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We prove that Thue-Morse constant τTM = 0.01101001 . . .2 is not a badly approximable number. Moreover, we prove

that τTM (a) = 0.01101001 . . .a is not badly approximable for every integer base a ≥ 2 such that a is not divisible by 15.

At the same time we provide a precise formula for convergents of the Laurent series f̃TM (z) = z−1
∏

∞

n=1
(1− z−2

n

),

thus developing further the research initiated by Alf van der Poorten and others.

1 Introduction

Let t = (t0, t1, . . . ) = (0, 1, 1, 0, 1, 0, 0, . . . ) be the Thue-Morse sequence, that is the sequence (tn)n∈N0
, where

N0 := N ∪ {0}, defined by recurrence relations t0 = 0 and for all n ∈ N0

t2n = tn,

t2n+1 = 1− tn.

Thue-Morse sequence appears naturally in the description of many recurrent processes [2]. It is often considered

as the simplest non-trivial example of so called automatic sequences [2], i.e., sequences generated by finite

automata (which are, in simple words, Turing Machines without memory tape).

Allouche and Shallit asked the following question (see [2], Open Problem 9, p. 403).
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Problem 1.1. Determine whether the partial quotients of the Thue-Morse constant τTM , defined by

τTM :=

∞∑

k=0

tk
2k+1

, (1)

are bounded from above by a universal constant.

Remark 1.2. The name of the constant τTM defined by (1) varies slightly from one reference to another. In

some sources it is called Prouhet-Thue-Morse constant, and in some others it is referred to as Thue-Morse-

Mahler constant [4]. In this article we choose the name Thue-Morse as the shortest commonly used name for

it.

Problem 1.1 can be easily translated into the language of Diophantine approximations. It is a well known

fact that the number x has bounded partial quotients if and only if it is badly approximable, i.e., there is a

constant c > 0 such that for any p/q ∈ Q we have

∣∣∣∣x−
p

q

∣∣∣∣ >
c

q2
(2)

(for instance, see [5], Chapter 1, §2). So Problem 1.1 is equivalent to the question whether the Thue-Morse

constant x = τTM is badly approximable or in other words whether it satisfies (2).

This problem attracted interest in the last years. In particular, Bugeaud [3] showed that the transcendence

exponent of τTM is 2, that is for any ε > 0 there exists a constant cε such that

∣∣∣∣τTM −
p

q

∣∣∣∣ >
cε

q2+ε
. (3)

Later Bugeaud and Queffélec [4] proved that the sequence of partial quotients of τTM contains infinitely many

values equal to 4 or 5 and at the same time it contains infinitely many values bigger than 50. Note that in terms

of the inequality (2) this result implies an absolute upper bound on the constant c: if such positive c exists then

c < 1/50.

In this paper we solve Problem 1.1 by showing that τTM is not a badly approximable number. This result

is proved in Theorem 4.9 below. To establish it, we provide a sequence (pn/qn)n∈N
∈ Q with limn→∞ qn → ∞,

of good rational approximations to the Thue-Morse constant. These approximations satisfy

qn |qnτTM − pn| → 0, as n → ∞. (4)

It straightforwardly implies that the inequality (2) is not satisfied for any positive constant c and approximations

pn/qn where n is large enough.
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We construct a sequence of approximations (pn/qn)n∈N
by a specialization of good functional approxima-

tions to a so called Thue-Morse generating function:

fTM (z) :=

∞∑

i=0

(−1)tizi. (5)

It is easy to see that the Thue-Morse constant can be represented as

τTM =
1

2

(
1−

1

2
fTM (1/2)

)
.

In our article we focus on a slightly modified version of this function:

f̃TM (z) :=
1

z
fTM (1/z).

It is a Laurent series and one can easily check that τTM is a badly approximable number if and only if f̃TM (2)

is badly approximable too.

Note that the value f̃TM (2) also appears in the work of Dubickas [6]. It is shown there that for every

irrational x one has

inf
n∈N

||2nx|| ≤ f̃TM (2)

where || · || denotes the distance to the nearest integer. Moreover for x = f̃TM (2) the inequality becomes an

equality.

To study functional approximations to f̃TM (z) we apply the theory of continued fractions for Laurent series,

which is analogous to the classical theory of continued fractions of rational numbers (for instance, see [9]).

In our proof we take advantage of a functional equation for the function f̃TM (see (10) below). This

functional equation allows us, given one functional convergent to f̃TM (z), to produce an infinite sequence pn/qn

of rational approximations to f̃TM (2) all satisfying

∣∣∣∣f̃TM (2)−
pn
qn

∣∣∣∣ ≤
C

q2n
, (6)

where the constant C depends only on the initial functional approximation.

We find this construction interesting even on its own, as not only it allows to reproduce the results from [4]

by choosing a good initial functional convergent to fTM , but also it explains regularly situated large partial

quotients in the continued fraction of τTM of the same value which can be observed numerically. For instance,

in this way one can find an infinite sequence of partial quotients equal to 2569. With some computational efforts

one can check that it is generated by the 15th convergent P (z)/Q(z) of f̃TM (z).
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Next, we manage to use arguments on congruences and primitive roots modulo 3k, k ∈ N, to justify that in

a carefully chosen sequence of pn/qn satisfying (6) there will be arbitrarily large common factors rn, hence after

reducing by this common factor the couple of integers (pn/rn, qn/rn) verifies (4) and so f̃TM (2) is not badly

approximable.

In this paper we also provide the precise formulae for computing the convergents of Laurent power series

f̃TM (z). Our interest in this subject is inspired by several papers by van der Poorten and others, where they

study continued fractions for functions given by infinite products [1, 8, 9]. For instance, they numerically verified

that the first partial quotients of fTM (1/z) have degree at most two. At the same time, the partial quotients

of degree one have quickly growing coefficients, which is the generic behavior (see [9], section 2.1). The authors

of [1] proved that all the partial quotients of Laurent power series

∞∑

k=0

(−1)tkz−3k

have degree one.

It appears that the continued fraction for f̃TM (z) is especially nice looking. Not only all its partial quotiens

have degree one, but, moreover, all the even ones are rational multiples of z − 1 and all the odd ones are rational

multiples of z + 1 (see Proposition 3.2). We even provide simple recurrent formulae allowing to calculate rational

factors of z − 1 and z + 1, thus giving the exact values of all the partial quotients of f̃TM , see Proposition 3.3.

Generalizations. The natural question is whether it is possible to generalize our considerations to a broader

framework. The launching site for our constructions in this article is the functional equation (10), so a natural

extension is the following question.

Open Problem 1. Let d ∈ N, d ≥ 2 and let the function f(z) ∈ Q[[z]] satisfies the functional equation

f(zd) = a(z)f(z) + b(z), (7)

where a(z), b(z) ∈ Q(z). Moreover assume that f(z) is a transcendental function. Let a ∈ Q be a non-zero

rational within the radius of convergence of f . Determine the conditions for f(a) to be a badly approximable

number.

Our arguments in this article can be used to show that f̃TM (a) is not badly approximable for all a ∈ N,

n ≥ 2, with possible exceptions when a is divisible by 15. This follows from Theorem 5.1 (see Corollary 5.2).

Note however that Van der Poorten and Shallit showed in [10] that the function fM (z) =
∑

∞

k=0 z
2k , which

satisfies the functional equation

fM (z2) = fM (z)− z,
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has a badly approximable value at z = 1/2, moreover the continued fraction of fM (1/2) consists of just partial

quotients 1 and 2 (actually in [10] this result is proved even for a much more general case of series 2
∑

∞

k=0 ±2−2k).

So, the answer to Open Problem 1 definitively requires some additional conditions on the functional equation (7),

separating the case of badly approximable values from not badly approximable ones.

While Open Problem 1 itself seems already enigmatic, we can consider even broader framework. The

equation (7) is a classical example of so called Mahler’s functional equation. In the most general framework,

the following system of functional equations is known as Mahler’s system:

a(z
¯
)f(zd) = A(z)f(z) +B(z), (8)

where d ≥ 2 is an integer, f(z) = (f1(z), . . . , fn(z)) ∈ Q[[z]]n, a(z) ∈ Q[z], A (resp. B) is an n× n (resp. n× 1)

matrix with coefficients in Q[z].

Open Problem 2. Let d ∈ N, d ≥ 2 and let the system of functions f(z) = (f1(z), . . . , fn(z)) ∈ (Q[[z]])n be

a solution to the system (8). Moreover assume that f1(z) is a transcendental function. For a non-zero rational

a ∈ Q within the radius of convergence of f(z) decide whether f1(a) is a badly approximable number or not.

2 General facts

It is well known ([2], §13.4) that the function fTM (z), defined by (5), admits the following presentation:

fTM (z) =

∞∏

k=0

(
1− z2

k
)
,

and the following functional equation holds:

fTM (z2) =
fTM (z)

1− z
. (9)

As we have mentioned in the introduction, we will focus on the study of a slightly modified version of fTM :

f̃TM (z) :=
1

z
fTM (1/z).

Substituting 1/z in place of z into (9) we find that f̃TM satisfies the following functional equation:

f̃TM (z2) =
f̃TM (z)

z − 1
. (10)
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Easy verification shows that fTM (z) and f̃TM (z) are closely linked with Thue-Morse constant by

τTM =
1

2

(
1−

1

2
fTM (1/2)

)
=

1

2

(
1− f̃TM (2)

)
. (11)

By rewriting (5) for f̃TM (z) one can easily check that f̃TM (z) ∈ Q[[z−1]]. Moreover, all the coefficients of

the resulting Laurent series are either 1 or −1, therefore it converges for |z| > 1. Another consequence is that

f̃TM (z) has the following continued fraction expansion

f̃TM (z) = [0; a1(z), a2(z), . . .] =
1

a1(z) +
1

a2(z) + . . .

,

where ai(z) ∈ Q[z], i ∈ N (the details can be found in [9]).

The important consequences of this fact are that the convergents Pn(z)/Qn(z) can be computed by the

following recurrent formulae

Pn+1(z) = an+1(z)Pn(z) + Pn−1(z),

Qn+1(z) = an+1(z)Qn(z) +Qn−1(z),

(12)

for n ≥ 1. Moreover Proposition 1 from [9] implies the following.

Proposition 2.1. Let P (z), Q(z) ∈ Q[z] be two polynomials. Then P (z)/Q(z) is a convergent to f̃TM (z) if and

only if

deg(Q(z)f̃TM (z)− P (z)) < − degQ(z), (13)

where the degree of Laurent series G(z) =
∑

∞

k=h
akz

−k, ah 6= 0 is minus the smallest index of a non-zero

coefficient, that is in our notation we have degG = −h.

Note that unlike the classical setup of rational numbers, where the numerators and denominators pn and

qn of convergents are defined uniquely, Pn(z) and Qn(z) are only unique up to multiplication by a non-zero

constant. At the same time, the polynomials computed by formulae (12) in general are not monic. So, we can

add a condition that the numerator Pn has to be monic, producing a unique representative for each functional

convergent to f̃TM .

These canonical representatives P̂n(z)/Q̂n(z), with P̂n a monic polynomial, are still linked by recurrent

relations similar to (12):

P̂n+1(z) = ân+1(z)P̂n(z) + βn+1 · P̂n−1(z);

Q̂n+1(z) = ân+1(z)Q̂n(z) + βn+1 · Q̂n−1(z)

(14)

where we define, with ρn denoting the leading coefficient of Pn,

ân+1(z) =
an+1(z) · ρn

ρn+1
and βn+1 =

ρn−1

ρn+1
.
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One can easily check from (14) that ân(z) are always monic, while the denominators Q̂n may be not monic

in a general case. However we will see in the next section that for the function f̃TM both numerators and

denominators of the canonical representatives P̂n(z)/Q̂n(z) of convergents are monic polynomials.

3 Continuous fraction of the function f̃TM

Lemma 3.1. Let P (z)/Q(z) be a convergent to f̃TM (z). Then P ∗(z)/Q∗(z) is also a convergent, where

P ∗(z) = (z − 1)P (z2); Q∗(z) = Q(z2). (15)

Proof . It is a consequence of the functional relation for f̃TM (z). Indeed,

deg(Q∗(z)f̃TM (z)− P ∗(z)) = deg((z − 1)(Q(z2)f̃TM (z2)− P (z2))) ≤ −2 deg(Q)− 1.

At the same time, degQ∗(z) = 2 degQ(z). Therefore Q∗(z) and P ∗(z) satisfy the condition (13). We conclude

that P ∗(z)/Q∗(z) is a convergent to f̃TM by Proposition 2.1.

Recursive application of Lemma 3.1 enables us to construct an infinite sequence of convergents to f̃TM (z)

starting from only one convergent. However not every convergent can be constructed in this way. For example,

by a direct computation one can find the convergents

1

1 + z
and

z2 − 2

z3 + z2
. (16)

Then (15) immediately gives us the convergents

z − 1

z2 + 1
,

(z − 1)(z2 − 1)

z4 + 1
, and

(z − 1)(z4 − 2)

z6 + z4
. (17)

However these calculations, using Lemma 3.1 and the initial convergents (16) only, neither allow one to construct

the convergent P (z)/Q(z) to f̃TM (z) with deg(Q) = 5, nor give an information whether such a convergent exists.

The next proposition shows that, in fact, for every n ∈ N there is a convergent Pn(z)/Qn(z) to f̃TM (z) such

that deg(Qn) = n.

Proposition 3.2. Let [0; a1(z), a2(z), . . . , ] be the continued fraction expansion of f̃TM (z). Then ∀n ≥ 2,

a2n−1(z) = α2n−1 · (z + 1) and a2n(z) = α2n · (z − 1) where αi ∈ Q, i ∈ N, are constants. Moreover for every

n ∈ N, the convergent Q2n(z) is of the form Q2n(z) = Qn(z
2), in particular it is an even function; Q2n−1(z)
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is of the form Q2n−1(z) = (z + 1) ·Q+
n−1(z

2), where Q+
n−1(X) is a polynomial of degree n− 1 with rational

coefficients.

Proof . We reason by induction. We already checked this statement for n = 2. Now we need to check it for

2n+ 1 and 2n+ 2 given that the statement for 3, 4, . . . , 2n is true.

Note that induction hypothesis and (12) imply that degQk = k for k = 1, 2, 3, . . . , 2n. In particular, the

convergent Qn+1 has degree n+ 1.

By Lemma 3.1 we have that Q∗

n+1(z) = Qn+1(z
2) is also a convergent and degQ∗

n+1 = 2n+ 2. Moreover

we have degQ2n = 2n, thus Q∗

n+1(z) has to coincide either with Q2n+1(z) or with Q2n+2(z). The first case is

actually impossible, because otherwise we would have had, using induction hypothesis and (12),

Q∗

n+1(z) = Qn+1(z
2) = Q2n+1(z) = a2n+1(z) ·Q2n(z) +Q2n−1(z)

= a2n+1(z) ·Qn(z
2) + (z + 1)Q+

n−1(z
2). (18)

To show that the equality (18) is unattainable, substitute −z in place of z to (18) and then apply (−z)2 = z2.

We find

Qn+1(z
2) = a2n+1(−z) ·Qn(z

2) + (1− z)Q+
n−1(z

2). (19)

Subtracting (19) from (18) and dividing by 2 we obtain

a2n+1(−z)− a2n+1(z)

2
·Qn(z

2) = zQ+
n−1(z

2). (20)

The equality (20) is impossible, because its right hand side is a non-zero polynomial of degree 2n-1, and the left

hand side is either a zero or a polynomial of degree at least 2n. This contradiction shows that Q∗

n+1(z) cannot

coincide with Q2n+1(z), thus we have

Q∗

n+1(z) = Q2n+2(z).

In particular we see that degQ2n+2 = 2n+ 2, thus degQ2n+1 = 2n+ 1 and so

deg a2n+1 = deg a2n+2 = 1. (21)

Applying again the induction hypothesis and the formulae (12) for convergents Q2n+1 and Q2n+2 we have

Q2n+2(z) = Qn+1(z
2) = a2n+2(z) ·Q2n+1(z) +Q2n(z)

= a2n+2(z) · a2n+1(z) ·Q2n(z) + a2n+2(z) ·Q2n−1(z) +Q2n(z).

= (a2n+2(z) · a2n+1(z) + 1) ·Qn(z
2) + a2n+2(z) · (z + 1)Q+

n−1(z
2).
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Again, by substituting −z in place of z and then using (−z)2 = z2 we deduce

a2n+2(z) · a2n+1(z)− a2n+2(−z) · a2n+1(−z)

2
Qn(z

2)

=
a2n+2(−z) · (−z + 1)− a2n+2(z) · (z + 1)

2
Qn−1(z

2) (22)

Both polynomials a2n+2(z) · a2n+1(z)− a2n+2(−z) · a2n+1(−z) and a2n+2(−z) · (−z + 1)− a2n+2(z) · (z + 1)

are odd functions, so they are either 0 or of degree 1 (taking into account (21)). Therefore if the left hand

side of (22) is not zero then it has degree 2n+ 1, and the right hand side in this case has degree 2n− 1. This is

a contradiction, so we conclude that both sides of (22) are 0. This gives us

a2n+2(−z) · (−z + 1) = a2n+2(z) · (z + 1),

a2n+2(z) · a2n+1(z) = a2n+2(−z) · a2n+1(−z).

This system implies that a2n+2(z) is a multiple of z − 1 and a2n+1 is a multiple of z + 1. Now the fact that

Q2n+1(z) = (z − 1)Q+
n (z

2) readily follows from (12). This concludes the proof.

To compute the convergents of f̃TM (z) we just need to find the precise values of coefficients αn such that

an(z) = αn(z − (−1)n). To this end, it appears easier to make calculations with canonical representatives of the

functional convergents, described at the end of the previous section, that is with the fractions P̂n(z)/Q̂n(z) such

that P̂n(z) is a monic polynomial.

As we mentioned in the previous section, the formulae (12) do not always (in fact, almost never) produce

monic polynomials Pn(z) and Qn(z). For example, one can check that if we start with Q1(z) = 1 + z and

Q2(z) = z2 + 1 then a3(z) = −z − 1 and therefore

Q3(z) = −(z + 1)Q2(z) +Q1(z) = −z3 − z2.

Moreover further calculations show that Pn(z) and Qn(z) do not always have integer coefficients.

So, as we are interested in monic numerator, in our case formulae (14) together with Proposition 3.2 give

Q̂n+1(z) = (z + (−1)n)Q̂n(z) + βn+1Q̂n−1(z), (23)

P̂n+1(z) = (z + (−1)n)P̂n(z) + βn+1P̂n−1(z), (24)

where βn+1 = αn

αn+1
, n ∈ N, n ≥ 2. Polynomials P̂n(z) and Q̂n(z) are linked to the original polynomials Pn(z)

and Qn(z) by Q̂n(z) :=
Qn(z)∏
n

k=1
αk

and P̂n(z) :=
Pn(z)∏
n

k=1
αk

and one readily verifies that they both are monic for all

n ∈ N.
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Proposition 3.3. The coefficients βn in (23) and (24) can be computed recursively by the following formulae

β3 = −1, β4 = 1, (25)

β2n+1 = −
βn+1

β2n
, (26)

β2n+2 = 1 + (−1)n − β2n+1 (27)

for every positive integer n ≥ 2.

Proof . The values β3 and β4 can be computed directly from already known Q1(z), Q2(z), Q3(z) and Q4(z)

(see (16) and (17)). Next, we substitute z 7→ z2 into the formula (23) for Q̂n+1(z) and use Proposition 3.2 to

get that

Q̂2n+2(z) = (z2 + (−1)n)Q̂2n(z) + βn+1Q̂2n−2(z).

On the other hand, by directly applying (23) we have

Q̂2n+2(z) = (z − 1)Q̂2n+1(z) + β2n+2Q̂2n(z)

= (z − 1)
(
(z + 1)Q̂2n(z) + β2n+1Q̂2n−1(z)

)
+ β2n+2Q2n(z).

By comparing these two formulae for Q̂2n+2(z) we get the equation

(β2n+2 − 1− (−1)n)Q̂2n(z) + β2n+1 · (z − 1)Q̂2n−1(z)− βn+1Q̂2n−2(z) = 0. (28)

By looking at the coefficient of z2n we get β2n+2 − 1− (−1)n + β2n+1 = 0, which proves (27). The formula (26)

is achieved by substituting Formula (23) for Q̂2n(z) into Equation (28) and looking at the coefficient of z2n−2:

−β2n+1 · ((z − 1)Q̂2n−1(z) + β2nQ̂2n−2(z)) + β2n+1 · (z − 1)Q̂2n−1(z)− βnQ̂2n−2(z) = 0.

It readily follows β2n+1β2n + βn+1 = 0.

Now we have precise recursive formulae to quickly compute convergents to f̃TM as far as we want. For

example, the first few convergents following P4(z)/Q4(z) are

z4 − z2 − 1

(z + 1)(z4 + z2 + 1)
,
(z − 1)(z4 − 2)

z6 + z4
,

z6 − 2z4 − z2 + 3

(z + 1)(z6 − z2 − 1)
, . . .

The 9th convergent is of particular value for us so we write it down as well:

P̂9(z) := z8 − 3z6 + 2z4 + 3z2 − 4, Q̂9(z) := (z + 1)(z8 − z6 + z2 + 2). (29)
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This convergent plays the central role in our proof that τTM is not badly approximable.

4 Rational approximations to the Thue-Morse constants.

We start by extracting a specific subsequence of convergents to f̃TM .

Definition 4.1. Let n ∈ N. Define

P̃n(z) :=

n∏

k=0

(z2
k

− 1)P̂9(z
2n+1

)

and

Q̃n(z) := Q̂9(z
2n+1

),

where P̂9(z)/Q̂9(z) is the 9th functional convergent to f̃TM given at the end of the previous section (see (29)).

Remark 4.2. Iteratively applying Lemma 3.1 we find that P̃n(z) = P̂9·2n+1(z) and Q̃n(z) = Q̂9·2n+1(z). In

particular, P̃n(z)/Q̃n(z) is indeed a convergent to f̃TM (z).

Lemma 4.3. For every n ∈ N and z0 ∈ N, z0 ≥ 2 the integers P̃n(z0) and Q̃n(z0) satisfy the following

Diophantine approximation properties:

∣∣∣∣∣f̃TM (z0)−
P̃n(z0)

Q̃n(z0)

∣∣∣∣∣ ≤ C · z−36·2n

0 , (30)

Q̃n(z0) ≤ 2 · z18·2
n

0 , (31)

where the constant C = C(z0) is independent of n.

Proof . Consider the following function:

F (z) := f̃TM (z)−
P̂9(z)

Q̂9(z)
. (32)

As P̂9(z)/Q̂9(z) is the 9th convergent to f̃TM (z), it follows from Proposition 2.1 that deg(F ) ≤ −19.

In fact, one can check by an explicit calculation that F (z), being an infinite series in 1
z
, starts from the

term 6
z19 , that is

F (z) =
6

z19
+O

(
1

z20

)
. (33)
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Further, consider F (z2
n+1

)
∏n

k=1(z
2k − 1) where n ∈ N. By using the definition (32) of F , functional equa-

tion (10) and estimate (33) we find

F (z2
n+1

)

n∏

k=1

(z2
k

− 1) = f̃TM (z)−
P̂9(z

2n+1

)
∏n

k=1(z
2k − 1)

Q̂9(z2
n+1)

=
6
∏n

k=1(z
2k − 1)

z19·2n+1
+O

(∏n

k=1(z
2k − 1)

z20·2n+1

)
, (34)

where the constant implied by the symbol O(·) is independent of n.

By Definition 4.1,

f̃TM (z)−
P̂9(z

2n+1

)
∏n

k=1(z
2k − 1)

Q̂9(z2
n+1)

= f̃TM (z)−
P̃n(z)

Q̃n(z)
.

At the same time, we have
∏n

k=1(z
2k − 1) < z2

n+1

for any z > 1, hence we infer from (34)

f̃TM (z)−
P̃n(z)

Q̃n(z)
=

6

z18·2n+1
+O

(
1

z19·2n+1

)
=

6

z36·2n
+O

(
1

z38·2n

)

and (30) follows.

Further, a straightforward calculation shows that Q̂9(z0) ≤ 2z90 for every z0 ≥ 2. Then

Q̃n(z0) := Q̂9(z
2n+1

0 ) ≤ 2 · z9·2
n+1

0 = 2 · z18·2
n

0 ,

which proves (31).

This lemma shows that for z0 ∈ N, z0 ≥ 2, P̃n(z0)/Q̃n(z0) already provides sufficiently good rational

approximation to f̃TM (z0) (following the scheme presented in the introduction, they provide approximations

satisfying (6)). In order to show that f̃TM (z0) is not badly approximable it is sufficient for every r > 1 to find an

n ∈ N such that both P̃n(z0) and Q̃n(z0) have a common factor bigger than r. We prove this fact in Lemma 4.8.

In further discussion we will stick to the case z0 = 2, however as we will see in the next section similar ideas

should work for other positive integers z0.

The following chain of simple lemmas prepares the proof of our essential ingredient, Lemma 4.8. We start

with the following classical result which can be found for instance in [7][p. 102].

Lemma 4.4. Let p be an odd prime and g be a primitive root modulo p2. Then g is a primitive root modulo

pm for all m ∈ N.

One can check that 2 is a primitive root modulo 32 therefore a direct corollary of this Lemma is that 2 is

a primitive root modulo 3m for every m ∈ N.
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Lemma 4.5. Let m ∈ N and let t be an even integer, t 6≡ 0 (mod 3). Then there exists n ∈ N such that

2n ≡ t mod 2 · 3m.

Moreover, one can choose such n to verify additionally n ≤ 2 · 3m−1.

Proof . As t is even, there exists k ∈ N such that t = 2k. Since 2 is a primitive root modulo 3m and k is coprime

to 3, there exists n ∈ N such that

2n−1 ≡ k mod 3m, (35)

where k is as above. Multiplying the congruence (35) by 2 we find

2n ≡ t mod 2 · 3m,

hence the claim.

To prove the concluding part of the lemma, note that the size of multiplicative group of residues modulo

3m is 2 · 3m−1. So in (35) we can always choose n verifying n− 1 ≤ 2 · 3m−1 − 1, and the second claim of the

lemma follows.

In the next lemma we use the following notation.

Notation 4.6. Let a, b ∈ Z. We write a || b if a divides b, but a2 does not.

Lemma 4.7. Let m ∈ N, m ≥ 2 and let t be an integer such that 3 || t− 1. Then there exists n ∈ N such that

22
n

≡ t mod 3m.

Moreover, one can choose such n to verify additionally n ≤ 2 · 3m−2.

Proof . Since 2 is a primitive root modulo 3m there is a k ∈ N such that

2k ≡ t mod 3m. (36)

Reducing congruence (36) modulo 3 we find (using our assumption on t)

2k ≡ 1 mod 3,

hence k is an even positive integer. Furthermore, by reducing (36) modulo 9, we get 2k 6≡ 1 (mod 9) therefore

k is not a multiple of 3.
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By Lemma 4.5 we have that there exists an n ∈ N such that

2n ≡ k mod 2 · 3m−1

and n ≤ 2 · 3m−2.

At the same time, by Euler’s theorem we have

22·3
m−1

≡ 1 mod 3m,

as φ(3m) = 3m − 3m−1 = 2 · 3m−1. Therefore

22
n

≡ 2k mod 3m,

and we conclude by comparing this last congruence with the congruence (36).

Lemma 4.8. For any m ∈ N, m ≥ 3 there exists an index nm such that both integers P̃nm
(2) and Q̃nm

(2) are

divisible by 3m, and moreover nm ≤ 3m−1.

Proof . We verify by a direct calculation that Q9(1) = 6 is divisible by 3 but not by 9, and

Q′

9(1) = 11 6≡ 0 mod 3.

So by Hensel’s lemma, for every m ∈ N, m ≥ 1, there exists a solution xm ∈ N to the congruence

Q9(xm) ≡ 0 mod 3m

such that this solution xm is congruent to 1 modulo 3 and xm 6≡ 1 (mod 9). By Lemma 4.7, there exists tm ∈ N

such that 22
tm

≡ xm mod 3m, thus

Q̃nm
(2) = Q9(2

2tm ) ≡ 0 mod 3m. (37)

Moreover, by the same Lemma we can choose tm to satisfy tm ≤ 2 · 3m−2.

One can easily check that if tm is a solution to the equation (37) then every integer t > 1 such that t ≡ tm

(mod φ(2 · 3m−1)) is also a solution. So for any l ∈ N a number tm + l · 2 · 3m−2 also provides a solution to (37).

If tm > m then we choose nm := tm, otherwise nm := tm + 2 · 3m−2. Note that form ≥ 3 we have 3m−2 ≥ m,

thus our definition of nm assures that for m ≥ 3 we have nm > m and nm ≤ 3m−1.
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Further, note that for any k ∈ N we have 22
k

≡ 1 mod 3. Therefore

nm−1∏

k=0

(22
k

− 1) ≡ 0 mod 3nm−1

and we readily have that

P̃nm
(2) :=

nm−1∏

k=0

(22
k

− 1)P9(2
2nm+1

) ≡ 0 mod 3nm−1.

Finally, we infer from nm > m that

P̃nm
(2) ≡ 0 mod 3m. (38)

Congruences (37) and (38) show that nm indeed verifies the properties claimed in the statement of the lemma,

and this completes the proof.

Theorem 4.9. Thue-Morse constant τTM is not badly approximable. Moreover, there exists a constant c > 0

such that the inequality

|τTM − p/q| ≤
c

q(log log q)2
. (39)

has infinitely many solutions (p, q) ∈ N2.

Proof . We are going to prove that an analogue of (39) is satisfied for f̃TM (2). Then the relation (11) would

straightforwardly imply the same condition on τTM too.

By Lemma 4.3 we have that the sequence pn := P̃n(2) and qn := Q̃n(2) provide sufficiently good rational

approximations to f̃TM (2), that is for any n we have

∣∣∣∣f̃TM (2)−
pn
qn

∣∣∣∣ ≤
C

q2n
,

where the constant C is independent of n. Moreover, by Lemma 4.8 we have a subsequence of indices (nm)m∈N

such that both integers P̃nm
(2) and Q̃nm

(2) are divisible by 3m. Therefore the integers p̃nm
:=

P̃nm
(2)

3m and

q̃nm
:=

Q̃nm
(2)

3m satisfy ∣∣∣∣f̃TM (2)−
p̃nm

q̃nm

∣∣∣∣ ≤
C

32mq̃2nm

, (40)

which readily implies that the number f̃TM (2) is not badly approximable.

To justify (39), note that because of the bound nm ≤ 3m−1 and the explicit formula

Q̃nm
(2) := Q9(2

2nm+1

),
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there exists a constant c1 independent of m such that q̃nm
≤ c12

9·23
m

, so for m sufficiently large we have

log log q̃nm
≤ 2 · 3m and (39) follows from (40).

5 Constants f̃TM (a) for arbitrary a ∈ N

The proposed chain of lemmata suggests the method for checking whether the value f̃TM (a) is badly

approximable for an arbitrary a ∈ N, a > 1. We formulate it as the following theorem.

Theorem 5.1. Assume that there exist positive integers n, t, p such that

1. p is a prime such that p || a2
n

− 1 (recall Notation 4.6);

2. 2 is a primitive root modulo p2;

3. p || Q̂t(1);

4. Q̂′

t(1) 6≡ 0 (mod p).

Then f̃TM (a) is not badly approximable. Moreover, there exists a constant c > 0 such that the inequality

∣∣∣f̃TM (a)− p/q
∣∣∣ ≤ c

q(log log q)2
. (41)

has infinitely many solutions (p, q) ∈ N2.

Proof . For any n, t ∈ N we define

P̃n,t(z) :=

n∏

k=0

(z2
k

− 1)P̂t(z
2n+1

)

and

Q̃n,t(z) := Q̂t(z
2n+1

).

Then the same arguments as in Lemma 4.3 imply that for every n ∈ N and z0 ∈ N with z0 ≥ 2 one has

∣∣∣∣∣f̃TM (z0)−
P̃n,t(z0)

Q̃n,t(z0)

∣∣∣∣∣ ≤ C · z−4t·2n

0 , (42)

Q̃n,t(z0) ≤ C · z2t·2
n

0 , (43)

where the constant C = C(z0, t) is independent of n.

Values P̃n,t(a) and Q̃n,t(a) are not necessarily integer. However P̃n,t(a) ∈ 1/dP · Z and Q̃n,t(a) ∈ 1/dQ · Z

where dP (respectively dQ) is the least common multiple of all denominators of the rational coefficients of

the polynomial P̂t(z) (respectively of Q̂t(z)). So for every pair of integers pn, qn where pn = dpdQ · P̃n,t(a) ,
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qn = dpdQ · Q̃n,t(a) the following inequality takes place:

∣∣∣∣f̃TM (a)−
pn
qn

∣∣∣∣ ≤
d2Q · C3

q2n
.

Note that the value d2QC
3 depends only on a and t and does not depend on n. Therefore it is enough to find

arbitrarily large r ∈ Z and some n ∈ N such that values pn and qn have a common factor r. We will show that

positive integer power of p can play the role of such common factor r.

By Condition 1 of the theorem, p | a2
n

− 1. Therefore for every m > n we have pm−n | P̃m,t(a).

Conditions 3 and 4 and Hensel’s lemma imply that the equation Q̂t(x) = 0 has a solution x ∈ Zp such that

x ≡ 1 (mod p) and x 6≡ 1 (mod p2). Next, since 2 is a primitive root modulo p2 (in view of condition 2), then

by Lemma 4.4 it is also a primitive root modulo every power pm, m ∈ N.

For every m ∈ N, the multiplicative group R∗

pm of residues modulo pm has the order φ(pm) = (p− 1)pm−1.

As the element a2
n

is congruent to 1 modulo p, it lies in the kernel of the canonical projection R∗

pm → R∗

p.

The multiplicative group R∗

p of residues modulo p has the order p− 1, so the residue a2
n

has the order pl in

R∗

pm , for some l ≤ m− 1. If the value l is strictly smaller than m− 1, then we necessarily have a2
n

≡ 1 mod p2,

which contradicts the Condition 1, hence the multiplicative order of a2
n

modulo pm is exactly pm−1 and thus

the set of residues {a2
n
·s mod pm : s ∈ N, gcd(s, p) = 1} coincides with the set of residues modulo pm congruent

to 1 modulo p but not congruent to 1 modulo p2. So, there is an s ∈ N such that a2
n
·s ≡ x mod pm and s 6≡ 0

mod p.

As 2 is a primitive root modulo pm−1 and a2
n

has order pm−1 modulo pm, we have that the set of residues

{a2
n
·2s mod pm: s ∈ N} coincides with the set of residues {a2

n
·s mod pm : s ∈ N, gcd(s, p) = 1}. In particular,

there exists s1 such that a2
n+s1

≡ x mod pm.

Moreover, as s1 is defined modulo φ(pm−1) = (p− 1)pm−2, one can choose such s1 that nm := n+ s1 verifies

m < nm ≤ m+ (p− 1)pm−2. (44)

So we get that Q̃nm,t(a) is divisible by pm and therefore both pnm
and qnm

have common divisor pm−n. be taken

arbitrary large this finishes the proof of the theorem. We deduce that there exists a constant C1 such that for

any m > n ∣∣∣∣f̃TM (a)−
p̃m
q̃m

∣∣∣∣ ≤
C1

p2nm q̃2m
,

where p̃m = pnm
/pm and q̃m = qnm

/pm are integers. The upper inequality in (44) implies log log qnm
≪ nm ≪

pm, so moreover we have log log q̃m ≪ pm and the inequality (41) follows.

Remark. Conditions 2 – 4 of Theorem 5.1 do not depend on a at all. One can look at them as conditions

on a prime number p. We call p acceptable if there exists t ∈ N such that the Conditions 2 – 4 are satisfied.
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Then Theorem 5.1 can be reformulated as follows: if there exist n ∈ N0 and an acceptable prime p such that

p || a2
n

− 1 then f̃TM (a) is not badly approximable. By testing various polynomials Q̂t(z) it is easy to find many

acceptable primes. In the previous section we have already checked that 3 is acceptable. By considering

Q̂11(z) = x11 + x10 +
2x9

3
+

2x8

3
+

4x7

3
+

4x6

3
+ x5 + x4 +

2x3

3
+

2x2

3
+

x

3
+

1

3
,

one can check that 5 is acceptable too. This remark already leads us to the following corollary, which generalizes

Theorem 4.9.

Corollary 5.2. Let a ∈ N be a positive integer which is not divisible by 15. Then f̃TM (a) is not badly

approximable.

Proof . As we have noted just before this corollary, primes 3 and 5 are acceptable, that is they verify conditions

2–4 of Theorem 5.1.

It is an easy exercise, which we leave to the reader, to check that for a 6≡ 0 (mod 15) either 3 or 5 satisfies the

condition 1 of Theorem 5.1 and therefore by this theorem we obtain that f̃TM (a) is not badly approximable.

So the remaining uncovered case is f̃TM (a) where a is divisible by 15.

Unfortunately, Theorem 5.1 can not be applied to show that f̃TM (15) is not badly approximable. Indeed,

the numbers 15− 1, 152 − 1 and 154 − 1 have prime divisors 2, 7 and 113, and 2 is not a primitive root for

neither of them. Other prime divisors of 152
n

− 1 for some n ∈ N must also divide 152
m

+ 1 for some m ≥ 2. It is

a classical result that such primes p satisfy the condition p ≡ 1 (mod 8). Since 2 is a quadratic residue modulo

such primes p then the condition 2 is never satisfied.

However Theorem 5.1 can still work for a equal to some of the multiples of 15. For example, for a = 30 we

have 29 | 30− 1 and 29 is an acceptable prime (one can take t = 35). Also,

11 | 45− 1; 61 | 602 − 1; 19 | 752 − 1; 13 | 902 − 1

and primes 11, 61, 19, 13 are acceptable. One may check this by taking t = 43, 49, 19 and 33 respectively. So, all

the values a ∈ N such that 2 ≤ a ≤ 104 and a 6= 15 assure that f̃TM (a) is not badly approximable.
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