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Generation of strongly-coupled plasma using Argon-based
capillary discharge lasers

Andrew K. Rossall ™, Valentin Aslanyan?, Sarah Wilson®, Greg J. Tallents ™
*York Plasma Institute, University of York, Heslington, York, YO10 5DD, United Kingdom

ABSTRACT

Argon based capillary discharge lasers operate in the extreme ultra violet (EUV) at 46.9 nm with an output of
up to 0.5 mJ energy per pulse and up to a 10 Hz repetition rate. Focussed irradiances of up to 102 W cm ™2 are
achievable and can be used to generate plasma in the warm dense matter regime by irradiating solid material.
To model the interaction between such an EUV laser and solid material, the 2D radiative-hydrodynamic code
POLLUX has been modified to include absorption via direct photo-ionisation, a super-configuration model to
describe the ionisation dependant electronic configurations and a calculation of plasma refractive indices for
ray tracing of the incident EUV laser radiation. A simulation study is presented, demonstrating how capillary
discharge lasers of 1.2ns pulse duration can be used to generate strongly coupled plasma at close to solid density
with temperatures of a few eV and energy densities up to 1x10° J cm™3. Plasmas produced by EUV laser
irradiation are shown to be useful for examining the equation-of-state properties of warm dense matter. One
difficulty with this technique is the reduction of the strong temperature and density gradients which are produced
during the interaction. Methods to inhibit and control these gradients will be examined.

Keywords: High energy density physics, EUV lasers, x-ray lasers, warm dense matter, strongly-coupled plasma,
laser ablation

1. INTRODUCTION

Strongly coupled plasmas exist widely in the known universe. Such examples include Jovian planets, stellar
interiors, laser heating of solids and capillary discharges to name a few. A strongly coupled plasma is such that
the potential energy caused by the Coulombic interaction between the particles exceeds the kinetic energy of the
particles. As a result, inter-particle interactions strongly affect the behaviour of individual particles, resulting in
a regime which can no longer be treated as a screened Coulomb system such as a lower density or ’ideal’ plasma.
The strength of the coupling in a plasma is defined using the ion-ion Coulomb coupling parameter (I';;) defined
as
2,2
R (1)
wegakT;

where Z is the ion charge, T; is the ion temperature and a is the Wigner-Seitz radius which defines the inter-
particle spacing. A plasma with a coupling parameter of I';; > 1 is strongly coupled, I';; &~ 1 is typically in the
warm dense matter regime and I';; < 1 is weakly coupled, i.e. behaves as a classical plasma.

Generation of strongly coupled plasma in the laboratory using laser irradiation as a heating source has
typically involved irradiating buried layer targets! to inhibit expansion of the target material. With advances
in capillary discharge laser technology?® and an associated increase in fluence available, argon based capillary
discharge lasers operating at 46.9nm can be used to directly generate strongly coupled plasma on a picosecond
time-scale with simple single-layer planar targets. In reducing the photon wavelength to the extreme ultra-violet
(EUV), the dominant heating mechanism changes from inverse bremsstrahlung to direct photo-ionisation and
the critical electron density at this wavelength is typically higher than solid. The sub-critical electron density
combined with a short penetration depth (<100nm in parylene-N at 26.4eV) and a smaller focal spot size due
to the reduction in the diffraction limit improves the localisation of energy deposition within the target. A

*Further author information:
E-mail: andrew.rossall@york.ac.uk, Telephone: +44 (0)1904 324909
E-mail: greg.tallents@york.ac.uk, Telephone: +44 (0)1904 322286



small volume is heated (approximately 5 x 10~%um? in parylene-N for a FWHM beam diameter of 500nm) until
photo-ionisation is no longer energetically possible at which point the volume becomes mostly transparent to the
incident EUV laser beam. It is worth noting that inverse bremsstrahlung can become non-negligible in regions
where the electron density is within an order of magnitude of the critical electron density.

The simulation study presented here utilises a combination of 2D hydrodynamic modelling with an atomic
physics algorithm to demonstrate how capillary discharge lasers of 1.2ns pulse duration with pulse energies up
to 0.8mJ can be used to generate strongly coupled plasma at close to solid density with temperatures of a few
eV and energy densities up to ~ 106 J em™3.

2. POLLUX
2.1 General Overview

The 2D Eulerian radiative-hydrodynamic code POLLUX,% 7 written at the University of York, was originally
developed to model moderate irradiance (>10'° W cm™2) optical and infra-red laser irradiation of a solid target
and the subsequently produced strongly ionised plasma. This code has been modified to include a rapid atomic
physics algorithm,®? to enable the calculation of ionisation and energy level populations and atomic scattering
factors in the EUV for partially ionised plasmas. The algorithm for the code is shown in figure 1. The code
solves the three first-order quasi-linear partial differential equations of hydrodynamic flow using the flux corrected
transport model of Boris and Book!'® with an upwind algorithm!! for the first term. Energy is absorbed by the
plasma electrons through inverse bremsstrahlung and direct photo-ionization and distributed through electron-
ion collisions. The electron-ion equilibration rate is determined by the Spitzer plasma collision rate'? and is
limited to the electron-phonon collision frequency in the low temperature regime (< 5eV). For calculation of the
equation-of-state (EOS) variables, POLLUX utilizes in-line hydrodynamic EOS subroutines from the Chart-D*'3
equation-of-state package developed st Sandia National Laboratories and includes two-phase transitions. As this
code uses an explicit solver, a Courant number of ~1 in both spatial directions increases numerical stability. We
have for the Courant number,

ug At uy At
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where u, and u, are magnitudes of the particle velocities in the respective directions, At is the time step and
Ax, Ay are the cell spatial dimensions. This is not the only constraint on the simulation parameters, however it
is the most restrictive.

2.2 Atomic Physics Algorithm

A superconfiguration approach!® allows for multiple electronic configurations that are close in energy to be
grouped together, significantly reducing the number of levels to be considered. The average energy (E)sgs of m
levels each with energy E,, is weighted by the degeneracy, ¢,,. Detailed atomic structure is calculated using
the flexible atomic code ( to solve the radial wave equation, this structure is then post-processed using the
relationship shown in equ‘@n 3 to form a reduced set of configurations.

_ 2w mEm
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Tonisation and level populations are calculated assuming local thermodynamic equilibrium, an assumption
which has been justified for hydrodynamic time scales (> 1 ps), as the equilibration of the plasma occurs o
timescale of 10s of femtoseconds.'® Photoionisation cross-sections are calculated assuming an E~3 dependen
the atomic scattering factor, fY(FE), is then calculated using an analytical solution to the Kramers-Kronig
relationship as reported previously.? The real component of the plasma refractive index can then be calculated.
In a dense plasma, the threshold ionization energy can be significantly lowered due to the presence of surrounding
free electrons and ions. The time averaged effects of the ionisation potential depression is accounted for in the
code using the Stewart-Pyatt model.!7-18

(E)ss (3)
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Figure 1. Complete POLLUX algorithm using the flux corrected transport (FCT) algorithm,'® the incomplete Cholesky-
conjungate gradient (ICCG) method'* and the REFRAC module, outlined in section

To enable ray tracing of the incident EUV laser pulse within the code, the Eulerian mesh is sub-divided into
triangular cells with the Eulerian mesh center points at the triangle corners allowing for the refractive index and
associated gradient within each cell to be calculated via direct differencing. The refractive index is continuous
across cell boundaries and assumes a linear electron density variation within each cell. The (z,y) trajectory of
each ray in the cell is then assumed to be parabolic dependent upon the refractive index ng and its derivative

n1, given by,
2 no
=4 =)z 4
v=1(m)e ()

3. RESULTS AND DISCUSSION

To determine the potential of capillary discharge lasers for the generation of strongly coupled plasma, the EUV
laser-solid interaction is simulated for irradiances of 1 x 101 W cm™2 and 1 x 10 W cm™2 incident on parylene-
N and aluminium planar targets. The simulation environment is cylindrically symmetric (Z,r) with the laser
propagating from positive to negative Z along r = 0, with the solid targe@the region Z < 0. The linear
density ramp for the target surface begins at Z = 0 and covers 2 cells in the irection.

Figures 2 and 3 show particle densities (n), electron temperatures (7.) and energy densities for parylene-N
and aluminium for irradiances of 10'° and 10’ W cm™2. For the lowest irradiance, electron temperatures of 8
to 10 eV are calculated for both parylene-n and aluminium with energy densities up to 9 x 10* J ecm~3. With
particle densities of ~ 1022 cm™3 in the hottest region, both parylene-N and aluminium are in a warm dense
matter regime. Increasing the irradiance of the EUV laser to 10* W em ™2 produces a plasma in the high energy
density regime (> 10° J cm~3). Energy densities up to 9 x 105 J ecm~? are calculated for the aluminium plasma,
with the high energy density region having a depth of ~ 500nm at the earliest simulation time of 100ps. These
narrow peaks in energy density are due to the short absorption length of 26.4 eV photons and emission from this
region will not be masked by a hotter, less dense plasma plume as is often observed with optical and infra-red
laser interactions.
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Figure 2. Particle density, electron temperature and energy density as a function of axial distance (distance along laser
axis) for parylene-N ((a) and (b))and aluminium ((c) and (d)). For (a) and (c) the simulation time is ¢ = 200ps and for
(b) and (d) the simulation times are ¢t = 100ps (solid line), ¢ = 200ps (dashed line), and ¢t = 300ps (dotted line). The on
target irradiance is 10'© W em 2.
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Figure 3. Particle density, electron temperature and energy density as a function of axial distance for parylene-N ((a) and
(b))and aluminium ((c) and (d)). For (a) and (c) the simulation time is ¢ = 200ps and for (b) and (d) the simulation
times are t = 100ps (solid line), ¢t = 200ps (dashed line), and ¢ = 300ps (dotted line). The on target irradiance is 10** W

cm™2.
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Figure 4. Two-dimensional energy density plots for parylene-N with on-target irradiance of (a) 10'°W ¢cm™2 and (b)10**W
em™?, and aluminium with on-target irradiance of (c) 10'°W ¢m™? and (d) 10'*W cm™2

Figure 4 shows 2 dimensional plots of energy density for both parylene-N and aluminium. Small volumes
of dense plasma are effectively heated where the volume of the high energy density region appears to decrease
with increasing laser irradiance. Coupling parameters of up to I';; & 45 can be observed in aluminium and up
to I';; ~ 18 in parylene-N as shown in figure 5. Due to emission having an n? dependence, emission from these
regions will dominate over the hotter less dense expanding plasma. The temperature and particle densities of
the high energy density regions remain approximately constant for ~ 300ps, therefore a sufficiently fast camera
or streak camera would be able to temporally resolve the emission from these regions.
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When studying equation-of-state (EOS) parameters, perfect volumetric heating of the target would be ideal
to ensure uniform heat flow within the target. Temperature and density gradients arising from non-uniformities
associated with heat flow make simulations and/or analysis of experiments investigating warm or hot dense
matter difficult. Using a capillary discharge laser to generate warm and hot dense plasma simplifies the problem
as a linear approximation for the temperature and density gradients would be suitable for EOS and opacity
modelling as done previously.!?

4. CONCLUSIONS

The 2-dimensional hydrodynamic code POLLUX has been modified to include atomic physics processes relevant
to the interaction of EUV photons with solid matter. Through this simulation study, it has been shown that
capillary discharge lasers operating at 26.4eV can be used to generate warm and hot dense matter with a coupling
parameter as high as I';; ~ 50 and energy density of 9 x 10° J cm ™3 in aluminium. This technique is shown to
be useful for examining the properties of strongly coupled plasma as emission from this region is not masked
by the hotter less dense expanding plasma as with optical and infra-red interactions. Linear approximations
for temperature and density gradients are shown to be suitable to simplify the simulation and/or analysis of
experiments investigating equation-of-state parameters or plasma opac@
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