 2012) in the same way as van der

Sleen et al. (2014). These growth trajectories contain a

realistic autocorrelation structure in time (Brienen et al.,

2006) resulting in variation in ages among trajectories

comparable to the observed variation. The simulated

population was centred around 1900 with a standard

deviation of 20 years. Full details on this simulation

approach can be found in the Text S1.

The outcome of these simulations and the effect of

clustered age distributions on apparent growth trends

are shown in Fig. 1. We refer to these growth change

observations as ‘apparent trends’, as the real (or simu-

lated) growth did not change over time and thus there

should be no trend observed. It shows that even in the

absence of a growth stimulation, clustered age struc-

tures result in negative growth trends of 2.8% (�
0.42% SD for 500 simulations) per decade when calcu-

lating growth in a fixed size class as performed by van

der Sleen et al. (2014) and Groenendijk et al. (2015). We

also tested whether a clustered age distribution could

conceal growth stimulations of a similar magnitude as

those observed in permanent sample plot studies (i.e.

8% per decade, cf. Brienen et al., 2015). To this end, we

simulated a (linear) growth increase of 5% and 10%

per decade starting in 1975. We specifically chose to

apply growth stimulations only over the most recent

period, as atmospheric CO2 concentrations and plant

water use efficiency only increased strongly over

recent decades. These simulations show that growth
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stimulations of 5% or even 10% per decade since 1975

can remain completely undetectable, if ages are clus-

tered as shown in Fig. 1a. This will hold for any tree

ring data set that has an underlying age structure that

is clustered in time. Thus, it does not matter whether

the uneven age structure arises due to limited recruit-

ment, failure to sample smaller and younger trees, use

of a minimum sample size limit in the field, or for any

other reasons.

The simulations show that the existence of a nonuni-

form age structure in the tree ring data set suffices to

give rise to strong spurious growth rates when calculat-

ing growth in a single size class (i.e. the size class isola-

tion method, cf. Peters et al., 2015). An alternative

standardization approach used by Groenendijk et al.

(2015) to correct for size-related trends in tree ring data,

the so-called Regional Curve Standardization (RCS)

approach (cf. Briffa et al., 1992), results in similar
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Fig. 1 Illustration of the effect of unimodal recruitment on growth trends. (a) Histogram of simulated recruitment year with a uni-

modal recruitment pattern centred around 1900 (and with standard deviation of 20 years), (b) simulated growth trajectories (from Brie-

nen et al., 2012) highlighting in green a fast-growing tree and in red a slow-growing tree, both born in 1925 and (c) the effect of

unimodal recruitment on growth trends calculated at a fixed size class (‘sampling size’) of 27 cm in diameter (cf. van der Sleen et al.,

2014) resulting in an apparent negative growth trend (black line) even when growth rates did not change. Note that these trends are

calculated from trajectories alive in the ‘sampling’ year of 2010, and by dating the year of ring formation when trees were 27 cm in

diameter. Average trend is �2.8% per decade (� 0.42% standard deviation for 500 simulations). The cause for the negative trend is that

fast-growing trees reach the sampling size earlier than slow-growing trees and thus high growth rates (green dot) tend to be recorded

preferentially further back in time compared to slow growth rates (red dot). This negative trend may mask simulated growth increases

of 5% or 10% per decade since 1975 (green lines).
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negative apparent growth trends and thus does not

remedy the problem. This approach basically uses a

size–growth curve of the entire population to standard-

ize growth data (for details, see Appendix).

Do nonuniform age structures explain reported

apparent growth trends?

The data of the species used by van der Sleen et al.

(2014) show widely varying trends for the different spe-

cies (see Table 1). van der Sleen et al. (2014) evaluated

to what degree these trends were affected by known

biases described by Brienen et al. (2012) and Bowman

et al. (2013) and show that apparent trends in three of

their species, Melia azedarach, Sweetia fruticosa and Afze-

lia xylocarpa, are affected by negative biases due to mor-

tality effects (e.g. ‘predeath bias’ and ‘juvenile selection

effect’, see Groenendijk et al., 2015). These biases lead

to negative growth trends similar to expectation for the

nonuniform age bias, and we therefore exclude these

species from the analysis, which evaluates the effects of

the nonuniform age bias on overall growth trends.

Several species used in the studies by van der Sleen

et al. (2014) and Groenendijk et al. (2015) exhibit a

nonuniform age or recruitment distribution. In Fig. 2,

we show examples of the recruitment time distribution

for three species along with their apparent growth

trends (see Fig. S2 for all 12 species and full names). It

is readily apparent that species with a strongly clus-

tered age distribution such as Brachystegia cynometroides

have a negative growth trend over time, while species

with a more uniform age distribution such a Cariniana

ianerensis do not show a negative trend. Recruitment

patterns for some species such as Afzelia xylocarpa show

two distinct cohorts, leading to strongly negative

growth trends for the separate cohorts, while the over-

all trend is relatively small. Of the 12 species studied,

Vlam (2014) concluded that at least 8 have clustered or

unimodal recruitment time distributions, while four

have relatively uniform age distributions (cf. logistic or

exponential decline, see classification in Table 1). While

these patterns illustrate the effect of different age distri-

butions on growth trends, it is qualitative in nature and

does not prove that age distributions are indeed the

cause of these apparent trends.

A useful, more quantitative diagnostic of the degree

to which age distributions in the data sets are clustered

is the relationship between the age at which trees reach

the sample size class and calendar year at that size

class. For species with continuous regeneration, one

would not expect to find a strong relationship between

these two variables, whereas in the extreme case, if all

trees were born in the same year, this relationship

would be perfect (1 : 1). Thus, the strength of the

age–calendar year relationship can be used to probe the

likelihood for a bias in apparent trend evaluations. This

is, of course, only true if the age at which trees reach

the sample size class is (negatively) related to the real-

ized growth in that size class. All species show a nega-

tive relation between growth and the tree age in that

size class (see Table 1), and we therefore expect species

with a strong positive relationship between age and cal-

endar year to be negatively biased in their growth

trends. The data of van der Sleen et al. (2014) do indeed

show that species with a strong positive relationship

between age and calendar year, such as Brachystegia

cynometroides, have negative apparent growth trends,

while species with more even age structures such as

Cariniana do not show negative trends (Fig. 1, and

Fig. S2). Comparison of apparent trends and the

strength of the relationship between age and calendar

year across all species shows a negative correlation

between the two measures (see Fig. 3a), thus indicating

that apparent trends by van der Sleen may – at least

partially – be caused by the shape of the underlying

age distribution. Note that the three species previously

identified by Groenendijk et al. (2015) as having nega-

tive biases due to mortality effects were omitted from

this comparison and that the remaining sample size is

thus quite small.

The growth rate over time could be affected by

growth stimulation or depression. To isolate just the

effect of underlying age distribution on growth trends,

we randomly shuffled the observed growth trajectories

of the trees in the tree ring data set of van der Sleen

et al. (2014). This approach consists of randomly initial-

izing trajectories drawing from the observed recruit-

ment time distribution by permutating the start dates

of the trajectories. This removes any existing growth

stimulation (or depression) trends, for example due to

increasing CO2 in the data as we start ‘fast-growing’

and ‘slow-growing’ trees irrespective of their original

birth year while retaining the number distribution of

recruits in time. If these shuffled data still show trends

(when plotting growth against shuffled calendar date),

then those trends must be caused just by the specific

age distribution (i.e. number of recruits through time).

The exact procedure, and a test for the effectiveness of

the procedure to separate real growth changes from

changes induced by underlying recruitment patterns, is

described in the Text S1.

The time trends of the shuffled growth data for all

species are given in Table 1 and in Fig. S1. We find for

all species negative slopes, except for Daniellia ogea in

size class 8. While the simulated negative slopes are for

some species relatively small and individually not sig-

nificant, a two-tailed t-test shows that the mean of the

500 simulated slopes is significantly different from zero

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 23, 474–484
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for all species (see Table S1). For most species, the

apparent slopes are close to the shuffled slopes, or

slightly higher. However, for four species, the apparent

slopes were more negative than the shuffled slopes.

The two species with the largest differences are Melia

azedarach and Sweetia fruticosa, which were identified

previously by Groenendijk et al. (2015) to be biased

towards lower growth rates over recent times due to

elevated mortality at low growth rates (cf. ‘predeath

bias’, Bowman et al., 2013). As shuffling of the growth

data removes this recent negative growth bias, one

would for these species indeed expect that the shuffled

trends are less negative than apparent trends. When

excluding the three biased species (Afzelia, Melia and

Sweetia), we do find a close relationship between the

shuffled slopes and the apparent slopes at the sample

size of 27 cm in diameter (Fig. 3b). This is consistent

with the outcome shown above for age vs. calendar

year (Fig. 3a) and suggests that trends for those species

that were identified not to have additional biases are

likely to be driven by their age (or recruitment) distri-

bution.

It should be noted that the shuffling approach allows

estimation of the effect of underlying nonuniform

recruitment distribution on growth trends, but does not

account for effects of forest dynamics (e.g. thinning or
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Fig. 2 Examples of the effect of age distributions on growth trend observations in three selected species of van der Sleen. Left panels

show the age or recruitment patterns, for Brachystegia with a unimodel age distribution, Cariniana with an even recruitment over time

(resulting in a ‘logistic decline’-type age distribution, cf. Vlam, 2014) and Afzelia with two distinct age cohorts (distinguished by blue

and green colours). Panels in the second column show the resulting observed growth data and trends over time for two size classes

(black points, at 27 cm; red points, at 8 cm in diameter). Panels in third column show the predicted trends due to underlying age distri-

bution using the reshuffling approach (see main text). Panels on the right show the relation between calendar year and age when reach-

ing the sample size of 27 cm. Unimodal age distributions, such as in Brachystegia (upper panels), lead in theory to negative growth

trends, which are both observed and replicated using the shuffling approach. Such underlying recruitment patterns also result in a

close relationship between age and calendar year at sampling size, and strong indication that growth data could be biased.
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increasing competition) on growth trends. Some of the

species such as Brachystegia cynometroides have apparent

trends that are more negative than estimated by shuf-

fling of the trajectories, which may in fact be due to

increasing competition over time for trees after the ini-

tial recruitment event. Specifically for the sites in Thai-

land and Cameroon, the disturbance history indicates

that some species have regenerated after high-intensity,

large-scale disturbances such as fire or windstorms

(Vlam, 2014). This may result in greater resources (sun-

light, nutrients and water) for those trees that are ini-

tially established and less resources for later

establishing trees or trees that were initially disadvan-

taged. This further affects the observed trends by driv-

ing down growth trends over time.

Removing biases

We now want to investigate whether the data of van

der Sleen indeed show increased growth or not. To this

end, we used three different approaches to remove the

trends due to the specific age distributions from effec-

tively occurring trends, for example due to global

change, and re-assess the observed aggregated growth

trends for the data set of van der Sleen et al. (2014). In

the first approach, we correct the original data for the

nonuniform age bias by removing for each species the

slopes estimated after applying the shuffling method

and then recalculate the aggregated overall slope for

the nine species using a linear mixed-effects model

approach (see details in the Text S1). In the second

approach, we added age as a predictor for growth into

the linear mixed-effects model, which effectively

removes the positive relation between age and calendar

year at which trees reach sample size arising from the

nonuniform age bias (see Fig. 2). In the third approach,

we simply leave out those species that have clustered

age distributions from the slope estimate using a

mixed-effects model. A test of the effectiveness of the

first two approaches to remove the effects of clustered

age distributions is provided in the Text S1 and Fig. S3.

The outcome of the three different approaches is pre-

sented below. Note that to obtain unbiased estimates of

long-term growth trends, we leave out the three species

that were identified by Groenendijk et al. (2015) to have

mortality biases (unrelated to the bias we examine

here). This approach differs from analyses by van der

Sleen et al. (2014) and Groenendijk et al. (2015), which

included all species, even those with known biases.

Approach 1: removing of bias using shuffled trends

The trends from the shuffled growth data provide a

baseline for expected trends if growth rates did not

change over time (in other words, if there had not been

a positive or negative stimulus on growth). If observed

trends are lower (more negative) than the shuffled

trend, then growth should have decreased over time,

whereas if observed growth trends are higher, one

would conclude that growth increased over time.

Comparison of the shuffled and observed trends for

canopy trees shows that for seven of the nine species,

the observed trends are larger than the trends based

on shuffling and that growth trends are thus actually

positive (Table 1). Results for smaller trees are similar

with seven out of the nine species showing observed

trends larger than the reshuffled trends. To formally

test whether removing the age bias does result in sig-

nificant growth increases, we corrected the original

growth data of the nine species for the age bias. We do

this for each data point by removing the difference

between the predicted growth rate based on the

(a) (b)

Fig. 3 (a) Relationship between apparent growth trends (% per decade) and slopes of the regression between age and calendar year for

canopy trees (i.e. at 27 cm diameter) and (b) relationship between apparent and predicted (shuffled) trends. Points falling above the

dashed line (1 : 1) in panel (b) suggest positive growth increase for those species. Note that this analysis excluded species with negative

biases due to mortality effects (Afzelia, Melia and Sweetia).
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reshuffled trend line, and the simple arithmetic mean

growth for that species. Correction according to this

procedure leads to trends for each species that are sim-

ilar to the difference between observed and shuffled

slopes, and maintains a data set with similar variation

as originally observed (see Fig. S4). We then tested

whether the aggregated ‘corrected’ trends for the nine

species showed significant changes over time, using

the same linear mixed-effects model as van der Sleen

et al. (2014). The result of this analysis reveals signifi-

cant growth increases for the nine species (in the cor-

rected data), while the original trend for the same set

of species was not significant (Table 2, Fig. 4). The

observed increase is relatively weak when calculating

over the full period (i.e. 2.1% and 1.3% per decade for

canopy and understory trees, see Table 2), but much

stronger when focusing on trends since 1950 (7% and

5% for canopy and understory trees, respectively, see

Table S2).

Approach 2: adding age to linear mixed-effects model

A second approach to correct for the nonuniform age

distribution bias and formally test for growth

changes over time involves using a statistical model

to remove the age effect on growth. This can be

achieved simply by adding age (at the moment that

a tree reaches sampling size), as a second explana-

tory variable to the linear mixed-effects model, which

effectively removes the nonuniform age bias (see

Fig. S3). The outcome of this analysis shows that

growth in canopy trees increased by 1.6% for the full

period and 6% per decade since 1950. Increases in

understory trees are slightly lower for the full period,

(see Table 2 and Table S2).

Approach 3: excluding species with nonuniform age
distributions

Finally, we evaluated the aggregated growth trends by

leaving out all species with biases. Thus, apart from the

three species already excluded due to identified mortal-

ity biases (see Groenendijk et al. (2015)), we also

excluded species with strongly nonuniform age distribu-

tions. Brachystegia cynometroides, Brachystegia eurycoma

and Chukrasia tabularis all have peaked age distributions

(see Fig. S2) and show significantly positive relationships

between age and calendar year at both 8 cm and 27 cm

(see Table 1). There is thus strong reason to assume that

these three species are biased by the nonuniform age dis-

tribution bias. Excluding these from the analysis results

in significant growth increases for the remaining six spe-

cies of 2.3% and 1.3% per decade for canopy and under-

story trees (see Table 2 and Table S2).

Discussion

van der Sleen et al. (2014) and Groenendijk et al. (2015)

carefully evaluated possible biases that may have

affected their estimates of growth trends. However,

despite their assessment, we find that the observed

trends in the data set of van der Sleen et al. (2014) are still

affected by biases. Firstly, they did not account for mor-

tality biases due to loss or removal of slow-growing trees

from the data set further back in time (e.g. ‘predeath

bias’, Bowman et al. (2013) and ‘juvenile selection effect’,

Rozendaal et al. (2010)). In their assessment, Groenendijk

et al. (2015) conclude that three species are likely affected

by these mortality biases, but these species were not

removed from their analysis. Removal of the species

from the analysis resulted in trends that are more posi-

tive compared to the full data set including the biased

Table 2 Results of long-term trend estimates using linear mixed-effects model. Models were developed with the LME package (Pin-

heiro et al., 2015) with species as factor with random slope and intercept. The ‘original data’ used the uncorrected growth data for

the nine species, the ‘corrected data’ use growth data adjusted for the difference of the shuffled trends from zero (see Text S1), the

third model corrects for the nonuniform age distribution by adding age as second explanatory variable, and the last model excluded

the three species (Brachystegia cynometroides, Brachystegia eurycoma and Chukrasia tabularis) with clearly clustered age distributions.

Note that all models excluded the three species (Melia azedarach, Sweetia fruticosa and Afzelia xylocarpa) that have negative biases due

to mortality effects (see Groenendijk et al., 2015). See Text S1 for details and exact model formulation, and Table S2 for the full out-

come of various models, Values in black are significant at P < 0.05

Canopy trees Understory trees

Number of

species

Trends

(% per decade) P-level AIC

Trends

(% per decade) P-level AIC

1. Original data 0.8% 0.491 5194 0.8% 0.356 4489 9

2. Corrected data 2.1% 0.023 5193 1.3% 0.046 4492 9

3. Adding age as explanatory variable 1.6% 0.040 5164 1.0% 0.105 4430 9

4. Excluding species with age bias 2.3% 0.008 3373 1.3% 0.036 3022 6

Values in bold are significant at P < 0.05.
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species. Secondly, they did not correct for the bias

caused by nonuniform age distributions. Our analyses

show that age distributions affect the apparent observed

trends. Species with more clustered age distributions –
as diagnosed, for example by its age vs. calendar year

relationship (see Table 1) – have more negative slopes

(see Fig. 3a). In addition, the slopes obtained by the shuf-

fling approach, which are exclusively due to the under-

lying age distribution, are closely related to the apparent

growth trends (Fig. 3b). We therefore conclude that vari-

ation in trends between different species of the van der

Sleen et al. (2014) data set is an artefact. We could not

verify whether this holds for the analysis performed by

Groenendijk et al. (2015) using data from across all size

classes of the same species, but the effects of biases may

vary across size classes. For instance, simulations with

tree ring trajectories (similar to those in Fig. 1) showed

that spurious positive trends, due to the slow-grower

survivorship bias (see Brienen et al., 2012), were more

prominent in growth reconstructions at larger size

classes (results not shown). We also checked whether the

alternative standardization approach (i.e. the adapted

Regional Curve Standardization, see Briffa et al., 1992)

used in the analysis by Groenendijk et al. (2015) would

result in a similar bias and find that it does (see Fig. S1).

We used three approaches to correct for the nonuni-

form underlying age distributions and find very consis-

tent results across the different approaches. For all

three approaches, we find positive growth increases

after correction for the nonuniform age distribution

bias. The approaches not only give a similar sign in the

trend predictions, but also converge on the magnitude

of the growth increase. Estimated growth increases are

between 1.1% and 1.5% per decade for understory and

between 1.6% and 2.3% per decade for canopy trees

using the full time period. When focusing on the period

since 1950 when intrinsic water use efficiency increases

are strongest (van der Sleen et al., 2014), we find that

growth increased between 2.9% and 4.85% per decade

for understory trees and between 5.3% and 7.3% per

decade for canopy trees. This shows that nonuniform

age distributions and mortality biases masked growth

increases in the data set of van der Sleen et al. (2014).

Our analysis of their data thus contradicts earlier
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Fig. 4 Predicted growth trends after removal of the uneven age bias from the aggregated data set. Panels show trends for the full time

period and the most recent period (>1950) for canopy trees (a) and understory trees (b). Shown are standardized growth data, allowing

presentation of growth rates for all nine species in one single graph. Aggregated trends are estimated using linear mixed-effects models

from the LME package in R, see Pinheiro et al. (2015) with a variance structure as detailed in the Text S1. Note that these trends include

only those nine species that are not biased by mortality biases.
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conclusions that there is no evidence for growth stimu-

lation, for example via CO2 fertilization (van der Sleen

et al., 2014), or that growth would have deteriorated

over recent times (Groenendijk et al., 2015). However,

while growth rate increases are consistent with a CO2

fertilization effect on growth and observation from per-

manent plot monitoring in the tropics (Lewis et al.,

2009; Brienen et al., 2015), it should be noted that other

biases may still be causing these apparent growth

increases. In particular, positive growth trends may be

the result of the slow-grower survivorship bias (Brienen

et al., 2012). This bias arises due to differences in long-

evity between fast- and slow-growing trees with fast

growers maturing and dying faster (Black et al., 2008;

Bigler & Veblen, 2009; Di Filippo et al., 2015). The result

of this is a spurious lack of fast growth rates over ear-

lier parts of tree ring records. The data set of van der

Sleen et al. (2014) seems indeed to indicate some lack of

fast growth rates at earlier times of the record (see

Fig. 4) consistent with this bias. However, it should be

noted that the observed growth increases are strongest

over recent times, a period that should be less affected

by this particular bias (Brienen et al., 2012).

Various recent studies find that growth responses

derived from tree rings are negative, despite increases

in intrinsic water use efficiency (Silva et al., 2010;

Andreu-Hayles et al., 2011; Penuelas et al., 2011). The

bias identified here caused by nonuniform age struc-

tures could have affected these studies, as large-scale

stand-replacing disturbances due to wind, fire or large-

scale insect attacks are more common in boreal and

temperate forests (Johnson, 1996; Frelich, 2002) than in

tropical forests (Espirito-Santo et al., 2014). However,

the direction and magnitude of biases depends also on

the specific detrending techniques (Briffa & Melvin,

2011; Brienen et al., 2012; Peters et al., 2015), making it

more difficult to actually evaluate and compare the out-

come of different tree ring studies.

While tree ring studies are increasingly being advo-

cated as a tool to evaluate long-term tree growth

responses to global change (Zuidema et al., 2013; Babst

et al., 2014), our analysis here provides a stark warning

about the suitability of this approach to infer long-term

growth responses. Multiple biases causing positive and

negative growth changes affect trend estimates (Cheru-

bini et al., 1998; Briffa & Melvin, 2011; Brienen et al.,

2012; Bowman et al., 2013; Nehrbass-Ahles et al., 2014;

Vlam, 2014; Peters et al., 2015). The effect of some biases

can be estimated, and corrected for, as we have shown

here for the nonuniform age bias, or can be avoided by

carefully designed sample strategies (e.g. ‘Big tree sam-

ple bias’, Brienen et al., 2012; Nehrbass-Ahles et al.,

2014). However, disentangling positive and negative

biases may prove more challenging. In addition, biases

due to differences in mortality rates and tree longevity

for fast- and slow-growing trees are very difficult to

account for. These types of biases can be corrected for if

dead trees can be sampled and their full growth history

reconstructed. For instance, tree ring analysis on dead

trees has revealed relationships between tree growth

and longevity (Bigler & Veblen, 2009), and growth and

mortality rates (Kobe et al., 1995). Alternatively, one

can use mortality functions from monitoring studies to

simulate the effect of mortality on growth trends of sur-

viving trees (see Foster et al., 2014). However, both

approaches require high confidence in mortality–
growth and mortality–age relationships. Without well-

defined growth–mortality relationships, inferences of

long-term growth changes from tree rings will unfortu-

nately remain very uncertain, especially when using

species with relatively short life spans as those are

more prone to demographic biases. Thus, while tree

rings are very useful for a range of studies, we recom-

mend that the study design and analyses be specifically

tailored to account for the potential of each species and

site to exhibit bias due to demographic shifts, or lack

thereof before tree ring data be used for long-term

growth trend assessment.

Conclusions

Growth trends observed by van der Sleen et al. (2014)

are affected by several biases. One particular bias, the

nonuniform age bias, has masked historical growth

increases. However, even these increases may still be

spurious as other biases may be involved as well. We

conclude that the results of van der Sleen et al. (2014)

cannot be used to determine whether CO2 fertilization

has led to growth increases or not. More generally,

most tree ring studies are likely not suitable for evalua-

tion of growth responses to global change, as disentan-

gling effects of (opposing) biases are very difficult.
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