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Abstract 

Multiple myeloma (MM), an incurable plasma cell malignancy, requires localisation within the bone 

marrow. This microenvironment facilitates crucial interactions between the cancer cells and stromal 

cell types that permit the tumour to survival and proliferate. There is increasing evidence that the 

bone marrow mesenchymal stem cell (BMMSC) is stably altered in patients with MM – a phenotype 

also postulated to exist in patients with monoclonal gammopathy of undetermined significance 

(MGUS) a benign condition that precedes MM. In this study, we describe a mechanism by which 

increased expression of peptidyl arginine deiminase 2 (PADI2) by BMMSCs in patients with MGUS 

and MM directly alters malignant plasma cell phenotype. We identify PADI2 as one of the most 

highly upregulated transcripts in BMMSCs from both MGUS and MM patients, and that through its 

enzymatic deimination of histone H3 arginine 26, PADI2 activity directly induces the upregulation of 

interleukin-6 (IL-6) expression. This leads to the acquisition of resistance to the chemotherapeutic 

agent, bortezomib, by malignant plasma cells. We therefore describe a novel mechanism by which 

BMMSC dysfunction in patients with MGUS and MM directly leads to pro-malignancy signalling 

through the citrullination of histone H3R26. 
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Introduction 

Multiple myeloma (MM) is a malignant disease of plasma cells within the bone marrow that, 

despite improving survival, remains incurable meaning an urgent requirement for novel 

therapies. One characteristic feature of MM is that a pre-malignant condition known as 

monoclonal gammopathy of undetermined significance (MGUS) can be present for many 

years prior to development of overt disease(1). No specific genetic alterations have yet been 

identified that distinguish patients with MGUS from those with MM, suggesting that another 

factor, such as transformation of the microenvironment are likely drivers of progression(2, 3). 

Malignant plasma cells have an absolute requirement for localisation within the bone marrow 

niche, which leads to a characteristic feature of MM: the relative rarity of disease metastasis 

to sites outside the marrow microenvironment. This suggests that, in common with most 

malignancies, stromal support of cancer cell survival in MM is important for maintaining and 

even driving disease(4-6).  

Key cellular components of both the normal and transformed bone marrow niche are the 

bone marrow mesenchymal stromal cells (BMMSCs). There is now significant evidence to 

suggest that BMMSCs from patients with MM(7-11) and MGUS(7) are phenotypically 

different from those derived from healthy patients. Indeed they have not only been shown to 

exhibit a stably altered transcriptional profile(7), but may also contain a number of genetic 

lesions(12). The phenotypic changes resulting from this altered transcriptome appear to 

permit increased stromal support of the malignant plasma cell, and decreased osteoblastic 

differentiated function (bone mineralisation)(7-11). The former is through both physical (i.e. 

cell-cell) interactions, and secretion of a number of paracrine factors that support malignant 

plasma cell survival, proliferation migration and chemoresistance(5, 6, 13). Although a 

number of signaling pathways have been implicated in the differentiation of BMMSCs there 

remains a lack of clarity as to their role.  
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A number of cytokines and chemokines have been shown to be involved in the crosstalk 

between the bone marrow stroma and malignant plasma cells, including interleukin-6 (IL-

6)(14), C-X-C motif chemokine 12 (CXCL12, also known as Stromal-Derived Factor 1 

[SDF1])(15), Vascular Endothelial Growth Factor (VEGF)(16), fibroblast growth factor 

(FGF)(17), tumour necrosis factor α (TNFα)(18), interleukin-1β (IL-1β)(18) and cMET (also 

known as Hepatocyte Growth Factor/Scatter Factor (HGF/SF)(19). IL-6 secretion by the cells 

of bone marrow microenvironment, especially the BMMSC population(7, 9, 11), has been 

shown to play a role in malignant plasma cell phenotype through increasing resistance to cell 

death stimuli and driving proliferation(20), as well as downregulating differentiation markers, 

such as CD38 and CD138(21). It is therefore now clear that through both physical 

association and paracrine interactions, signaling between BMMSCs and myeloma cells 

underlie the requirement of myeloma cells for BM localization.  

One defining feature of BMMSCs isolated from patient bone marrows is that they retain a 

transcriptomic profile despite being in culture(7-9, 11, 21). This suggests that they sustain 

this transcriptome through a stable genetic and/or epigenetic profile. Interestingly, little is 

known about the epigenetic status of BMMSCs in healthy individuals or of those from MGUS 

or MM patients. A post-translational modification in which there is increasing interest in both 

cancer and inflammation is the citrullination of peptidyl arginine, which can occur on many 

different protein species, including histones(22). These reactions are performed by the 

calcium-dependent peptidyl arginine deiminase (PADI) family of enzymes of which there are 

five members (PADI1, 2, 3, 4 and 6) with tissue-specific expression patterns(23-25). PADI2 

is ubiquitously expressed, and in many tissues has been reported as the major family 

member providing peptidyl arginine deiminase activity(26). Importantly, both PADI2 and 

PADI4 have been shown to be able to alter gene transcription through the citrullination of 

residues in the histone tails(27-29): a modification that may be physiologically irreversible 

due to the lack of any known peptidylcitrulline imidating enzyme. This modification is 
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therefore a good candidate for the creation of a long-term change in the cellular 

transcriptome, as noted in the BMMSCs of MM patients.  

As MM is effectively incurable, and is now accepted to almost always arise from MGUS(1), 

the phenotype of cells contributing to this benign condition may provide important clues as to 

factors determining progression to MM. We show here that BMMSCs from patients with both 

MGUS and MM exhibit a significant shift in their transcriptome compared to those from 

healthy individuals. In addition, we demonstrate that one of the most upregulated transcripts 

in BM-MSCs from MGUS and MM, peptidyl arginine deiminase 2 (PADI2) is responsible for 

mediating increased IL-6 expression from these cells through the deimination of arginine 

residue 26 of histone H3 (H3R26) to form citrulline (H3R26cit). This increased IL-6 

production is sufficient to drive resistance of malignant plasma cells to bortezomib (BTM), a 

highly clinically relevant anti-myeloma drug. We therefore demonstrate a novel mechanism 

for BM microenvironment-induced acquisition of drug resistance in MM and importantly, that 

this phenotype is already present in patients with the apparently benign MGUS.  

 

Methods 

Patient sample collection, BMMSC isolation and cell culture 

Patients with MM and MGUS were recruited from specialist clinics at The Royal 

Wolverhampton Hospitals NHS Trust and Heart of England NHS Trust, UK. The study 

received approval from the local ethics committees at South Birmingham, Birmingham East, 

North, and Solihull, and informed written consent was obtained in accordance with the 

Declaration of Helsinki in all cases. For patients with MGUS/MM, BM aspirates from the iliac 

crest were diluted in MACS buffer for removal of the CD138+ cells using anti-CD138+ 

antibody-linked magnetic beads (Miltenyi Biotech, UK), before the remaining cellular fraction 

was diluted in complete medium, and BMMSCs allowed to adhere to tissue culture plates. 

Control BMMSCs for the transcriptomic study were obtained by flushing out a section of rib 
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from patients undergoing thoracotomies with RPMI1640. Around 80% of the patients 

recruited to this control group had a primary lung tumour: none had bone marrow 

involvement or had received chemotherapy. Patient number and characteristics for the 

transcriptomic study are shown in Supplementary Table 1, while those of the BMMSCs used 

in all other studies are shown in Supplementary Table 2. For the other studies, „healthy‟ 

BMMSCs were isolated from patients undergoing hip surgery, with informed written consent 

obtained and samples collected through the University of Birmingham Research Tissue 

Bank (HTA license 12358, REC reference 09/H1010/75). Bone marrow aspirates from the 

femoral head were diluted in RPMI and the BMMSCs in the non-fatty layer allowed to adhere 

to tissue culture plates. BMMSCs and the HS5 human bone marrow fibroblast cell line 

(ATCC CRL11882, LGC Standards, UK, purchased December 2013, tested for mycoplasma 

every 3 months by PCR) were cultured in RPMI (Sigma, UK) with 10% FBS (Hyclone, UK) at 

37oC in a humidified incubator with 5% CO2. BMMSCs were allowed to adhere and 

proliferate to approximately 80% confluence before harvesting. Wild-type or active site 

mutant PADI2 (C647S), each with N-terminal FLAG tag, were expressed through transient 

transfection of the cDNAs within the pcDNA3 vector (or empty vector control) using jetPEI 

(Polyplus transfection, France) for 24 hours before analysis. Where shown, the pan-PADI 

inhibitor Cl-Amidine (200 µM, Caymen Chemical, USA) was used for 48 or 72 hours. siRNA 

against PADI2 at 20 nM (Oligo 1: AGCCTTGACTCATTTGGAA, and Oligo 4: 

AAGCGAATCACCATCAACA) or PADI4 (GCGAAGACCTGCAGGACAT) were transfected 

using TransIT-TKO (Mirus Bio, USA) and assayed at the timepoint shown. 

Transcriptomic and Real-time PCR analyses 

At passage 3, mRNA from BMMSCs (Supplementary Table 1) was extracted using the 

RNeasy mini kit (Qiagen, Germany). mRNA was prepared and hybridized to Affymetrix 

HuEx-1_0-st-v2 exon arrays (Affymetrix, USA) as per manufacturer‟s instructions. Gene 

level analysis of the Affymetrix exon array was performed using Affymetrix Expression 

Console with the default settings of “Extended: RMA-Sketch” and Affymetrix annotation 
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na32. Differentially expressed genes were identified using the limma package(30) with cut-

off values of p < 0.001 and absolute fold change > 1.5. Heatmaps were generated using 

dChip (http://www.dchip.org/) with the default settings. Full dataset is available in the Gene 

Expression Omnibus repository with accession number GSE80608. For Taqman analyses, 

RNA was isolated using the RNeasy kit before reverse transcription (AMV reverse 

transcription kit, Promega, UK). Taqman real-time PCR was performed on an ABI7500; 

using primer/probe mixes (Supplementary Table 3, Life Technologies, UK). Cycle threshold 

was automatically determined by ABI7500 software and expression levels were normalized 

to ACTB and calculated relative to control. All transcript data are presented as median-

centred box and whisker (10-90th percentile) plots. 

Detection of apoptosis by flow cytometry 

Primary BMMSCs from MGUS patients that showed high or low PADI2 protein levels 

(Supplementary Table 2) were seeded at 5x105 cells 24 hours before 106 JJN3 cells were 

added to a TransWell insert (Costar), 24 hours prior to treatment with 10nM bortezomib. 

After a further 24 hours, JJN3 cell apoptosis was assessed by Annexin V/propidium iodide 

staining as per manufacturer‟s instructions (Life Technologies, UK) and flow cytometry 

(LSRII; BD Biosciences). The resulting data were gated and quantified (Flow Jo v.7.6.5) and 

presented after subtraction of background apoptosis of untreated, monocultured JJN3 cells. 

Where shown, BMMSCs were treated with Cl-Amidine (200 µM, 16 hours), which was 

removed before washing and subsequent incubation with JJN3 cells (within the TransWell 

insert). Experiments were performed three times and expression analysed in triplicate; data 

presented as mean ± s.e.m. 

Measurement of IL6 

HS-5 cell culture supernatants were harvested after treatment with either Cl-Amidine or 

siRNA and centrifuged to remove dead cells. Supernatants were analysed using an IL-6 

detection kit as per manufacturer‟s instructions (eBioscience). Experiments were performed 

three times in triplicate; data are presented as mean ± s.d. IL-6 from BM plasma was 
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detected using a multiplex bead analysis approach (Affymetrix, USA). Measurements were 

performed as per manufacturer‟s instructions. Briefly, plasma samples, diluted with an equal 

volume of phosphate-buffered saline, pH7.4, were incubated with monoclonal antibody-

coated capture beads for 1 hour at 20°C. Washed beads were further incubated with biotin-

labelled polyclonal anti-human cytokine antibody for 30 minutes, streptavidin-phycoerythrin 

for 30 minutes and analysed on a Luminex 100 bioanalyser (Luminex) and converted to 

absolute concentrations using standard curves. Data are presented as median-centred box 

and whisker (10-90th percentile) plots. 

Chromatin Immunoprecipitation 

Chromatin immunoprecipitation was performed as previously described(31). Briefly, HS5 

fibroblasts were crosslinked with 1% formaldehyde before neutralisation with 0.125 M 

glycine. After lysis (10 mM Tris-HCl, pH8.0, 10 mM NaCl, 0.2% NP40, 10 mM sodium 

butyrate, 50 µg/mL phenylmethylsulfonyl fluoride [PMSF] and 1 µg/mL leupeptin), nuclei 

were purified, lysed (50 mM Tris-HCl, pH8.1, 10 mM EDTA, 1% SDS, 10 mM sodium 

butyrate,  50 µg/mL PMSF and 1µg/mL leupeptin) and diluted in immunoprecipitation (IP) 

buffer (20 mM Tris-HCl, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.01% SDS, 10 mM 

sodium butyrate,  50 µg/mL PMSF and 1 µg/mL leupeptin). DNA was sheared to 300-1000 

bp, and diluted further in IP buffer. After pre-clearing (normal rabbit IgG), chromatin was co-

immunoprecipitated with anti-histone H3 trimethyl K4 (Abcam, ab8580) or anti-histone H3 

cit26 (Abcam; ab19847, lot GR146412-1). After washing and elution of protein-DNA 

complexes from the beads (100 mM NaHCO3, 1% SDS), cross-links were reversed by 

heating, and treated with proteinase K. DNA was purified; primers used to quantify DNA are 

shown in Supplementary Table 4. Experiments were performed three times and PCR 

performed in triplicate; data presented as mean ± s.e.m. 

Western blotting 

Samples were harvested, washed in PBS and after pelleting, lysed directly in lysis buffer (10 

mM HEPES/KOH pH7.4, 10 mM KCl, 0.05% NP-40, 1 mM sodium orthovanadate). After 
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centrifugation of the lysate, the supernatant containing the cytoplasmic components was 

retained, and the pelleted nuclei were washed with lysis buffer before extraction of the 

nucleoplasmic protein fraction in low salt lysis buffer (10 mM TRIS/HCl pH7.4, 0.2 mM 

MgCl2). After blocking, membranes were probed with antibodies against actin (AC-40; 

Sigma, UK), R26cit (ab19847; Abcam, UK), R2,8,17cit (ab5103; Abcam, UK), PADI2 

(ab19847; Abcam, UK) or PADI4 (ab128086;  Abcam, UK), followed by the appropriate 

HRP-linked secondary antibody (Cell Signalling, NEB, UK), and visualised using ECL Prime 

(GE Healthcare).  

Statistics 

Sample size for patient studies could not be pre-determined due to lack of similar data on 

healthy and MGUS populations. No samples were excluded from analyses presented. Error 

bars are shown for all data presented. All statistics were performed using GraphPad Prism 

v.6.07. In order to compare different patient groups without assumptions of data distribution, 

non-parametric tests were used (Mann-Whitney and Kruskal Wallis) with Dunn‟s post-test 

comparisons where appropriate. Where statistical tests were used on data from cell culture 

experiments, student‟s 2-tailed t-tests with Welch‟s correction were used to avoid 

assumptions of variance between groups. 

Results 

There is strong evidence to suggest that BMMSCs from patients with MM show a 

transformed phenotype: supporting malignant plasma cell survival, proliferation, and evasion 

of chemotherapy-mediated cell death(7-11). The BMMSC phenotype in MGUS patients is 

less-well characterised(7). We therefore performed a transcriptomic analysis of mRNA 

extracted from BMMSCs cultured from controls, MGUS and MM patients. BMMSCs isolated 

from patients with both MGUS and MM show markedly different gene expression profiles 

compared to the controls (Figure 1, cut-offs used, p<0.001, fold change 2.0), consistent with 

the previous report(7). Although a large number of transcripts were found to be differentially 

©    2016 Macmillan Publishers Limited. All rights reserved.



11 
 

11 
 

expressed between controls and MGUS (91) or MM (117; cut-off p<0.001, fold change of 

>2.0; Supplementary Tables 5 and 6), none were found to vary between MGUS and MM 

using the same statistical cut-offs, and only 32 if these were relaxed (cut-off of p<0.01, fold 

change of >1.3; Supplementary Table 7). Pathway analysis of differentially expressed genes 

between disease and control groups demonstrated that the most prominent enriched 

signalling pathway was WNT (p=0.00012 and 0.00002 for MM vs control and MGUS vs 

control, respectively; Supplementary Tables 8 and 9 and Supplementary Figure 1a), which 

has been previously implicated in the pathogenesis of MM(32-34). In addition, within the top 

five upregulated transcripts in MGUS and MM was a member of the PADI family of enzymes, 

PADI2 (Figure 2a), which was up-regulated over 5-fold in both MGUS and MM patient 

BMMSCs. Importantly, two other functionally related transcripts were also in the top five; 

filaggrin, a well-described target of PADI2 (Figure 2b), and SLC14A1, which encodes the 

urea transporter required for excretion of ammonium produced through PADI2 activity 

(Figure 2c, Supplementary Figure 1b). Interestingly, we recently published evidence that 

urea concentrations are significantly increased in the bone marrow plasma of patients with 

both MGUS and MM, consistent with significantly increased cellular production of 

ammonium, perhaps through PADI2 activity, in the bone marrow niche(35). 

To confirm the increased expression of PADI2 in BMMSCs in MGUS and MM, we assessed 

both mRNA and protein expression in BMMSCs isolated from an independent cohort of 

healthy individuals, MGUS and MM patients (Supplementary Table 2). We found that mRNA 

expression of PADI2 was relatively low in BMMSCs from healthy patients (Figure 2d), 

corresponding with an almost undetectable protein expression (Figure 2e). However, in 

BMMSCs from MGUS or MM patients, expression of PADI was greatly increased (Figure 2d 

and e): indeed mRNA expression was increased greater than 30-fold. Corresponding mRNA 

expression of other PADI family members was unchanged (Supplementary Figure 2). We 

therefore assessed the activity of PADI2 through its citrullination of a recently described 

target: histone H3R26cit(27). We found that this modification of histone H3 was significantly 
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increased in BMMSCs from MGUS and MM compared to healthy individuals (Figure 2e), 

where it was almost universally absent. In contrast, citrullination of other arginine residues in 

histone H3 that represent more specific PADI4 targets (R2, R8 and R17) were not 

upregulated to the same extent, suggesting that PADI2 activity, rather PADI4 was likely to be 

responsible for H3R26cit levels observed. 

BMMSCs have been shown to play an important role in the support of malignant plasma cell 

survival, proliferation and resistance to chemotherapy(36). We therefore hypothesised that 

increased expression of PADI2 may alter the ability of the BMMSC to perform this function. 

We had previously noted that within the primary BMMSCs we isolated from MGUS and MM 

patients, some had relatively low expression of PADI2 while others were higher. We 

therefore selected two lines each of „low‟ and „high‟ expressers (Figure 2e, MGUS samples 2 

and 5 [low] or 3 and 4 [high], Supplementary Table 2), and co-cultured these with JJN3 cells 

using a TransWell system for 24 hours before treatment with the clinically relevant 

chemotherapeutic agent, bortezomib. Although physically separate, the two cell lines could 

interact through metabolic or secreted factor interactions. We found that although co-culture 

with low PADI2-expressing BMMSCs had little effect on JJN3 cell viability after bortezomib 

treatment, high PADI2-expressing resulted in a significant protection, reducing the cell death 

induced by about 75% (Figure 3a). Interestingly, pre-incubating the high PADI2-expressing 

BMMSCs with the pan-PADI inhibitor Cl-Amidine before co-culture with JJN3 cells led to a 

significant increase in bortezomib-induced apoptosis of the JJN3 cells (Figure 3b). These 

data overall suggested that at least part of the protection from chemotherapy-induced 

apoptosis elicited by BMMSCs was through a PADI2-mediated event. It had previously been 

shown that IL-6 production in the bone marrow microenvironment is important for the 

acquisition of resistance phenotypes by the plasma cells(20, 37, 38), with evidence for a role 

in bortezomib-induced resistance(39). We therefore investigated IL-6 expression by 

BMMSCs, and observed significant increased transcription of IL-6 mRNA (Figure 3c), which 

led to enhanced secretion into the medium from primary cells from MGUS and MM (Figure 
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3d). In addition, when mRNA expression of IL-6 was plotted against that of PADI2, we found 

that they were positively correlated (Figure 3e), providing further evidence for a mechanistic 

link between these two factors in MGUS and MM. 

Using an immortalised, non-transformed BMMSC line (HS5), we assessed the effect of 

siRNA-mediated reduction in PADI2 expression (Figure 4a) on the expression of IL-6, as 

well as other factors expressed by BMMSCs known to play a role in MM pathogenesis: 

CXCL12 and cMET. We found that expression of all three pro-malignant factors was 

decreased when PADI2 expression was also reduced, or PADI activity was inhibited by Cl-

Amidine (Figure 4b). Importantly, siRNA of PADI4 (Figure 4a) did not affect expression of 

any of these factors, showing that this effect was specifically through modulation of PADI2 

expression (Figure 4b). Expression of another important factor in the pathogenesis of MM, 

vascular endothelial growth factor (VEGF), was not found to be modulated by PADI2 or 

PADI4 expression (Supplementary Figure 3). We directly tested the effect of knocking down 

or inhibiting PADI2 on IL-6 secretion into the medium of HS5 cells through siRNA or Cl-

Amidine treatment, and found that IL-6 was reduced in both conditions, and not further 

reduced by combining both siRNA and inhibitor (Figure 4c), further supporting our findings 

that PADI2 is the main PADI family member that regulates IL-6 expression in BMMSCs.  

Finally, we over-expressed PADI2 and found that IL-6 mRNA expression was increased 10-

fold (Figure 4d), whereas expression of an active-site mutant of PADI2 C647S(40) had no 

effect (Figure 4d). These data therefore provide direct mechanistic link between the 

expression of PADI2 and increased IL-6 production in BMMSCs from MGUS/MM patients. 

It has previously been shown that PADI2 activity can citrullinate the R26 residue of histone 

H3 (H3R26cit), resulting in increased transcription of a number of genes(27). Our data also 

showed increased levels of this modification in BMMSCs from MGUS and MM (Figure 2e). 

We therefore hypothesised that the mechanism by which PADI2 activity could modulate 

transcription from the IL-6 locus was through increasing citrullination of H3R26 in its 
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promoter. Primer pairs that covered the IL-6 promoter region were designed (Figure 5a), and 

a chromatin immunoprecipitation experiment performed, in which after either siPADI2 or Cl-

Amidine treatment, antibodies against H3R26cit and trimethylated K4 of histone H3 

(H3K4me3) were used to pull down chromatin associated with these modifications. 

H3K4me3, a modification associated with active areas of chromatin, was used as a positive 

control to determine whether changes in expression altered the overall activation state of the 

chromatin. We found that both Cl-Amidine (Figure 5b) and siPADI2 (Figure 5d) decreased 

the enrichment of H3R26cit in the IL-6 promoter region, the effects of which were particularly 

pronounced at and downstream of the transcription start site (TSS; Figure 5a). This 

correlated with a loss of the activating histone mark, H3K4me3 in the same conditions (Cl-

Amidine; Figure 5c, siPADI2; Figure 5e), indicating reduced activation of the IL-6 promoter 

locus as a result of reduced PADI2 activity. 

Our data therefore show that PADI2 expression correlates with IL-6 expression in primary 

BMMSCs from patients with MGUS and MM (Figure 3) as well as citrullination of the H3R26 

(Figure 2e) in the same cells. In addition, we have shown that PADI2 expression can directly 

increase IL-6 expression (Figure 4) through citrullination of the R26 residue of histone H3 in 

the promoter region of the gene (Figure 5). Finally, we show that PADI2 expression and 

activity in BMMSCs can modulate malignant plasma cell resistance to the chemotherapeutic 

agent, bortezomib (Figure 3a&b, and Figure 6). 

 

Discussion 

MM is an incurable disease that arises from the pre-malignant condition MGUS, present in 

the bone marrow of up to 7.5% of the elderly population(1, 41, 42). With increasing life 

expectancies and the resulting shift in the demographics of most developed countries, this 

disease represents a significant clinical challenge. Although it is now clear that the BM 

microenvironment is transformed in patients with MM, there are little data concerning the 
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nature of the MGUS microenvironment. We demonstrate here that BMMSCs from patients 

with both MGUS and MM have a transformed transcriptome compared to those from healthy 

individuals, in agreement with previous results(7). Our data, alongside those of others and 

our previous metabolomic study(35) highlight the significant similarities between the 

microenvironment of the BM in MGUS and MM, suggesting that transformation of the BM 

microenvironment is an early event in disease aetiology, raising the potential of interfering 

with this process in order to delay or prevent progression of patients with MGUS to MM. In 

addition, these data further highlight a need to identify those biological determinants in the 

BM that actually contribute to the progression of this disease: whether these are active 

drivers, or release of inhibitors of malignant progression.  

Our data provide a mechanism by which IL-6 secretion is increased in BMMSCs of patients, 

which may contribute to treatment failure of bortezomib, a key therapeutic agent in MM 

treatment strategies. It is important to note, however, that anti-IL-6 therapy has not proven to 

be an efficacious agent in MM thus far, suggesting that targeting this signalling axis alone is 

likely to be insufficient to achieve clinical benefit(43). PADI2 may therefore represent a novel 

upstream target, as our data suggest that its activity increases expression of other central 

signalling networks between BMMSCs and myeloma cells, such as HGF-cMET and 

CXCL12-CXCR4 (Figure 4b). PADIs are a family of enzymes, of which PADI2 is becoming 

increasingly linked to a number of chronic diseases, including cancer(27, 44), rheumatoid 

arthritis(45), Alzheimer‟s disease(46) as well as autoimmune disease(47). Targets of the 

PADI enzymes include proteins with diverse functions such as extracellular matrix formation 

(e.g. vimentin and myelin) and chromatin structure (histone H3)(24). Importantly, as arginine 

citrullination is expected to be a relatively long-lived post-translational modification due to the 

absence of a characterised peptidylcitrullinine iminotransferase, these modifications may 

only be reversed through protein turnover. In the case of histone H3R26 citrullination within 

the IL-6 promoter, this suggests that the chromatin unwinding and activation induced by this 

modification may only be reversed through proliferation or histone eviction. It is also highly 
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likely that a much larger number of pro-malignant transcripts are also modulated by the 

activity of PADI2. Indeed, a previous study of the effect of PADI2 on oestrogen receptor-

mediated transcriptional regulation showed that it regulated over 200 transcripts in those 

conditions(27). Future work will focus on defining more of these targets in BMMSCs in order 

to determine the broader implications of PADI2 in the transformation of the healthy BM to 

that of MGUS/MM. 

Therapeutic targeting of PADI2 may therefore represent a good (and early) therapeutic 

target in MGUS patients as well as those with MM, which may act by removing a significant 

proportion of the supportive signalling required by malignant plasma cells for survival and 

proliferation. Indeed, with the growing role for PADI2 in other chronic diseases, this enzyme 

may represent a novel therapeutic target in many pathological conditions. 
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Figure Legends 

Figure 1: Heatmap of transcriptomic analysis from thirty BMMSC samples, 10 each from 

control, MGUS and MM patients shows that cells from patients with MGUS and MM cluster 

together, and are different from those isolated from healthy individuals. 74 genes were 

identified with a cut-off for gene expression change of >2.0 fold, and p<0.001. 

Figure 2a: Three of the top five upregulated transcripts that differed between control and 

„disease‟ (MGUS/MM) BMMSCs identified from the transcriptomic analysis were the peptidyl 

arginine deiminase, PADI2 (a), filaggrin (b) and the urea transporter, SLC14A1 (c). d: PADI2 

mRNA expression in BMMSCs from controls, MGUS and MM patients compared to beta-

actin, analysed using Taqman, plotted on a logarithmic scale. Significant changes shown 

were calculated using Mann-Whitney tests. „*‟; p<0.05, „**‟; p<0.005, „****‟; p<0.0001. e: 

BMMSCs derived from patients with MGUS and MM have greatly increased expression of 

PADI2 and citrullination of histone H3 on residue R26 (R26cit) compared to healthy controls. 

Citrullination of other arginine residues on histone H3 (R2,8,17) under the control of PADI4 

are not similarly consistently increased. „CL‟ and „CH‟ indicate control samples (CL: low 

expressing, CH: high expressing) analysed on each blot in order for blots to be more easily 

compared. 

Figure 3a: Expression of PADI2 protects plasma cells from chemotherapy-induced 

apoptosis. JJN3 cell apoptosis as a percentage of total cells, either untreated („JJN3‟), or 24 

hours after treatment with 10 nM bortezomib („+BTM‟). When co-cultured with either a low 

PADI2-expressing („PADI2 low‟) or high PADI2-expressing („PADI2 High‟) BMMSCs across a 

Boyden chamber, JJN3 cells are partially protected from bortezomib-induced apoptosis, with 

extent of protection correlating with PADI2 expression. Two primary BMMSC lines were 

used per assay, each repeated n=3. Data were analysed by Kruskal-Wallis test (p<0.0001), 

with Dunn‟s multiple comparisons test to test for those values that were significantly 

different. Error bars show standard deviation. b: Inhibition of total PADI activity in the PADI2 
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High expressing lines using the pharmacological inhibitor, Cl-Amidine („CL‟) significantly 

reduces acquired protection from bortezomib. Data were analysed using Mann-Whitney test, 

error bars show standard deviation. „**‟; p=0.002 c: IL-6 expression is significantly increased 

in BMMSCs derived from patients with MGUS and MM compared to controls. IL-6 mRNA 

expression was normalised to beta-actin. Significant changes shown between groups were 

calculated using Mann-Whitney tests. „****‟; p<0.0001. Error bars are d: Bone marrow 

concentrations of IL-6 are also increased in patients with MGUS and MM. Mann-Whitney 

tests were again used to calculate significance of differences between groups. „***‟; 

p=0.0005, „****‟; p<0.0001 e: Scatterplot of the expression of  PADI2 against IL-6 as 

measured in BMMSCs from 38 patients with MM and MGUS shows that their expression is 

highly correlated (r2 = 0.540, non-linear fit).  

Figure 4a: Confirmation of knockdown by siPADI2 by two independent siRNA sequences.  

b: The expression of the BMMSC component of critical chemokine signalling axes in 

myeloma (IL-6, CXCL12 and cMET) is modulated by PADI2 expression in the immortalised 

BMMSC cell line, HS5. Expression of all three transcripts are reduced in response to 

reduction in PADI2 expression (siPADI2), or the addition of the pan-PADI inhibitor, Cl-

Amidine (200 µM, 72 hours). However, siPADI4 does not alter expression of any of the 

transcripts. c: IL-6 expression, as measured through its secretion into the tissue culture 

medium by the HS5 cell line, is reduced after treatment with Cl-Amidine and/or siPADI2. 

Data shown are mean of n=3 ± standard deviation. p=0.039, unpaired student‟s t-test with 

Welch‟s correction. d: Over-expression of PADI2 increases IL-6 expression, whilst the 

catalytic mutant, C645S, does not increase expression over basal levels. Data shown are 

mean of n=3 ± standard deviation. p=0.004, unpaired student‟s t-test with Welch‟s 

correction.  

Figure 5a: Diagram showing the coverage of the IL-6 promoter region by the primer pairs 

used in the chromatin immunoprecipitation analysis. Pull-down of chromatin  associated with 

either citrullinated R26 (b and d) or trimethylated K4 (c and e) of histone H3, show that both 
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inhibition of PADI activity by Cl-Amidine (b and c) and reduction of PADI2 expression 

(through siRNA, d and e) reduce the enrichment of these marks on and downstream of the 

IL-6 transcription start site, indicating that PADI2 activity is required for full activation of 

transcription from this locus. 

Figure 6: Model of how PADI2 activity in BMMSCs directly contributes to malignant plasma 

cell phenotype in patients with MGUS and MM. PADI2 citrullinates histone H3 at residue 

R26 within the promoter region of the IL-6 gene, which increases its expression and 

secretion. IL-6 can then mediates its effects on other cells within the bone marrow, including 

the malignant plasma cells, which become more resistant to chemotherapeutic agents, such 

as Bortezomib. 
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