

This is a repository copy of Voice-In, Voice-Out Communication Aids.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/10295/

Conference or Workshop Item:

Hawley, Mark, Judge, Simon, Cardinaux, Fabian et al. (2 more authors) (Completed: 2007) Voice-In, Voice-Out Communication Aids. In: Communication Matters 2007, 23-25 Sep 2007, Leicester, UK.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Voice-input voice-output communication aid (VIVOCA)

Simon Judge, Mark Hawley, Fabian Cardinaux, Peter O'Neil, Rebecca Palmer

Barnsley AT Team

- Assistive Technology (AT) team,
 covering 3 areas of S Yorkshire
- Assess for and provide a wide variety of AT
- Run training and provide support on AT
- Contribute to & run research and development projects...

Research Groups

- Barnsley District General Hospital Foundation Trust – R&D Department, AT Team
- Sheffield University Computer Science Dept, Health and Related Sciences School
- Collaboration & Track record on AT projects.
- New group forming involving AT
- CAST group: Clinical Applications of Speech **Technology**

Barnsley

Background

- Dysarthria is the most common acquired speech disorder (170 per 100,000)
- Many current communication aids (VOCAs) are slow and effortful to use
- Dysarthric speech can be an effective control input to assistive technology

CAST Projects

VIVOCA

Voice-input voice-output communication aid

User-centred design & development

User and professional consultation

Method

VOCA users and speech therapists

Semi-structured interviews and focus groups

Thematic analysis

Results

- •Acceptable as a means of communication
- Potential advantages over conventional VOCA
 - Quicker
 - Easier to use
 - Increased communication and independence
- Useful where speed and intelligibility crucial
 - Meeting new people
 - Telephone
 - Shopping
- Range of requirements for hardware and software

Speech Recogniser

Speech recogniser for dysarthric speech

- Commercial speech recognisers do not work well for dysarthric speech
- User-centred approach aim to make it work
- Speaker dependent recognition
- Vocabulary of discrete words tailored to speech capabilities of individual
- Closed loop between recogniser training and user training

Speech recogniser for dysarthric speech

Training: User Feedback

Training: User Feedback

Effect on Recognition Accuracy

Translation Algorithm

'Translation' methods

Translation: input-output

Speech Synthesiser

Current speech synthesis: communication aids

- High quality voices available
- E.g.
 - DECtalk[™] (Fonix) for American English
 - Acapela for British English
- Personalisation limited: age, gender, language

University

Personalisation

- Voice = identity
 - Gender
 - Age
 - Geographic background
 - Socio-economic background
 - Ethnic background
 - As that individual

- Maintains social relationships
- Maintains social closeness
- Sets group membership

VIVOCA: personalisation

- Sheffield/Barnsley user group
- Retain local accent
 - geographic identity
- Speaker database
 - Arctic database:593 + 20 sentences
- Professional local speakers
 - Ian McMillan
 - Christa Ackroyd

The University

Barnsley

Concatenative synthesis

Concatenative synthesis

- High quality
- Natural sounding
- Sounds like original speaker
- Need a lot of data (~600 sentences)
- Can be inconsistent
- Difficult to manipulate prosody

HMM synthesis

HMM synthesis procedure

HTS http://hts.sp.nitech.ac.jp/

HMM synthesis

- Consistent
- Intelligible
- ✓ Needs relatively little input (~20 mins)
- Can be adapted with small amount of data (>5 sentences)
- Easier to manipulate
- Buzzy quality
- Less natural than concatenative

University

Synthesis: Future research

- Further personalisation for individuals with progressive speech disorders
 - Capturing the essence of a voice
- Voice banking
 - Before deterioration
- Adaptation using HMM synthesis
 - Before or during deterioration

Summary

- Voice in-Voice out device based on a PDA
- Currently under development
- Recognising and improving discrete dysarthric words
- Regionalised, possibly personalised, speech synthesis

VIVOCA Team

Mark Hawley, Pam Enderby, Phil Green, Stuart Cunningham, Peter O'Neill, Rebecca Palmer, Siddharth Sehgal, Fabien Cardinaux, Andre Coy, Simon Judge

www.barnsleyrd.nhs.uk

www.shef.ac.uk/cast

simon.judge@nhs.net

A Plug!!

- RAATE 2007
- 26th and 27th November 2007

www.raate.org.uk

The University Of

(session on voice recognition!)

