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Abstract 

The balance of neural excitation and inhibition (E/I balance) is often hypothesised to be altered in autism 

spectrum disorder (ASD). One widely held view is that excitation levels are elevated relative to inhibition in 

ASD. Understanding whether, and how, E/I balance may be altered in ASD is important given the recent 

interest in trialling pharmacological interventions for ASD which target inhibitory neurotransmitter function.  

Here we provide a critical review of evidence for E/I balance in ASD. We conclude that data from a number 

of domains provides support for alteration in excitation and inhibitory neurotransmission in ASD, but when 

considered collectively, the available literature provide little evidence to support claims for either a net 

increase in excitation or a net increase in inhibition. Strengths and limitations of available techniques are 

considered, and directions for future research discussed.  
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1. Introduction  

Autism spectrum disorder (ASD) is diagnosed based on the presence of impairments in social interaction 

and communication, accompanied by restricted and repetitive behaviours (American Psychiatric 

Association, 2013). ASD has been reported to affect around 1 in 68 children (Christensen et al., 2016), yet 

the precise etiology of the condition is unknown. One hypothesis regarding the pathophysiology of ASD 

centres on alteration in the balance of neural excitation and inhibition (E/I balance), which is mediated by 

the effective magnitude and timing of excitatory and inhibitory synaptic inputs to a cortical neuron or 

network. Due to the widespread consequences that altered E/I balance has for brain function and behaviour 

(Haider, Häusser, & Carandini, 2013), E/I imbalance has been suggested as a possible explanation for the 

behavioural, cognitive and perceptual differences observed in those with ASD. While most accounts suggest 

that excitation may be increased relative to inhibition in ASD (Coghlan et al., 2012; Hussman, 2001; 

Markram, Rinaldi, & Markram, 2007; Rubenstein & Merzenich, 2003), others suggest that inhibition may be 

increased in ASD relative to excitation (Bertone, Mottron, Jelenic, & Faubert, 2005; Gustafsson, 1997a). 

When evaluating the diverse results of studies which assess E/I balance in ASD, one thing which should be 

considered is the possibility that an imbalance (or the direction of such imbalance) may not manifest in a 

ubiquitous way across the condition. ASD is highly heterogeneous, and likely emerges as the consequence 

of diverse neurobiological sequelae, as is suggested by the many different genetic abnormalities associated 

with ASD (Miles, 2011). It is therefore possible that sub-groups of individuals with ASD have specific 

differences in E/I balance that are not universal, and may contribute to the heterogeneity of the condition.  

 

The suggestion that E/I balance is altered in ASD, and in particular the hypothesis that excitation is 

increased relative to inhibition in ASD, is largely based on the observation that seizure disorders such as 

epilepsy frequently co-occur with ASD (Rubenstein & Merzenich, 2003). Estimates of the prevalence rates 

of epilepsy in ASD range from 5-46% (Bryson, Clark, & Smith, 1988; Hughes & Melyn, 2005) and 

converge at around 30% (Canitano, 2007). Subclinical epileptiform activity in the electroencephalography 

(EEG) is also present in a high proportion of children with ASD (Chez et al., 2006; Hughes and Melyn, 
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2005; McVicar et al., 2005; Rossi et al., 1995) with one study suggesting that up to 85% of children display 

such activity (Yasuhara, 2010). However, epilepsy does not arise simply due to an increase in neuronal 

excitation or decrease in inhibition (Engel, 1996) and seizures occur as a result of complicated neuronal 

interactions that can differ both within and between patients. In addition, not all individuals with ASD have 

co-occurring seizures, and not all individuals with epilepsy have ASD. This suggests that there may be 

different neural pathways to the symptoms of ASD, and that the neural changes associated with epilepsy do 

not necessarily lead to ASD. It also highlights the importance of obtaining data that directly measures E/I 

balance in ASD.  

 

Over the last decade, myriad research papers from a range of disciplines have attempted to test the 

hypothesis that E/I balance is altered in ASD. Examples include: studies that measure gamma-Aminobutyric 

acid (GABA) and glutamate (the main inhibitory and excitatory neurotransmitters) receptors in post-mortem 

brain tissue (e.g. Fatemi, Reutiman, et al.,2009); studies that use Magnetic Resonance Spectroscopy (MRS) 

to measure GABA and glutamate levels in vivo (e.g. Rojas et al., 2014), and studies that measure aspects of 

perception from which alterations in E/I balance are inferred (Dickinson et al. 2016, Robertson et al. 2016). 

A number of excellent methodologically-specific review articles evaluating some of this work have been 

published recently. For example Rojas et al. (2015) reviewed MRS studies that measure glutamate and 

GABA levels in ASD, and Pizzarelli and Cherubini (2011) reviewed cellular abnormalities that implicate E/I 

imbalance in animal models of ASD (see also Coghlan et al., 2012). Here we take a broader approach, and 

rather than focusing on data arising from a specific technique or field, we review data arising from the range 

of methodologies that have been used to investigate, or infer, E/I balance in ASD.  

 

2. Empirical Evidence for E/I imbalance in ASD 

We start the review with a description of neuro-architectural differences associated with E/I imbalance in 

ASD, including cellular abnormalities measured from post-mortem brain tissue and mini-columnar structure. 

We then consider studies that measure excitatory and inhibitory neurotransmitters, from both blood plasma 

and brain, before describing how differences in gamma-band activity recorded by magnetoencephalography 
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(MEG) or EEG, and atypical perceptual function, have been considered to infer E/I imbalance in ASD. An 

emerging theme from this review is that measuring E/I balance in humans is not straightforward. Many of 

the claims made regarding altered E/I balance in ASD rely on assumptions, such as assumptions about how 

alteration of one feature, such as cortical neurotransmitter levels or synaptic protein levels may affect net E/I 

balance, or assumptions about the extent to which a certain perceptual task reflects E/I balance. 

Nevertheless, the collective findings from this body of work certainly imply that E/I balance may be 

disrupted in ASD, although we would argue that the strength of available evidence is not sufficient to 

accurately describe the direction of such an imbalance (i.e. whether excitation is increased or reduced 

relative to inhibition). 

 

2.1 Cellular Abnormalities 

Arguably, the most compelling evidence for altered E/I balance in ASD comes from studies that have 

identified abnormalities in anatomical features that are associated with controlling neural excitation and 

inhibition in ASD. Although many cellular abnormalities have been reported in ASD, this discussion will 

only highlight examples of the cellular abnormalities found in ASD that are considered to implicate E/I 

balance (for a more thorough review and diagram of E/I balance at a cellular level, see Coghlan et al., 2012). 

See table 1 for a summary of the studies described in this section.  

Neural transmission relies on a complex system of neurotransmitter generation, release, reception and re-

uptake. In ASD, abnormalities have been found in many of the components of this system. For example 

Fatemi, Reutiman et al. (2009) found reductions in GABAA receptor density in parietal, cerebellar and 

superior frontal regions in ASD (see also Blatt et al., 2001; Fatemi, Folsom et al., 2009; Fatemi et al., 2014, 

Oblak et al., 2011, 2010, 2009), and AMPA-type glutamate receptor density was found to be reduced in the 

cerebellum of individuals with ASD (Purcell, Jeon, Zimmerman, Blue, & Pevsner, 2001). There is also 

evidence that the synthesis of GABA and glutamate is altered in ASD. Glutamic acid decarboxylase (GAD) 

is an enzyme responsible for catalysing the decarboxylation of glutamic acid to form GABA and exists in 

two isoforms: 65 and 67 (GAD65; GAD67). Post mortem studies have revealed that both GAD65 and GAD 

67 are decreased in the cerebellum and parietal cortex of individuals with ASD (Fatemi et al., 2002; Yip, 



 6 

Soghomonian, & Blatt, 2007). In addition, Shimmura et al. (2013) found that enzymes associated with the 

glutamate-glutamine cycle are decreased in post mortem brain tissue of individuals with ASD, thus also 

suggesting a dysfunction in excitatory neurotransmission in ASD. 

These studies provide strong evidence for the position that E/I balance is likely to be altered in ASD, 

however, it is hard to predict how a disruption in either receptor density and / or enzyme levels would affect 

overall E/I balance in ASD. For instance, low levels of GABA receptor expression may be compensated for 

by higher levels of GABA being released from presynaptic terminals (Dhossche et al., 2002; Fatemi, 

Reutiman et al., 2009). Therefore, while this research strongly implicates alteration in mechanisms 

underpinning E/I balance in ASD, it does not speak clearly to the direction of such an imbalance. Numerous 

animal models that mimic some aspects of the behavioural symptoms of ASD also display alterations in E/I 

balance, with altered GABAergic and glutamatergric transmission observed in several studies (for a review 

see Pizarelli & Cherubini, 2011). However, whilst Markram et al. (2008) find defective inhibitory 

transmission in one mouse model of ASD, other models reveal increased inhibitory transmission, or 

decreased glutamatergic transmission (Blundell et al., 2010; Tabuchi et al., 2007), demonstrating that even 

animal models display variable and conflicting results regarding E/I balance in ASD.  
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Table 1. Post-mortem studies of cellular abnormalities in ASD.  

 

Study (Year) Participants  
Group: N (mean 
age in years) 

Measure Finding Interpretation 
regarding E/I 
balance in ASD. 

 
Blatt et al. 
(2001) 

 
ASD: 4 (20) 
NT: 3 (19.7) 
 

 
GABAA 
receptor 
density in 
hippocampus. 
 

 
Decreased GABAA receptor 
density in ASD. 

 
Decreased 
inhibition.  

Fatemi et al. 
(2002) 

ASD: 5 (25.2) 
NT: 8 (23.5)  
 
  

Levels of 
GAD65 & 
GAD67 
measured in 
cerebellum. 
 

Decreased GAD65 and GAD 
67 levels in ASD. 

Decreased 
inhibition.  

Fatemi et al. 
(2002) 

ASD: 5 (21.6) 
NT: 4 (21.6)  

Levels of 
GAD65 & 
GAD67 
measured in 
parietal cortex.  
 

Decreased GAD65 and GAD 
67 levels in ASD. 

Decreased 
inhibition.  

Fatemi et al. 
(2014) 

ASD: 7 (24.1)  
NT: 6 (23.7) 
 
 

Protein 
expression of 
GABAA  
receptor 
subunits in 
parietal cortex. 
 

No group differences.  No difference. 

Fatemi et al. 
(2014) 

ASD: 7 (24.9) 
NT: 1 (26.6) 

Protein 
expression of 
GABAA 
receptor 
subunits in the 
cerebellum. 
 

No group differences. No difference. 

Fatemi et al. 
(2014) 

ASD: 6 (23) 
NT: 3 (26) 

Protein 
expression of 
GABA  
receptor 
subunits in 
frontal cortex. 
 

Reduced protein expression for 
several GABAA receptor 
subunits. 

Decreased 
inhibition.  

Fatemi, 
Folsom et al. 
(2009) 
 
 

ASD: 6 (24) 
NT: 10 (24) 
 
 

GABAB 

receptor 
density in 
cerebellum. 

Decreased GABAB receptor 
density in ASD.  
 

Decreased 
inhibition.  

Fatemi, ASD: 8 (23.5) GABAB Decreased GABAB receptor Decreased 
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Folsom et al. 
(2009) 
 
 

NT:6 (23.7) 
 
 

receptor 
density in 
parietal cortex. 

density in ASD.  
 

inhibition.  

Fatemi, 
Folsom et al. 
(2009) 
 
 

ASD: 6 (23) 
NT: 3 (26) 

GABAB 

receptor 
density in 
frontal cortex. 

Decreased GABAB receptor 
density in ASD.  
 

Decreased 
inhibition.  

Fatemi, 
Reutiman et 
al. (2009) 
 

ASD: 6 (24) 
NT: 11 (26.9) 
 

GABAA 
receptor 
density in 
cerebellum.  
 

Decreased GABAA receptor 
density in ASD.  
 

Decreased 
inhibition.  

Fatemi, 
Reutiman et 
al. (2009) 
 

ASD: 8 (23.5) 
NT: 6 (23.7) 
 
 

GABAA 
receptor 
density in 
parietal cortex. 
  

Decreased GABAA receptor 
density in ASD.  
 

Decreased 
inhibition.  

Fatemi, 
Reutiman et 
al. (2009) 
 

ASD: 6 (23) 
NT: 3 (26) 

GABAA 
receptor 
density in 
frontal cortex.  
 

Decreased GABAA receptor 
density in ASD.  
 

Decreased 
inhibition.  

Oblak et al. 
(2009) 

ASD: 7 (21.4) 
NT: 9 (25.9) 

GABAA 
receptor 
density 
measurement 
in anterior 
cingulate 
cortex.  
 

Decreased GABAA receptor 
density in anterior cingulate 
cortex and fusiform gyrus in 
ASD.  

Decreased 
inhibition.  

Oblak et al. 
(2010) 

ASD: 7 (21.4)  
NT: 9 (25.8) 
 
 

GABAB 
receptor 
density in 
anterior 
cingulate 
cortex. 
 

Decreased GABAB receptor 
density in ASD.  

Decreased 
inhibition.  

Oblak et al. 
(2010) 

ASD: 6 (21.3)  
NT: 7 (27.1) 
 
 
 

GABAB 
receptor 
density in 
posterior 
cingulate 
cortex.  
 

Decreased GABAB receptor 
density in ASD.  

Decreased 
inhibition.  

Oblak et al. 
(2010) 

ASD: 8 (25)  
NT: 10 (26.1) 

GABAB 
receptor 
density in 
fusiform gyrus. 
 

Decreased GABAB receptor 
density in ASD.  

Decreased 
inhibition.  

Oblak et al. 
(2011) 

ASD: 7 (21.4)  
NT: 7 (25.9) 
 

GABAA 

receptor 
density in 

Decreased GABAA receptor 
density in ASD.   
 

Decreased 
inhibition.  
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  posterior 
cingulate 
cortex. 
 

Oblak et al. 
(2011) 

ASD: 9 (24) 
NT: 10 (26.1) 
 

GABAA 

receptor 
density in 
fusiform gyrus. 
  

Decreased GABAA receptor 
density in ASD.  
 

Decreased 
inhibition.  

Purcell et al. 
(2001) 

ASD: 10 (19) 
NT: 16 (23.3) 
 
 

AMPA-type 
glutamate 
receptor 
density in 
cerebellum. 
 

AMPA-type glutamate receptor 
density was decreased in ASD.   
 

Decreased 
excitation.  

Purcell et al. 
(2001) 

ASD: 4 (21.3) 
NT: 7 (20.8) 
 
 

AMPA-type 
glutamate 
receptor 
density in 
frontal cortex. 
 

No group difference.   
 

No difference.  

Purcell et al. 
(2001) 

ASD: 3 (22) 
NT:  6 (23.5) 

AMPA-type 
glutamate 
receptor 
density in 
caudate-
putamen. 
 

No group difference.   
 

No difference.  

Shimmura et 
al. (2013) 

ASD: 7 (15.9)  
NT: 13 (15.8) 

Levels of 
glutaminase 
measured in 
anterior 
cingulate 
cortex.   
 

Decreased glutaminase levels 
in ASD.  
 

Decreased 
excitation.  

Yip et al. 
(2007) 

ASD: 8 (21.5) 
NT: 8 (23.4).  

Levels of 
GAD67 
measured in 
cerebellum.   
  

Decreased GAD67 levels in 
ASD. 

Decreased 
inhibition.  

NT neurotypical. 
 

 

 

 

 

 

 



 10 

 

 

2.2 Cortical Minicolumns  

Cortical minicolumns are vertical columns of pyramidal cells which ascend radially through layers VI and II 

of cortex. They are found in all regions of cortex and constitute the smallest neocortical module capable of 

processing information (Mountcastle, 1997). Changes in cortical minicolumns reported in ASD have been 

linked to E/I balance via the assumption that the precise organisation of the connectivity of the cortex could 

influence the effective balance of excitation and inhibition. However, while post mortem analysis has 

revealed that individuals with ASD show minicolumnar abnormalities across widespread regions of the 

cortex, the precise nature of such abnormality is not consistent across all studies. See table 2 for a summary 

of these data. For example, some studies have found reduced neuropil space and narrower minicolumn width 

in frontal and temporal brain regions in ASD (Buxhoeveden et al., 2007; Casanova, Buxhoeveden, Switala, 

& Roy, 2002a; Casanova, Buxhoeveden, Switala, & Roy, 2002b; Casanova et al., 2006), whereas a recent 

study has reported wider minicolumns in sensory, frontal and parietal cortical areas in ASD (McKavanagh, 

Buckley, & Chance, 2015). 

Neuropil space surrounds the minicolumn core and contains GABAergic inhibitory interneurons (Favorov & 

Kelly, 1994) which insulate the excitatory flow in the core from the activity of surrounding minicolumns (de 

Felipe, 1999). It has therefore been postulated that reduced neuropil space would limit the effectiveness of 

this inhibitory ‘sheath’, and lead to reduced neural inhibition in ASD (Casanova, Buxhoeveden, & Gomez, 

2003). However, in contrast to the suggestion that narrower minicolumns in ASD are associated with 

reduced inhibition, computational modelling work (Gustafsson, 1997b) and experimental studies in cats 

(Hensch, 2007), have shown that in fact narrower minicolumns could be associated with increased 

inhibition.  

 

Minicolumns are a major aspect of neural architecture, and it is likely that differences in their structure 

would have widespread consequences for E/I balance. Therefore, the finding of altered minicolumns in ASD 

is important. However, despite a tendency in the literature for researchers to cite minicolumn abnormalities 
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as evidence for E/I imbalance, and typically increased excitation relative to inhibition, in ASD, it is clear 

that there is no consensus in the literature regarding how minicolumns are altered in ASD, nor how altered 

minicolumnar structure may relate to E/I balance.  
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Table 2. Studies of cortical minicolumns in ASD.  

Study (Year) Participants  
Group: N 
(mean age in 
years) 

Measure Finding Interpretation 
regarding E/I 
balance in ASDa. 

Buxhoeveden 
et al. (2007) 

ASD: 2 (22) 
NT: 5 (35.2) 

Minicolumn 
width in 
frontal cortex. 
 

Decreased 
minicolumn width in 
ASD.  

Increased inhibition.  

Buxhoeveden 
et al. (2007) 

ASD: 2 (22) 
NT: 5 (35.2) 

Minicolumn 
width in 
primary visual 
cortex. 
 

No group difference.  No difference.  

Casanova et 
al. (2002a) 
 

ASD: 9 (12) 
NT: 4 (not 
reported) 

Minicolumn 
width in 
temporal lobe.  

Decreased 
minicolumn width in 
ASD.  
 

Increased inhibition.  

Casanova et 
al. (2002a) 
 

ASD: 9 (12) 
NT: 4 (not 
reported) 

Minicolumn 
width in 
prefrontal 
cortex. 

Decreased 
minicolumn width in 
ASD.  

Increased inhibition.  

Casanova et 
al. (2002b) 
 

ASD: 1(79)  
NT: 11 
(72.09) 
 
 

Minicolumn 
width in 
superior-
temporal 
cortex. 
 
 

Decreased 
minicolumn width in 
ASD.  

Increased inhibition.  

Casanova et 
al. (2002b) 
 

ASD 1: (22)  
NT: 7 (21.14) 

Minicolumn 
width in 
middle-
temporal 
cortex. 
 
 

No group difference. No difference.  

Casanova et 
al. (2002b) 
 

ASD 1: (22)  
NT: 7 (21.14) 

Minicolumn 
width in 
frontal cortex. 
 
 
 

No group difference. No difference.  

Casanova et 
al. (2002b) 
 

ASD 1: (22)  
NT: 7 (21.14) 

Minicolumn 
width in 
superior-
temporal 
cortex. 
 

No group difference. No difference.  

Casanova et 
al.  (2006) 

ASD: 6 (12.3) 
NT: 6 (12.8) 

Minicolumn 
width in 
somatosensory 
cortex.   
 

Decreased 
minicolumn width in 
ASD.  

Increased inhibition.  
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Casanova et 
al. (2006) 

ASD: 6 (12.3) 
NT: 6 (12.8) 

Minicolumn 
width in motor 
cortex. 
 

Decreased 
minicolumn width in 
ASD.  

Increased inhibition.  

Casanova et 
al. (2006) 

ASD: 6 (12.3) 
NT: 6 (12.8) 

Minicolumn 
width in visual 
cortex.  
  

Decreased 
minicolumn width in 
ASD.  

Increased inhibition.  

Casanova et 
al. (2006) 

ASD: 6 (12.3) 
NT: 6 (12.8) 

Minicolumn 
width in 
frontal 
association 
cortex. 
 

Decreased 
minicolumn width in 
ASD.  

Increased inhibition.  

McKavanagh 
et al. (2015) 

ASD: 28 
(16.1) 
NT: 25 (34) 

Minicolumn 
width in 
auditory 
cortex. 
 

Increased 
minicolumn width in 
ASD.  

Decreased inhibition. 

McKavanagh 
et al. (2015) 

ASD: 28 
(16.1) 
NT: 25 (34) 

Minicolumn 
width in 
auditory 
association 
cortex.  
 

Increased 
minicolumn width in 
ASD.  

Decreased inhibition. 

McKavanagh 
et al. (2015) 

ASD: 28 
(16.1) 
NT: 25 (34) 

Minicolumn 
width in 
orbital frontal 
cortex. 
 

Increased 
minicolumn width in 
ASD.  

Decreased inhibition. 

McKavanagh 
et al. (2015) 

ASD: 28 
(16.1) 
NT: 25 (34) 

Minicolumn 
width in 
inferior 
parietal lobe.  
 

Increased 
minicolumn width in 
ASD.  

Decreased inhibition. 

 

NT neurotypical. 
a Results are interpreted in line with evidence that wider minicolumns reflect decreased inhibition 
(Gustafsson, 1997b, Hensch, 2007). However, see the text for a full discussion of the interpretation of these 
findings.   
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2.3 Blood Measurement 

Several ASD studies have attempted to quantify glutamate and GABA levels via blood measurements, 

although results are inconsistent (see table 3 for a summary of these studies). Blood plasma glutamate levels 

have been found to be increased (Hassan et al., 2013) and platelet levels of its precursor glutamine, 

decreased (Rolf, Haarmann, Grotemeyer, & Kehrer, 1993) in participants with ASD compared to 

neurotypical controls.  Similarly, whilst Dhossche et al (2002) reported higher blood plasma GABA levels in 

children with ASD, decreased platelet levels of GABA have also been reported (Rolf et al., 1993). Further 

difficulty in interpretation of such studies arises from the fact that amino acid neurotransmitters do not easily 

cross the blood-brain barrier, and as such it is difficult to interpret the results of studies which measure 

glutamate and GABA levels in this way in terms of neural E/I balance within the brain (see also Rojas, 

Becker & Wilson, 2015).  
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Table 3. Blood measurement studies of E/I balance in ASD.  

Study (Year) Participants  
Group: N 
(mean age in 
years) 

Measure Finding Interpretation 
regarding E/I 
balance in ASD. 

Dhossche et 
al. (2002) 

ASD: 9 (7.8) 
ADHD: 9 
(10.5) 
 

Blood plasma levels of 
GABA. 

Increased GABA 
levels in ASD.   

Increased 
inhibition.  

Hassan et al. 
(2013) 

ASD: 10 
(11.4) 
NT: 10 (11.3).  
 

Blood plasma levels of 
glutamate. 

Increased glutamate 
levels in ASD. 

Increased 
excitation.  

Rolf et al. 
(1993) 

ASD: 18 ASD 
(9.9) 
NT: 14 (11.5) 
 

Platelet levels of glutamine 
(glutamate precursor). 
 

Decreased glutamine 
levels in ASD.  

Decreased 
excitation. 

Rolf et al. 
(1993) 

ASD: 18 ASD 
(9.9) 
NT: 14 (11.5) 

Platelet levels of GABA. 
 

Decreased GABA 
levels in ASD.  

Decreased 
inhibition. 

NT neurotypical; ADHD attention deficit hyperactivity disorder 
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2.4 Magnetic Resonance Spectroscopy (MRS) Studies  

By contrast, MRS allows the quantification of different neurochemicals including excitatory and inhibitory 

neurotransmitters within brain tissue and has therefore been used to measure cortical levels of both 

glutamate and GABA in individuals with ASD. When measuring glutamate, many MRS studies combine the 

resonances of glutamate and its precursor, glutamine into one single measure: Glx. A comprehensive review 

of this work has been published recently (Rojas, Becker & Wilson, 2015) therefore here we provide a brief 

overview of the results of studies which have measured either GABA, glutamate or Glx in ASD, and 

consider what can be learnt about E/I balance in ASD from this work. These studies are summarized in table 

4.  

2.4.1 Glutamate / Glx 

Several studies have measured resting levels of glutamate and/or Glx levels in ASD, however, results vary 

with respect to whether glutamate / Glx is increased or decreased in ASD compared to neurotypical controls. 

For example, glutamate/Glx levels have been found to be increased in several regions in individuals with 

ASD compared to controls, including the ACC (Bejjani et al., 2012; Hassan et al., 2013); hippocampus 

(Page et al., 2006); putamen (Doyle-Thomas et al., 2014); Heschl’s gyrus (Brown, Singer, Hepburn & 

Rojas, 2013); and the cerebellum; striatum and frontal lobe (Hassan et al., 2013). However, other studies 

have found decreased glutamate/Glx in ASD in regions including the ACC  (Bernardi et al., 2011; van Elst, 

Maier, Fangmeier, & Endres, 2014) the basal ganglia (Horder et al., 2013); frontal and occipital cortex, the 

cerebellum (Devito et al., 2007) and white matter (Corrigan et al., 2013). Yet other studies have found no 

significant differences in glutamate / Glx levels between individuals with and without ASD in several 

different brain regions including parietal lobes (Horder et al., 2013; Page et al., 2006), frontal lobes (Horder 

et al., 2013) temporal lobes (Devito et al., 2007), and occipital lobes  (Robertson, Ratai, & Kanwisher, 

2015); the thalamus (Bernardi et al., 2011; Doyle-Thomas et al., 2014; Hardan et al., 2008); hippocampus 

(Joshi et al., 2012); and cerebellum (van Elst et al., 2014). Therefore, the literature regarding glutamate/Glx 

levels in ASD is mixed. Even measuring glutamate/Glx levels from the same structure has yielded 

inconsistent results (c.f. DeVito et al., 2007; Hassan et al., 2013).  
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2.4.2 GABA 

Fewer studies have attempted to measure cortical GABA levels in ASD. Although results appear to be more 

consistent than when measuring glutamate/Glx. For example, decreased GABA levels in individuals with 

ASD compared to controls have been reported in motor (Gaetz et al., 2014) and auditory cortex (Gaetz et al., 

2014; Rojas, Singel, Steinmetz, Hepburn, & Brown, 2014), and in the ACC (Cochran et al., 2015), although 

Brix et al. (2015) found no differences in GABA levels in the ACC. Other regions, such as the occipital 

cortex show no differences in GABA levels between participants with and without ASD (Gaetz et al., 2014; 

Robertson et al., 2015).   

2.4.3 Implications for E/I balance 

There is no clear picture regarding how glutamate / Glx levels may be altered in ASD. There is more support 

for reduced cortical GABA levels in ASD, although this does not appear to be consistent across the cortex. 

Nevertheless, it is difficult to predict the resultant effect of any alteration in neurotransmitter levels on the 

net balance of E/I due to the complex interactions between the level of a single inhibitory neurotransmitter 

and compensatory excitatory mechanisms (Levin & Nelson, 2015). Even within an individual, 

neurotransmitter levels vary between different cortical areas (Gao et al., 2013), and over time (e.g. with the 

menstrual cycle, Epperson et al., 2002) adding further complexity to the task of investigating E/I balance by 

studying neurotransmitter levels alone.  There are also limitations to the MRS technique. For instance, 

GABA measurement in particular is difficult due to overlap between its resonance spectra and those of 

creatine and other macromolecules (Puts & Edden, 2012), and it can be difficult to localise the relatively 

large area of brain (typically 3cm3) measured using MRS to a particular brain structure, which may lead to 

differences between studies. Therefore, while the available evidence provides some evidence that excitatory 

and inhibitory neurotransmitter levels may be altered in ASD relative to neurotypical controls, the precise 

nature of any such alteration, and the direct consequence of this for E/I imbalance remain unclear.  
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Table 4. MRS studies of E/I balance in ASD.  

Study (Year) Participants  
Group: N 
(mean age in 
years) 

Measure Finding Interpretation 
regarding E/I 
balance in ASD. 

Bejjani et al. 
(2012) 

ASD: 8 (11.2) 
NT: 10 (13.2) 
 
 

Glx levels measured in 
anterior cingulate cortex. 

Increased Glx in 
ASD. 

Increased 
excitation.  

Bejjani et al. 
(2012) 

ASD: 26 
(10.2) 
NT: 16 (11.8) 

Glx levels measured in left 
and right anterior cingulate 
cortex. 
 

Increased Glx in 
ASD.  

Increased 
excitation.  

Bernardi et 
al. (2011) 

ASD: 14 
(29.2) 
NT: 14 (29.7) 
 

Glutamate levels in 
temporoparietal junction.  

No group differences.  No difference.    

Bernardi et 
al. (2011) 

ASD: 14 
(29.2) 
NT: 14 (29.7) 

Glutamate levels in anterior 
cingulate cortex. 

Glutamate levels 
decreased in ASD.  
 

Decreased 
excitation.  

Bernardi et 
al. (2011) 

ASD: 14 
(29.2) 
NT: 14 (29.7) 
 

Glutamate levels in 
thalamus. 

No group differences.  No difference.    

Bernardi et 
al. (2011) 

ASD: 14 
(29.2) 
NT: 14 (29.7) 

Glutamate levels in intra 
parietal cortex. 

No group differences.  No difference.    

Brix et al. 
(2015) 

ASD: 14 
(10.2) 
NT: 24 (10.2) 
 

GABA levels in anterior 
cingulate cortex. 
 

No group differences. No difference.  

Brown et al. 
(2013) 

ASD: 13 
(36.89) 
NT: 15 (41.08) 

Glx and glutamate levels 
measured in Heschl’s 
gyrus.  
 

Glx and glutamate 
levels increased in 
ASD.  

Increased 
excitation.  

Cochran et 
al. (2015) 

ASD: 13 
(14.9) 
NT: 14 (14.7) 

GABA, glutamate and 
glutamine levels in anterior 
cingulate cortex. 
 

Increased glutamine 
and decreased GABA 
levels in ASD. 

Increased 
excitation.  

     
Corrigan et 
al. (2013) 

ASD: 45 (4) 
NT: 10 (3.8) 
Developmental 
Delay: 13 (3.9) 
 

Glx levels in grey and 
white matter.  

Decreased Glx levels 
in white matter in 
ASD.  
 

Decreased 
excitation.   

Corrigan et 
al. (2013) 

ASD: 31 (6.6) 
NT: 18 (6.6) 
Developmental 
Delay: 14 (6.4) 
 

Glx levels in grey and 
white matter.  

No group difference.  No difference.   

Corrigan et 
al. (2013) 

ASD: 29 (9.6) 
NT: 29 (9.6) 

Glx levels in grey and 
white matter.  

No group difference.  No difference.   
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Developmental 
Delay: 12 (9.5) 
 

De Vito et al. 
(2007) 

ASD: 26 (9.8) 
NT: 29 (11.1) 

Glx levels in frontal lobe. Decreased Glx levels 
in ASD.  
 
 

Decreased 
excitation. 

De Vito et al. 
(2007) 

ASD: 26 (9.8) 
NT: 29 (11.1) 
 

Glx levels in temporal lobe. 
 

No group difference. No difference 
  

De Vito et al. 
(2007) 

ASD: 26 (9.8) 
NT: 29 (11.1) 

Glx levels in occipital lobe. Decreased Glx levels 
in ASD.  
 

Decreased 
excitation. 
 

De Vito et al. 
(2007) 

ASD: 26 (9.8) 
NT: 29 (11.1) 

Glx levels in the 
cerebellum. 

Decreased Glx levels 
in ASD.  
 
 

Decreased 
excitation. 
  

Doyle-
Thomas et 
al. (2014) 

ASD: 20 
(11.5) 
NT: 16 (12.9) 
 

Glx levels measured in 
caudate.  

No group differences.   No difference.   

Doyle-
Thomas et 
al. (2014) 

ASD: 20 
(11.5) 
NT: 16 (12.9) 
 

Glx levels measured in 
thalamus.  

No group differences.   No difference.   

Doyle-
Thomas et 
al. (2014) 

ASD: 20 
(11.5) 
NT: 16 (12.9) 

Glx levels measured in 
putamen. 

Increased Glx in 
ASD.  
 
 

Increased 
excitation. 
 

Gaetz et al. 
(2014) 

ASD: 17 
(11.5) 
NT: 15 (12.7) 
 

GABA levels in left 
auditory cortex. 

Decreased GABA 
levels in ASD.  
 
 

Decreased 
inhibition. 

Gaetz et al. 
(2014) 

ASD:13 (12.2) 
NT: 11 (11.1) 

GABA levels in left motor 
cortex.  

Decreased GABA 
levels in ASD.  

Decreased 
inhibition. 

Gaetz et al. 
(2014) 

ASD: 8 (13) 
NT:10 (13.3) 
 

GABA levels left and right 
visual cortex. 
 

No group differences. No difference.  
.  

Hardan et 
al. (2008) 

ASD: 18 
(11.6)  
NT: 16 (11.9) 

Glutamate levels in the 
thalamus. 
 

No group differences. No difference.  

Hassan et al. 
(2013) 

ASD: 10 
(11.4) 
NT: 10 (11.3) 

Glutamate levels measured 
in bilateral anterior 
cingulate. 
 

Increased glutamate 
in ASD.   

Increased 
excitation.  

Hassan et al. 
(2013) 

ASD: 10 
(11.4) 
NT: 10 (11.3) 
 

Glutamate levels measured 
in left striatum.  
 

Increased glutamate 
in ASD.   

Increased 
excitation.  

Hassan et al. 
(2013) 

ASD: 10 
(11.4) 
NT: 10 (11.3) 

Glutamate levels measured 
in left cerebellar 
hemisphere.  
 

Increased glutamate 
in ASD.   

Increased 
excitation.  
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Hassan et al. 
(2013) 

ASD: 10 
(11.4) 
NT: 10 (11.3) 
 

Glutamate levels measured 
in left frontal lobe.  
 

Increased glutamate 
in ASD.   

Increased 
excitation.  

Horder et al. 
(2013) 

ASD (ND): 15 
(29) 
ASD (BP): 13 
(27) 
NT: 14 (34) 
 

Glx levels measured in 
basal ganglia. 

Decreased Glx levels 
in ASD.  
 
 

Decreased 
excitation. 
 
 

Horder et al. 
(2013) 

ASD (ND): 15 
(29) 
ASD (BP): 13 
(27) 
NT: 14 (34) 
 

Glx levels measured in 
frontal cortex.   

No group difference.   No difference.   

Horder et al. 
(2013) 

ASD (ND): 15 
(29) 
ASD (BP): 13 
(27) 
NT: 14 (34) 
 

Glx levels measured in 
parietal cortex.   

No group difference.   No difference.  

Joshi et al. 
(2012) 

ASD: 7 (14) 
ASD: 7 (NR) 

Glutamate levels in anterior 
cingulate cortex. 
 

Increased glutamate 
levels in ASD.   
 

Increased 
excitation.  

Joshi et al. 
(2012) 

ASD: 7 (14) 
ASD: 7 (NR) 

Glutamate levels in the 
hippocampus. 
 

No group differences.  No difference.  

Page et al. 
(2006) 

ASD: 20 
(35.6)  
NT: 13 (34.3) 
 

Glx levels measured in 
right hippocampus. 

Increased Glx in 
ASD.   

Increased 
excitation. 

Page et al. 
(2006) 

ASD: 17 
(35.6) 
 NT: 19 (34.3) 
 

Glx levels measured in  
right parietal cortex. 

No group differences.   No difference.   

Robertson et 
al. (2015) 
 

ASD: 20 
(29.61) 
NT: 21 (29.1) 
 

GABA and Glx levels in 
occipital cortex. 
 

No group differences. No difference.  

Rojas et al. 
(2014) 

ASD: 17 
(14.01) 
NT: 17 (12.44) 
 

GABA levels in left 
auditory cortex. 
 

Decreased GABA 
levels in ASD. 

Decreased 
inhibition.  

van Elst et 
al. (2014) 

ASD: 29 
(35.31)  
NT: 29 (35.79) 

Glutamate and Glx levels 
measured in anterior 
cingulate cortex.   

Glutamate and Glx 
levels decreased in 
ASD.  
 

Decreased 
excitation. 

van Elst et 
al. (2014) 

ASD: 29 
(35.31)  
NT: 29 (35.79) 

Glutamate and Glx levels 
measured in left 
cerebellum.  
 

No group difference.   No difference.   

NT neurotypical; ND narrowly defined phenotype; BP broader phenotype.  
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2.5 High frequency neural oscillations (gamma-band activity) 

Gamma-band activity (30+Hz) is thought to be generated by the activity of inhibitory GABA-ergic 

interneurons in neuronal networks involving excitatory pyramidal cells and inhibitory interneurons (Bartos, 

Vida, & Jonas, 2007; Cardin et al., 2009; Traub et al., 1998; Whittington, Traub, Kopell, Ermentrout, & 

Buhl, 2000; Whittington & Traub, 2003). A number of authors have therefore suggested that gamma activity 

recorded through either EEG or MEG provides insight into the dynamics of E/I balance at a network level 

(e.g. Snijders et al., 2013). The vast majority of studies investigating gamma activity in ASD have measured 

gamma power, i.e. changes in the magnitude of gamma amplitude associated with the presentation of a 

stimulus (e.g. evoked or induced gamma power), or spontaneous gamma power recorded while participants 

are awake but at-rest. All of the studies described in this section are summarized in table 5.  

This work has shown that spontaneous gamma power is increased in ASD (Cornew et al., 2012; Edgar et al., 

2015; Machado et al., 2013; Orekhova et al., 2008, 2007; van Diessen et al., 2015, although see Maxwell et 

al., 2013). However, what this suggests about E/I balance in less clear. Cardin et al. (2009) optogenetically 

activated fast spiking inhibitory interneurons and found that this selectively increased the power of 

spontaneous gamma band oscillations in rodent whisker barrel somatosensory cortex. Similarly, 

pharmaceutical manipulation to enhance GABA transmission in human participants with schizophrenia has 

been shown to lead to increased gamma band power (Lewis et al., 2008). Therefore spontaneous gamma 

power in ASD may reflect increased GABA levels.  However, other evidence suggests that this may not be 

the case, as Yizhar and colleagues showed that optogenetically increasing excitation in the prefrontal cortex 

of mice resulted also in an increase in the spontaneous gamma power of the local field potential (Yizhar et 

al., 2011). Thus the relationship between E/I balance and spontaneous gamma power does not appear to be 

straightforward..  

When considering papers that report task- or stimulus-related changes to gamma power in ASD, results are 

much less consistent. Changes in M/EEG spectral power elicited by stimuli can be divided into two main 

categories: evoked and induced (Galambos, Basar, & Bullock, 1992). Evoked activity is both phase-locked 

and time-locked to the onset of a stimulus; induced activity often occurs later than evoked activity, and 
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whilst it is time-locked it is not phase-locked to the stimulus. While several studies have found evoked 

gamma band power to be reduced in ASD (Edgar et al., 2015; Baruth et al., 2010; Rojas, Maharajh, Teale, & 

Rogers, 2008; Snijders et al., 2013; Stroganova et al., 2012; Sun et al., 2012; Wilson, Rojas, Reite, & Teale, 

2007), other studies have found no group differences in evoked gamma power between individuals with and 

without ASD (Gandal et al., 2010; Milne, Scope, Pascalis, Buckley, & Makeig, 2009; Wright et al., 2012). 

Broadly speaking, when measured over the appropriate sensory cortices following the presentation of a 

visual or auditory stimulus, evoked gamma power tends to be reduced in participants with ASD compared to 

controls, although not all studies concur with this description (see David et al. (in press) for a review).  With 

regard to induced gamma band power, both increases (Brown et al., 2005; Sokhadze study et al., 2009; 

Rojas et al., 2008), and decreases (Gross et al., 2012; Sun et al., 2012; Wright et al., 2012) have been found 

in individuals with ASD.  

What do changes in evoked and / or induced gamma band power suggest about E/I balance in ASD? There 

is little existing data that allows us to confidently link evoked gamma power to E/I balance, although one 

study suggests that evoked gamma power may be associated with glutamate levels, as Lally et al. (2014) 

have reported a positive correlation between dynamic glutamate levels (measured using MRS) and evoked 

gamma band power (measured using EEG recorded from parietal and occipital electrodes; Lally et al., 

2014). Therefore, evidence for reduced evoked gamma power may tentatively suggest decreased glutamate 

levels in ASD.  

There are more studies that have investigated associations between E/I balance and induced gamma power, 

but findings are inconsistent. In line with the role of inhibitory interneurons in generating gamma band 

activity, a positive correlation between GABA levels in superior temporal sulcus (measured using MRS) and 

the power of induced gamma band oscillations has been reported (Balz et al., 2016), suggesting that 

increased induced gamma band power is associated with higher GABA levels. This position is also 

supported by pharmalogical manipulations of GABA, as administration of propofol (a GABA agonist) leads 

to an increase in induced gamma band power (Saxena, Muthukumaraswamy, & Diukova, 2013). However, 

other studies have not found any association between GABA levels (in occipital cortex) and induced gamma 

band power (Cousijn et al., 2014; Edden, Muthukumaraswamy, Freeman, & Singh, 2009; 
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Muthukumaraswamy, Edden, Jones, Swettenham, & Singh, 2009). Therefore currently, it seems that little 

can be learnt about E/I balance by measuring gamma power in ASD.  

An additional metric of gamma band activity is peak induced gamma frequency. Peak gamma frequency has 

been more precisely linked to E/I balance than gamma power via computational modelling work (Brunel et 

al., 2014). For instance, higher levels of inhibition have been shown to lead to a higher peak gamma 

frequency (Brunel et al., 2014). Peak gamma frequency has been shown to be stable over time, and also to 

be highly heritable (van Pelt, Boomsma, & Fries, 2012), therefore peak gamma frequency may represent a 

more useful way to investigate E/I balance in human participants. Some studies have shown that visually-

induced peak gamma frequency is correlated with resting GABA levels in occipital cortex (Edden et al., 

2009; Gaetz, Edgar, Wang, & Roberts, 2011; Muthukumaraswamy et al., 2009) although others have failed 

to replicate this relationship (Cousijn et al., 2014; Saxena et al., 2013). The technical difficulty in measuring 

GABA concentration in vivo with MRS and the different scan parameters used in these studies may 

contribute to the lack of convergence in results, Nevertheless, peak gamma frequency elicited by visual 

stimuli has been found to be higher in ASD (Dickinson et al., 2016), and correlated with autistic traits in the 

neurotypical population (Dickinson, Bruyns-Haylett, Jones, & Milne, 2015). In light of previous literature 

(Edden et al., 2009; Muthukumaraswamy et al., 2009) this suggests that inhibition is increased in 

participants with ASD. As described below, orientation discrimination thresholds were also found to be 

decreased in the same cohort of participants with ASD, which concurs with the suggestion that inhibition is 

increased in these participants.  

Taken together therefore, results arising from studying gamma band activity in ASD are inconclusive with 

regard to E/I balance. One difficulty is that it is not clear exactly how increases or decreases in gamma 

power should be interpreted with regards to E/I balance, nor is it clear to what extent gamma power is 

altered in ASD. Gamma frequency, as opposed to gamma power, represents a potentially more fruitful 

avenue to investigate E/I balance, although to date only one study has measured differences in peak gamma 

frequency between those with and without ASD.  
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Table 5. Studies of high frequency neural oscillations in ASD.  

Study (Year) Participants  
Group: N 
(mean age 
in years) 
 

Measure Finding Interpretation 
regarding E/I 
balance in 
ASD.a 

Baruth et al 
(2010) 

ASD: 25 
(13.8) 
NT: 20 
(15.3) 
 

Evoked gamma activity 
elicited by Kanisza figures 
measured over frontal and 
parietal areas (EEG).  

Decreased power in ASD 
(30-45Hz).  

Decreased 
inhibition.  

Brown et al. 
(2005) 

ASD: 6 
(14.7) 
LD: 8 (14)  

Induced gamma activity 
elicited by Kanisza figures 
measured over parietal 
areas (EEG).  
 

Increased induced gamma  
power (29.3 – 41.5Hz) in 
ASD. 

Increased 
inhibition.  

Buard et al. 
(2013) 
 

ASD: 12 
(28.3) 
NT: 35 
(34.2) 

Evoked gamma power 
elicited by picture naming 
measured in superior 
temporal gyrus and 
inferior frontal gyrus 
(MEG).  
 

Decreased power in ASD 
(35-120Hz). 

Decreased 
inhibition.  

Cornew et 
al. (2012)  

ASD: 27 
(9.8) 
NT: 21 
(10.8)  

Spontaneous gamma 
activity measured over 
parietal, temporal and 
occipital areas (EEG).  
 

Increased absolute gamma 
power (30-120Hz) in 
ASD.  

Increased 
inhibition.  

Dickinson et 
al. (2016) 

ASD: 28 
(30.11) 
NT: 39 
(28.77) 
 

Induced gamma activity 
elicited by square wave 
grating measured over 
occipital areas (EEG).  

Increased induced peak 
gamma frequency (30-
90Hz) in ASD.  

Increased 
inhibition. 

Edgar et al. 
(2015) 

ASD: 105 
(10.07)  
NT: 36 
(10.9) 

Spontaneous gamma 
activity measured over 
superior temporal gyrus 
(MEG).   
 

Increased absolute gamma 
power in ASD (20-80Hz) 

Increased 
inhibition.  

Edgar et al. 
(2015) 

ASD: 105 
(10.07)  
NT: 36 
(10.9) 

Evoked gamma activity 
elicited by pure tones 
measured over superior 
temporal gyrus (MEG).   
 

Decreased evoked gamma 
power in ASD (40Hz) 

Decreased 
inhibition.  

Gandal et al. 
(2010) 

ASD: 25 
(10.2) 
NT: 17 
(10.8) 
 

Evoked and induced 
gamma activity elicited by 
pure tones measured over 
superior temporal gyrus 
(MEG). 
 

No group differences (30-
50Hz). 

 
 

 

No difference.  
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Gross et al. 
(2012)  
 

ASD: 10 
(14.1) 
NT:11 
(14.8) 
 

Induced activity elicited by 
faces measured over 
parietal areas (EEG).  

Decreased induced 
gamma power in ASD 
(35-45Hz).  

Decreased 
inhibition.  

Machado et 
al. (2013) 

ASD: 11 
(5.9) 
NT: 14 (5.6)  

Spontaneous gamma 
activity measured over 
midline, frontal, temporal, 
parietal and occipital areas 
(EEG).  
 

Increased absolute & 
relative gamma band 
power (22-55Hz) in ASD.  

Increased 
inhibition.  

Maxwell et 
al. (2013) 

ASD: 15 
(15.1)  
NT: 18 
(14.2) 
 

Spontaneous gamma 
activity measured over 
lateral, central, frontal and 
parieto-occipital areas 
(EEG).  

Decreased absolute 
gamma power (30-50Hz) 
in right lateral electrodes 
in ASD.  
 
 

Decreased 
inhibition.  

Milne et al. 
(2009) 

ASD: 20 
(12.2) 
NT: 20 
(13.4) 
 

Evoked gamma activity 
elicited by Gabor patches 
measured over occipital 
areas (EEG).  

No group difference in 
evoked gamma power 
(30-40Hz). 

No difference.  

Orekhova et 
al. (2008) 

ASD: 21 
(5.9)  
NT: 21 (5.9) 

Spontaneous gamma 
activity measured over 
frontal, parietal and central 
areas (EEG).  
 

Increased absolute gamma 
power (24.4-44Hz) in 
ASD. 
 

Increased 
inhibition.  

Rojas et al. 
(2008) 

ASD: 11 
(31.5) 
NT: 16 
(43.1) 
Parents of 
children 
with ASD: 
16 (42.6) 
 

Induced gamma activity 
elicited by pure tones 
measured over auditory 
cortex (MEG).  

Increased induced power 
(40Hz) in ASD and parent 
group.  
 
 

Increased 
inhibition.  

Rojas et al. 
(2008) 

ASD: 11 
(31.5) 
NT: 16 
(43.1) 
Parents of 
children 
with ASD: 
16 (42.6) 
 

Evoked gamma activity 
elicited by pure tones 
measured over auditory 
cortex (MEG).  

Decreased evoked gamma 
power (40Hz) in ASD. 
 
 

Decreased 
inhibition.  

Snijders et 
al. (2013) 

ASD: 12 
(22) 
NT: 12 (22) 
 

Evoked gamma activity 
elicited by Gabor patches 
measured over occipito-
parietal areas (EEG).  
 

Decreased evoked power 
in ASD (60Hz steady state 
response). 

Decreased 
inhibition.  

Sokhadze et 
al. (2009) 

ASD: 13 
(17.2) 
NT: 13 
(18.6) 

Induced gamma activity 
elicited by Kanisza figures 
measured over frontal 
areas (EEG). 

Increased induced power 
(30-80Hz) in ASD. 

Increased 
inhibition.  
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Stroganova 
et al. (2012) 

ASD: 23 (5) 
NT: 23 
(5.11) 
 

Evoked gamma activity 
elicited by Kanisza square 
measured over occipital 
areas (EEG).  
 

Decreased gamma power 
(25-48Hz) in ASD.  
 

Decreased 
inhibition.  

Sun et al. 
(2012) 

ASD: 13 
(30.3) 
NT: 16 
(29.7) 

Evoked activity elicited by 
Mooney faces measured 
over occipito-parietal areas 
(MEG). 
 

Decreased evoked gamma 
band power in ASD (in 
response to upright rather 
than inverted faces). (25-
120Hz) 

 
 

Decreased 
inhibition. 

Sun et al. 
(2012) 

ASD: 13 
(30.3) 
NT: 16 
(29.7) 

Induced activity elicited by 
Mooney faces measured 
over occipito-parietal areas 
(MEG). 
 

Decreased in ASD (60-
120Hz).  

Decreased 
inhibition. 

Sun et al. 
(2012) 

ASD: 13 
(30.3) 
NT: 16 
(29.7) 

Evoked activity elicited by 
Mooney faces measured 
over fronto-central areas 
(MEG).  
 

Increased (25-60Hz) in 
ASD. 

Increased 
inhibition. 

Sun et al. 
(2012) 

ASD: 13 
(30.3) 
NT: 16 
(29.7) 

Evoked activity elicited by 
Mooney faces measured 
over fronto-central areas 
(MEG).  
 

Decreased (60-120Hz) in 
ASD. 

Decreased 
inhibition. 

van Diessen 
et al. (2015)  

ASD: 19 
(10.6) 
NT: 19 
(10.1) 
 

Spontaneous gamma 
activity measured over 
frontal, parietal and 
temporal areas (EEG).  

Increased relative gamma 
power (30-45Hz) in ASD.  

Increased 
inhibition.  

Wilson et al. 
(2007) 

ASD: 10 
(12.4) 
NT: 10 (12) 

Evoked gamma activity 
elicited by auditory clicks 
measured over left 
auditory cortex (MEG). 
   

Decreased evoked gamma 
power (40Hz) in ASD. 

Decreased 
inhibition.  

Wright et al. 
(2012) 

ASD: 13 
(15.1) 
NT: 13 
(15.7)  

Induced gamma activity 
elicited by faces measured 
over occipital areas 
(MEG).   
 

Decreased induced 
gamma activity in ASD 
(30-80Hz). 
 

Decreased 
inhibition.  

Wright et al. 
(2012) 

ASD: 13 
(15.1) 
NT: 13 
(15.7)  

Evoked gamma activity 
elicited by faces measured 
over occipital areas 
(MEG).   
 

No group differences in 
evoked activity (30-
80Hz). 
 

No difference.  

 
NT neurotypical; LD learning difficulties. 
a Results are interpreted in line with increased gamma activity indicating increased inhibition (e.g. Cardin et 
al., 2009). However, see the text for a more in depth discussion regarding how E/I balance is reflected by 
gamma activity.   
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2.6 Perception  

Within the visual psychophysics literature, a substantial body of work suggests a link between perception 

and excitatory and / or inhibitory neurotransmission. Given this association, some authors have suggested 

that measuring aspects of perception in ASD may provide a marker for measuring E/I balance in the autistic 

brain (Freyberg, Robertson, & Baron-Cohen, 2015). As described below (see table 6 for a summary), 

phenomena that are most directly linked to E/I balance include binocular rivalry, spatial suppression / gain 

control, and orientation discrimination. However, as with the EEG / MEG data described above, these data 

provide only indirect evidence for E/I imbalance in ASD, and, collectively, do not converge on a clear 

direction for any such imbalance.  

2.6.1 Binocular Rivalry 

Binocular rivalry is a perceptual phenomenon which occurs when a different image is presented to each eye 

simultaneously. Rather than perceive a stable superimposition of the two images, the participant randomly 

perceives each image separately for a few moments although combinations of the two images may be 

perceived during transitions between the two percepts (Wheatstone, 1850). Computational models have 

shown that changes to E/I balance could lead to alterations in rivalry dynamics including: the rate of 

switches between two percepts; how long an individual percept is experienced; how long a mixed percept is 

experienced; and / or the length of the transition period between the two images (travelling wave speed; 

Laing and Chow, 2002; Said and Heeger, 2013; Seely and Chow, 2011; Wilson et al., 2001). For example, 

modelling work has shown that a higher level of excitation would lead to faster rivalry dynamics, due to 

faster travelling waves (Wilson et al., 2001). This is supported by the finding that administration of 

lorazepam (a GABA agonist) decreases the rate of perceptual switches suggesting that higher levels of 

inhibition lead to slower rivalry dynamics (van Loon, Knapen, Scholte, & John-Saaltink, 2013).   

To our knowledge, four studies have measured binocular rivalry in individuals with ASD. Three of these 

studies have found significant differences in binocular rivalry in ASD compared to neurotypical individuals 

(Freyberg et al., 2015; Robertson, Kravitz, Freyberg, Baron-Cohen, & Baker, 2013; Robertson et al., 2015), 

and one study found no differences (Said, Egan, Minshew, Behrmann, & Heeger, 2013). Where differences 
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between individuals with and without ASD have been found, data concur to suggest ‘slower’ binocular 

rivalry in ASD, which is characterised by a reduced switching rate due to a longer time perceiving mixed 

percepts (Freyberg et al., 2015; Robertson et al., 2013, 2015). Robertson and colleagues (2015) report that 

there is a decreased rate of perceptual suppression in ASD, which manifests as a larger amount of time 

perceiving a mixed percept, and less time perceiving an individual percept. When considered alongside their 

finding that occipital GABA level is correlated with perceptual suppression in neurotypical participants, this 

would indicate that decreased levels of occipital GABA may be present in ASD. However, individual 

differences in occipital GABA levels did not correlate with perceptual suppression in participants with ASD. 

Furthermore, there were no differences in occipital GABA levels between the participants with and without 

ASD, despite finding differences in binocular rivalry (Robertson et al. 2015). Robertson and colleagues 

conclude from these data that an aspect of GABA functioning, which is not captured by MRS, is atypical in 

ASD, and that this leads to the observed differences in binocular rivalry. However, it is unclear from these 

data what such an unobserved difference may be.  Taken together, slower perceptual rivalry in ASD may 

suggest atypical E/I balance in ASD, but it is not entirely clear whether this finding reflects increased or 

decreased excitation relative to inhibition. 

2.6.2 Spatial suppression and gain control 

Spatial suppression refers to the fact that an increase in stimulus size can lead to a decrease in how easily 

stimuli are perceived (Tadin et al., 2003). The phenomenon relies on centre surround suppression, meaning 

that decreased inhibition would lead to weaker spatial suppression, and a reduced effect of increasing 

stimulus size on perception (Golomb et al., 2009). Foss-Feig et al. (2013) investigated spatial suppression in 

individuals with and without ASD using a motion discrimination paradigm in which participants were asked 

to indicate the direction of drifting gratings that varied in size and contrast. It was predicted that if inhibitory 

mechanisms are altered in ASD, differences in spatial suppression would be seen between the participants 

with and without ASD. However, spatial suppression was found to be unaltered in ASD. There was however 

an interesting effect of stimulus contrast in this study, as although participants with ASD showed similar 

results to controls for low contrast stimuli, they performed systematically better than controls when stimuli 

were presented at high contrast (regardless of size). It was suggested that this pattern of performance 
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indicates abnormal gain control in ASD. Like spatial suppression, gain control is thought to reflect an 

inhibitory mechanism: specifically, the saturation of neural responses at high contrast (Albrecht & Hamilton, 

1982). This has been found to be weakened when gabazine (a GABAA antagonist) is topically applied to the 

visual cortex of cats (Katzner, Busse, & Carandini, 2011). Therefore, although spatial suppression was 

unaltered in ASD, the weakening of response gain in ASD may therefore indicate decreased GABA levels, 

and therefore reduced inhibition in ASD.  

2.6.3 Perceptual Discrimination 

In contrast to the conclusion made by Foss-Feig et al. (2013), evidence from perceptual discrimination may 

suggest increased inhibition in ASD. For example, as described below, superior orientation discrimination 

and superior pitch discrimination have been reported in ASD, both of which are associated with increased 

inhibitory neurotransmission.  

We have recently found that orientation discrimination thresholds are decreased  in adults with ASD 

(Dickinson et al., 2016, although see Schwarzkopf, Anderson, de Haas, White, & Rees, 2014; Shafai, 

Armstrong, Iarocci, & Oruc, 2015), and also that orientation discrimination thresholds correlate with autistic 

traits in the neurotypical population (Dickinson, Jones, & Milne, 2014). Inhibitory mechanisms are 

implicated in orientation discrimination as they are known to be involved in tuning the orientation selectivity 

of cells, as orientation selective neurons become narrowly tuned to a particular orientation through lateral 

inhibition (Hubel & Wiesel, 1968), and GABAergic inhibition has been shown to directly influence 

orientation discrimination ability. For example, topical application of the inhibitory neurotransmitter 

gamma-aminobutyric acid (GABA) to neurons in the primary visual cortex of anaesthetised cats leads to 

orientation selective cells becoming more narrowly tuned, and increases their orientation selectivity (Li et 

al., 2008). Conversely, the application of GABA antagonists reduces the orientation selectivity of cells in 

primary visual cortex (Katzner et al., 2011; Sillito, 1975). Resting levels of  GABA in the occipital cortex  

are also inversely correlated with orientation discrimination thresholds in neurotypical human observers 

(Edden, Muthukumaraswamy, Freeman, & Singh, 2009) suggesting that GABA mediated inhibition plays a 

major role in establishing the sharp orientation tuning of neurons, and leads to enhanced orientation 
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discrimination. Therefore our finding of enhanced orientation discrimination in ASD is consistent with 

inhibition being increased rather than decreased in ASD.  

Other aspects of perceptual discrimination, such as hue discrimination, are impaired, rather than enhanced in 

ASD (Franklin et al., 2010; Franklin, Sowden, Burley, Notman, & Alder, 2008; Heaton, Ludlow, & 

Roberson, 2008). Although, again, this is in-line with the suggestion of increased inhibition given that 

medication which increases GABA levels, such as vigabatrin, has been shown to lead to colour perception 

impairments in healthy individuals (Mecarelli, Rinalduzzi, & Accornero, 2001). In the auditory domain, 

pitch discrimination is enhanced in ASD (Bonnel et al., 2003, 2010; Heaton, Hudry, Ludlow, & Hill, 2008; 

Jones et al., 2009; Meilleur, Berthiaume, Bertone, & Mottron, 2014; O’Riordan & Passetti, 2006; Stanutz, 

Wapnick, & Burack, 2014). Similar to orientation discrimination, pitch discrimination is mediated by lateral 

inhibition (Houtgast, 1972), as auditory cortex cells also become more narrowly tuned to particular 

frequencies through inhibition (Wang, Caspary, & Salvi, 2000; Wang, Ding, & Salvi, 2002), suggesting 

increased inhibition in ASD However, some studies find that enhanced pitch discrimination occurs only in a 

subgroup of individuals with ASD (Bonnel et al., 2010; Jones et al., 2009). Taken together with studies that 

find orientation discrimination to be unaltered in ASD (Schwarzkopf, Anderson, de Haas, White, & Rees, 

2014; Shafai, Armstrong, Iarocci, & Oruc, 2015) this may suggest that superior perceptual discrimination, 

and increased inhibition, occurs only in a sub-group of individuals with ASD.  
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Table 6. Studies employing perceptual measures which can be used to infer E/I balance in ASD.  

Study (Year) Participants  
Group: N 
(mean age in 
years) 
 

Measure Finding Interpretation regarding E/I 
balance in ASD. 

Bonnel et al. 
(2003) 

ASD: 12 (17.91) 
NT: 12 (16.58) 

Pitch 
discrimination. 

Superior pure tone pitch 
discrimination in ASD.  

Increased inhibition. 
 

Bonnel et al. 
(2010) 

ASD:15 (24.16) 
Asperger’s 
syndrome:14 
(22.71) 
NT:15 (21.40) 
 

Pitch 
discrimination.  

Superior pure tone pitch 
discrimination in ASD. 
No difference in 
Asperger’s syndrome.   

Increased inhibition. 

Dickinson et 
al. (2016) 

ASD: 28 (30.11) 
NT: 39 (28.77) 

Orientation 
discrimination.  
 

Enhanced orientation 
discrimination in ASD. 

Increased inhibition. 

Foss-Feig et 
al. (2013) 

Low contrast 
stimuli  
ASD: 10 (11.4) 
NT: 13 (10.7)  
 
High contrast 
stimuli 
ASD: 15 (12.7)  
NT: 17 (12.4) 
 

Spatial 
suppression 
(motion 
discrimination 
paradigm with 
high and low 
contrast 
stimuli).   

No group differences in 
spatial suppression. 
However, weaker 
response gain control.  

Decreased inhibition.  

Franklin et 
al. (2008) 

ASD: 19 (10.9) 
NT: 14 (9.8) 

Colour 
discrimination.  
 

Impaired colour 
discrimination in ASD. 

Increased inhibition. 

Franklin et 
al. (2010) 

 ASD: 14 
(13.71)  
NT: 14 (13.93)  
 
 

Colour 
discrimination. 

Impaired colour 
discrimination in ASD. 

Increased inhibition. 

Franklin et 
al. (2010) 

ASD: 34 (12.74) 
NT: 33 (12.48) 

Colour 
discrimination. 
 

Impaired colour 
discrimination in ASD. 

Increased inhibition. 

Freyberg et 
al. (2015) 

ASD: 26 (32)  
NT: 27 (28.7) 

Binocular 
rivalry. 
 

Reduced switch rate due 
to longer mixed percepts.   

Increased excitation. 

Heaton et al. 
(2008) 

ASD: 14 (10.5) 
NT & LD: 14 
(10.5)  
 

Pitch 
discrimination. 
 

Superior pitch 
discrimination in ASD. 
 

Increased inhibition. 

Heaton et al. 
(2008) 

ASD:13 (11.4) 
LD: 13 (11.5)  
NT: 13 (11) 
 

Colour 
discrimination.  

Impaired colour 
discrimination in ASD. 

Increased inhibition. 

Jones et al. 
(2009) 

ASD: 72 (15.5)  
NT: 48 (15.5) 

Auditory 
discrimination. 

No group differences. 
20% of individuals with 

No difference.  
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ASD showed superior 
auditory discrimination 
(frequency). 
 

  

Meilleur et 
al. (2014) 

ASD: 34 (NR) 
NT: 33 (NR) 
 

Pitch 
discrimination. 

Superior pure tone pitch 
discrimination in ASD 

Increased inhibition. 

O’Riordan 
& Passetti 
(2006) 
 

ASD: 12 (8.58) 
NT: 12 (8.58) 

Pitch 
discrimination.  

Superior pitch 
discrimination in ASD. 

Increased inhibition. 

Robertson et 
al. (2015) 

ASD: 20 (29.61) 
NT: 21 (29.1) 
 

Binocular 
rivalry. 

Decreased switch rate due 
to longer mixed percepts.   

Increased excitation. 

Robertson et 
al. (2013) 

ASD: 20 (33.3) 
NT: 19 (28.79) 
 

Binocular 
rivalry. 

Decreased switch rate due 
to longer mixed percepts.   

Increased excitation. 

Said et al. 
(2013) 

ASD: 19 (24) 
NT: 20 (25) 
 

Binocular 
rivalry. 

No group differences.  No difference.  

Schwarzkopf 
et al. (2014) 

ASD: 15 (37.5) 
NT: 12 (35.1) 
 

Orientation 
discrimination.  

No group differences.  No difference.  

Shafai et al. 
(2015) 

ASD: 29 (23.2) 
NT: 29 (26.3) 
 

Orientation 
discrimination.  

No group differences.  No difference.  

Stanutz et al. 
(2014) 

ASD: 25 (10.6) 
NT: 25 (10.41) 

Pitch 
discrimination.  

Superior pitch 
discrimination in ASD. 

Increased inhibition. 

NT neurotypical. 
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Figure 1. The number of findings from studies in each section of this review which support either a net 

increase in inhibition, a net increase in excitation, or no difference in E/I balance.  

 

 

 

 

 

 

3. Conclusion  

Alteration of E/I balance has been suggested as a possible neural mechanism underlying the symptoms of 

ASD. As this review demonstrates, there is much evidence to suggest that excitatory and inhibitory 

neurotransmission is altered in ASD. However, results do not concur with respect to the direction of E/I 

imbalance in ASD. This is illustrated in figure 1, which demonstrates the number of findings from studies in 
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each section of this article which concur with either a net increase in inhibition (either through increased 

inhibition or decreased excitation), a net increase in excitation (either through increased excitation or 

dressed inhibition), or no difference in E/I balance.  A recurring theme in the literature is that despite no 

unequivocal demonstration that either inhibition or excitation is increased in ASD, there appears to be an a 

priori assumption in many papers that there is clear existing evidence for increased excitation in ASD. 

Consequently many new research findings are interpreted in this context, without due consideration of the 

assumptions underlying linking certain techniques to measuring E/I balance.   

Three further important points arise from this review. Firstly, each of the methods used to measure or infer 

E/I balance in ASD has a number of limitations and can provide only one small piece of evidence in a very 

large puzzle. Secondly, it is possible that E/I balance is altered in different ways in different areas of the 

brain in ASD, and thirdly, it is possible that there are different sub-types of ASD that have different neural 

profiles with respect to E/I balance.  

Given the inherent difficulty in measuring E/I balance in vivo, a valuable way forward would be to utilise 

multiple methodologies within the same study. For instance, obtaining multiple data points from individual 

participants may strengthen conclusions by finding converging results. To date two studies, described above, 

have taken this approach. Robertson et al (2016) measured binocular rivalry and also occipital GABA levels 

in ASD. In this study, slower binocular rivalry indicated disruption to E/I balance in ASD, although no 

group differences were found in occipital GABA levels. Dickinson et al. (2016) found a significant 

difference between orientation discrimination thresholds and peak gamma frequency in ASD, concluding 

that both variables pointed towards increased inhibition in ASD. Future studies could be much more 

ambitious in this regard, and it is hoped that future researchers will be able to obtain data from multiple 

methodologies from the same individual in order to more clearly identify the way in which E/I balance is 

altered in ASD (if at all). For example, a multi-technique study which examines sensory discrimination 

thresholds within different modalities (such as pitch discrimination and orientation discrimination) as well as 

measuring neurotransmitter levels in different sensory cortices would be an effective way to address whether 

E/I balance is altered in a consistent way across different areas of the cortex. 
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To conclude, we have provided an overview of data emerging from a range of techniques that purport to 

measure E/I balance in ASD. While there is clear evidence that disruption to E/I balance is implicated in 

ASD, the direction of any such imbalance is less clear.  Crucially, this may be important in understanding 

the variability seen in response to clinical trials of drugs that attempt to modulate E/I balance in ASD 

(Erickson et al., 2014).  The data reviewed here highlight the importance of ambitious future research, which 

will obtain data from a range of different methodologies from large samples of participants. As far as we can 

see, this will be the most effective way to reveal the true landscape of E/I imbalance in ASD.   
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