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The progressive oxygenation of the Earth’s atmosphere was piv-
otal to the evolution of life, but the puzzle of when and how
atmospheric oxygen (O2) first approached modern levels (∼21%)
remains unresolved. Redox proxy data indicate the deep oceans
were oxygenated during 435-392 Ma, and the appearance of
fossil charcoal indicates O2>15-17% by 420-400 Ma. However,
existing models have failed to predict oxygenation at this time.
Here we show that the earliest plants, which colonized the land
surface from ∼470 Ma onwards, were responsible for this mid-
Paleozoic oxygenation event, through greatly increasing global
organic carbon burial – the net long-term source of O2. We use
a trait-based ecophysiological model to predict that cryptogamic
vegetation cover could have achieved ∼30% of today’s global
terrestrial net primary productivity by ∼445 Ma. Data from modern
bryophytes suggests this plentiful early plant material had a much
higher molar C:P ratio (∼2000) than marine biomass (∼100), such
that a given weathering flux of phosphorus could support more
organic carbon burial. Furthermore, recent experiments suggest
that early plants selectively increased the flux of phosphorus (rel-
ative to alkalinity) weathered from rocks. Combining these effects
in a model of long-term biogeochemical cycling, we reproduce a
sustained +2‰ increase in the carbonate carbon isotope (δ13C)
record by ∼445 Ma, and predict a corresponding rise in O2 to
present levels by 420-400 Ma, consistent with geochemical data.
This oxygen rise represents a permanent shift in regulatory regime
to one where fire-mediated negative feedbacks on organic carbon
burial stabilise high O2 levels.

oxygen | plants | Paleozoic | phosphorus | weathering

Introduction
After the well-defined ‘Great Oxidation Event’ 2.45-2.32 Ga, the
trajectory of atmospheric oxygen is deeply uncertain (1, 2). Many
recent studies, reviewed in (3-5), have argued for a Neoprotero-
zoic oxygenation event (>550Ma) – of uncertain cause – and have
linked it to the rise of animals, but this has been questioned given
a lack of change in iron-speciation ocean redox proxy data (6).
Some models predict pO2 ∼1 PAL (present atmospheric level)
already in the early Paleozoic (7, 8), but this is at odds with data
for widespread ocean anoxia (6, 9). The ‘COPSE’model we adapt
here (10) predicts early Paleozoic pO2 ∼0.2-0.5 PAL consistent
with redox proxy data, but like the other models (7, 8) it does not
predict a rise in oxygen until the advent of forests starting ∼385
Ma, and continuing until ∼300 Ma. This is too late to explain
marked changes in geochemical data that occur before ∼390
Ma (figure 1). The first appearance of fossil charcoal in the late
Silurian (11) and its ongoing occurrence through the Devonian
(12) (table S1), albeit rare and at low concentrations, indicates
O2>15-17% (by volume) of the atmosphere (13) (or O2>∼0.7
PAL assuming a constant N2 reservoir) already by ∼420-400 Ma.
(Under ideal conditions of ultra-dry fuel and forced airflow, smol-
dering fires may be sustained at O2>10%, but this is not believed
to be possible under natural conditions (14)). The molybdenum

isotope record (9) indicates a fundamental shift in the redox
state of the deep ocean from widespread anoxia to widespread
oxygenation sometime during 435-392 Ma (between the early
Silurian and the mid-Devonian). This ocean oxygenation is also
supported by a Silurian increase in the C/S ratio of shales (15),
and a shift in iron-speciation data sometime during 435-387 Ma
(6).

The persistent oxygenation of the ocean and appearance
of charcoal can be explained by a rise in atmospheric oxygen
occurring by∼400 Ma. This could be due to a persistent increase
in oxygen source – considered here – or a decrease in oxygen
sink (16), leading to a reorganization of the Earth’s surface redox
balance at a higher steady-state level for atmospheric O2. The
major long-term source of oxygen to the atmosphere is the burial
of organic carbon in sedimentary rocks (which represents the net
flux of photosynthesis minus various pathways of respiration and
oxidation). Increases in global organic carbon burial are recorded
as positive shifts in the isotopic composition of carbonate rocks
(δ13C). Consistent with a rise in oxygen, the carbon isotope record
(17) (figure 1) indicates a fundamental shift in baseline from ≤0‰
prior to the Late Ordovician to ∼2‰ from ∼445 Ma onwards.
Whilst there are many subsequent δ13C fluctuations, including
drops back to 0‰, e.g. at ∼400 Ma, the long-term mean δ13C
remains∼2‰ throughout the rest of the Paleozoic, theMesozoic,
and the early Cenozoic (17), indicating a sustained increase in

Significance

The rise of atmospheric oxygen over Earth history has re-
ceived much recent interdisciplinary attention. However, the
puzzle of when and how atmospheric oxygen reached modern
levels remains unresolved. Many recent studies have argued
for a major oxygenation event - of uncertain cause - in the
Neoproterozoic Era >541 million years ago (Ma), enabling the
rise of animals. Previous modelling work has predicted a late
Paleozoic oxygen rise (<380 Ma) due to the rise of forests. Here
we show that neither scenario is correct. Instead the earliest
plants, which colonized the land from 470 Ma onwards, first
increased atmospheric oxygen to present levels by 400 Ma.
This instigated fire-mediated feedbacks that have stabilised
high oxygen levels ever since, shaping subsequent evolution.
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Fig. 1. . Global changes during the Ordovician, Sil-
urian, and Devonian Periods. The rise of non-vascular
plants (indicated by cryptospore diversity (32)) then
vascular plants (indicated by trilete spore diversity
(18)) overlaps with the first appearances of fossil
charcoal (table S1); F = fossils, black dots = inertinite
in coal, nd = none detected. Molybdenum isotope
data (9) indicate oxygenation of the deep ocean,
following an uncertain trajectory ∼440-390 Ma; black
circles = euxinic shales as defined by Fe-speciation,
white circles = euxinic shales as defined by Mo-
enrichment, grey triangles = ferruginous shales as de-
fined by Fe-speciation, blue area = isotope offset from
oceanic input that requires a substantial Mn-oxide
sink in the deep oceans. The carbonate carbon isotope
record (17) (red dots, black line is a smoothed spline
fit) indicates elevated organic carbon burial (δ13C
∼2‰) ∼445-410 Ma. Cm=Cambrian, Fu=Furongian,
Llan=Llandovery, W=Wenlock, L=Ludlow, P=Pridoli.

Fig. 2. Predicted Late Ordovician (445 Ma) net primary production (NPP).
Result from ecophysiological model of cryptogamic vegetation cover driven
by simulated Late Ordovician (445 Ma) climate, atmospheric CO2 = 8 PAL,
and atmospheric O2 = 0.6 PAL (14 vol.%), with no ice sheet mask. Simulated
global NPP = 18.7 GtC yr-1.

global organic carbon burial. Such a permanent shift requires
a unidirectional driver that kicked-in during the mid-Paleozoic.
The evolution of land plants is the obvious candidate, with the
first non-vascular plants (ancestors of extant mosses, liverworts
and hornworts) colonizing the land in the Mid-Late Ordovician
(∼470-445 Ma), followed by the first vascular plants in the Sil-

urian (∼445-420 Ma) and early Devonian (∼420-390 Ma) (figure
1) (18, 19).

Here we hypothesize that the evolution of these earliest
land plants permanently increased organic carbon burial causing
atmospheric oxygen to approach modern levels by∼400 Ma, and
creating a new dynamically stable steady state for the oxygen cycle
(where the major long-term O2 sink from oxidative weathering of
ancient organic carbon increased to counterbalance the increased
O2 source). In simple terms, on long timescales, the global organic
carbon burial flux is determined by the supply flux of the ultimate
limiting nutrient phosphorus from weathering and the (molar)
ratio of carbon-to-phosphorus in material that is buried:

P weathering flux × Corganic/Ptotal burial ratio = Corganic burial
flux

Land plants typically have a much higher molar C/P ratio
(∼1000) than marine organic matter (∼100) due to carbon-rich
but phosphorus-poor structural compounds such as sporopol-
lenin, lignin and, in their fungal mycorrhizal symbionts, chitin.
Therefore they can support an increased organic carbon burial
flux for the same P weathering flux. The P weathering flux is
partly tied to bulk silicate weathering, e.g. due to the dissolution of
apatite inclusions in silicate rocks, and the silicate weathering flux
of alkalinity is in turn set by negative feedback in the long-term
carbon cycle, so is ultimately controlled by the degassing input
of CO2 on timescales ≥1 Myr (7, 10). However, plants and their
associatedmycorrhizal fungi can increase phosphorus weathering
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Fig. 3. Predictions of mid-Paleozoic global carbon
cycle change due to early plants from the updated
COPSE model: a. Net primary production (NPP); b.
Organic carbon burial (both terrestrial and marine
derived material); c. Carbonate carbon isotope record
(δ13C); d. Atmospheric O2. Note that fossil charcoal
420-400 Ma indicates O2 > 0.66-0.77 PAL. (Further
results of the same model runs are in figures S3
and S5.) Black dashed = original baseline model run.
Blue = early plant colonization (C/P=1000). Cyan =
early plant colonization + C/P=2000. Magenta = early
plant colonization + biotic effects on silicate weath-
ering (C/P=1000). Green = early plant colonization +
C/P=2000 + biotic effects on silicate weathering. Yel-
low = early plant colonization + biotic effects on sili-
cate weathering + 50% increase in P weathering. Red
= early plant colonization + C/P=2000 + biotic effects
on silicate weathering + 25% increase in P weath-
ering. Black = early plant colonization + C/P=2000
+ biotic effects on silicate weathering + spikes of P
weathering.

(20-22), and this could be sustained on longer timescales if they
preferentially weather phosphorus relative to alkalinity.

In existing models, the evolution of trees starting∼385 Ma is
assumed to have led to the burial of high C/P organic material
in coal swamps (7, 8, 10), potentially augmented by increased
phosphorus weathering rates (10). The Carboniferous-Permian
peak in coal production has often been attributed to the evolu-
tion of lignin synthesis and a lag before the evolution of fungal
degradation of lignin (23), but recent work has questioned this
(24). Earlier plants possessed lignified ‘woody’ tissue (25), with
precursor structures existing in marine algae before the transition
to land (26), and lignin-degrading fungi potentially present before
the Carboniferous (24). Carboniferous coals are not dominated
by lignin, instead their accumulation was controlled by a com-
bination of climate and tectonics supporting the creation and
sedimentary preservation of peat bogs (24, 27). Given that earlier
plants developed peatlands (28), and had rock weathering capa-
bilities (20, 21), they could also have affected the global carbon
cycle (18, 20).

Results and discussion
To test our hypothesis we revised the COPSE biogeochemical
model (10) to better capture the early rise of plants and examine
under what conditions it could explain the geochemical data
(persistent rise to δ13C ∼2‰ and the appearance of charcoal).
The original baseline model (10) predicts early Paleozoic O2
∼0.23 PAL at a reference time of 445Ma, supported by an organic
carbon burial flux of∼4x1012 mol yr-1 (about half the present day
value) with δ13C = 0.03‰. In this stable state, oxidative weath-
ering of ancient organic carbon is correspondingly reduced and
its sensitivity to changes in O2 provides a key negative feedback
stabilizing O2. Key assumptions going into altering the forcing
of the model are the global extent and associated productivity
of early plants, the C/P ratio of plant material that was buried,
and their effect (if any) on phosphorus weathering. To help
parameterize these factors we drew on a mixture of experiments,
existing data, and more detailed spatial modelling.

Weused a trait-based spatialmodel of cryptogamic vegetation
(i.e. bryophyte and lichen) cover (29, 30) driven by Late Ordovi-
cian climate simulations (31) at different atmospheric CO2 levels
to predict the potential global net primary productivity (NPP) of
the early plant biosphere (32). At atmospheric CO2 = 8 PAL,
consistent with Late Ordovician glaciations (20), predicted global
NPP is ∼19 GtC yr-1 (figure 2), ∼30% of today. Predicted NPP
is sensitive to variations in CO2 and climate (figure S1), ice sheet
cover (figure S2), andO2 (table S2), but is consistently higher than
the 4.3 GtC yr-1 (7% of today) estimated elsewhere (33). In the
original COPSEmodel (10), predicted NPP only reaches∼5% of
today’s value in the Late Ordovician and Silurian, but when we
assume a stronger late Ordovician phase of land colonization by
non-vascular plants (following (20), see SI), then COPSE predicts
global NPP 30-40% of today (figure 3a), consistent with the
detailed spatial model. In COPSE, this advent of early land plants
alone, with no assumed effect on weathering fluxes, and assumed
C/P=1000, increases total organic carbon burial by ∼25%, δ13C
by 0.5‰, and atmospheric O2 by 0.11 PAL (figure 3, blue).

We undertook a literature review ofmolar C/P ratios in extant
bryophytes (table S3) to test whether C/P=1000 is a reasonable
assumption for early plants. This gives a range of C/P=800-4300
with a mean of C/P ∼1900. Furthermore, early Devonian coaly
shales indicate extensive peatlands 410-400 Ma and have C/N of
44-119 (28), comparable to that in modern peatlands where N/P
and C/P ratios tend to increase with depth to C/P >3000 (34).
Taken together these data suggest that assuming C/P=1000 for
early plants is conservative. If instead we assume that buried early
plant matter had C/P=2000, then given their productivity, even
with no effect on weathering fluxes, this increases global organic
carbon burial by∼50%, δ13C by 1.1‰ and atmospheric O2 by 0.27
PAL (figure 3, cyan).

Early plants could also have had a significant effect on
weathering fluxes (20), as they and their fungal mycorrhizal sym-
bionts evolved means of accessing rock-bound nutrients, notably
phosphorus. Experimental work (20) has shown that a modern
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non-vascular plant, the moss Physcomitrella patens amplifies the
weathering of Ca ions 1.4-3.6 fold and Mg ions 1.5-5.4 fold from
silicate rocks (granite-andesite), and amplifies the weathering
of phosphorus from granite ∼24(15-43) fold (see Materials and
Methods). Subsequent experiments (21) with the modern liver-
wort Marchantia paleacea found a 2.5-7 fold amplification of Ca
weathering and a 9-13 fold amplification of P weathering from
basalt. Both studies thus indicate preferential weathering of P
relative to Ca and Mg (and corresponding alkalinity). The pres-
ence of these rock weathering capabilities in two early-diverging
lineages (mosses and liverworts) suggests it is an ancestral trait.
It has been argued (21, 33) that such large measured local effects
would not have scaled up to significant global effects, because of
low global NPP (33) and a limited depth of influence in the soil
(21). However, we estimate much higher global NPP (figure 2)
andweathering potential (32).We also note that extensive shallow
water phosphate deposits in the Late Ordovician (35) indicate a
marked increase in phosphorus input to the ocean (20).

If we include in COPSE an effect of early plants on silicate
weathering following (20), assuming C/P=1000, this increases
organic carbon burial by ∼35%, δ13C by 0.7‰, and O2 by 0.18
PAL (figure 3, magenta). The effect on O2 is constrained because
atmospheric CO2 and temperature are reduced (20) such that
the silicate weathering flux (and associated phosphorus flux)
continues to match the degassing flux of CO2 (figure S3). How-
ever, increases in carbonate weathering (enhanced by plants) and
oxidative weathering (due to the rise in O2) increase the overall
phosphorus weathering flux, roughly doubling the O2 rise due to
terrestrial production of high C/P material alone. Assuming that
buried early plant matter had a higher C/P=2000 causes larger
increases in total organic carbon burial ∼60%, δ13C +1.2‰, and
atmospheric O2 +0.35 PAL (figure 3, green).

However, to reproduce the observed δ13C +2‰ excursion
requires the inclusion of some selective weathering of phosphorus
by early plants. Assuming that early plants caused a sustained
50% increase in phosphorus weathering relative to bulk rock
dissolution, with C/P=1000, increases total organic carbon burial
by ∼95%, δ13C by 2.2‰ and O2 by 0.74 PAL (to 0.97 PAL at
417 Ma) (figure 3, yellow). Assuming a sustained 25% increase
in phosphorus weathering relative to bulk rock and C/P=2000,
increases organic carbon burial by ∼90%, δ13C by 2.1‰ and O2
by 0.67 PAL (figure 3, red). Alternatively, a series of P weathering
spikes designed to reproduce the observed sequence of positive
δ13C excursions (figure 1), combined with C/P=2000, produces
a series of spikes in organic carbon burial and a peak increase
of O2 of 0.72 PAL at 407 Ma (figure 3, black). We hypothesize
that these assumedweathering spikes could reflect phases of plant
colonization (20, 36) followed by the establishment of phosphorus
recycling ecosystems (20). However, direct evidence linking a
phase of land colonization to enhanced weathering and a positive
δ13C excursion has only thus far been established for the Silurian-
Devonian boundary excursion (36). Therefore alternative hy-
potheses for short-lived positive δ13C excursions should also be
considered.

Regarding the simulated long-term ∼2‰ rise in δ13C this
is smaller than would be expected from standard application
of the simplified formula: δ13C(ocean) = δ13C(river) + f org∙ε,
where f org is the fraction of carbon buried as organic matter,
ε is the fractionation between carbonates and organic matter,
and both ε and δ13C(river) are usually assumed to be constant.
In our COPSE simulations there is a fully interactive isotope
mass balance and these terms are not constant. The approximate
doubling of organic carbon burial (with roughly constant car-
bonate burial) represents an increase from f org = 0.18 to f org =
0.31. However, the increase in burial of isotopically-light organic
carbon is counteracted by an increase in the oxidative weathering

of isotopically-light organic carbon, which lowers the δ13C of
riverine input to the ocean from ca. -5‰ to ca. -7.5‰. This in turn
is partially counteracted by an increase in fractionation between
carbonates and organic matter from ε∼ 27‰ to ε∼ 30‰, due to
increasing O2 (somewhat counteracted by declining CO2).

Sensitivity analyses (see SI) indicate that our results are
robust. Varying the uplift and degassing forcing of the model
within plausible bounds only causes ±0.08 PAL variation in O2
about the initial state (figure S4), although it does cause the effect
of the same early plant forcing scenario to range over +0.4-1.0
PAL O2 (table S4). Including an additional negative feedback on
O2, from increased marine organic C/P burial ratios under anoxic
waters (37), increases its initial early Paleozoic level to 0.54 PAL
and reduces the effect of the same biological forcing scenarios
on O2 by ∼10-30%, giving a maximum increase of +0.63 PAL
(table S5). However, because the initial O2 is now higher, the
final O2 is also higher in all cases, and even scenarios without
selective weathering of phosphorus could explain the appearance
of charcoal (O2 >∼0.7 PAL).

Our model makes additional predictions that can be tested
against geochemical data, notably it predicts a decline in pyrite
sulfur burial and associated drop in δ34S and increase in seawater
[SO4] and C/S burial ratio with the rise of the earliest plants
(figure S5). This is broadly consistent with the sulfur isotope
(δ34S) record (38-40), which shows a marked decline through the
Silurian-earlyDevonian from∼30‰ to∼18‰, although available
data also suggest an earlier late Ordovician-early Silurian rise
from∼25‰ to∼30‰, which the present model does not capture.
The model is consistent with proxy reconstructions of seawater
[SO4], which suggest an Ordovician-Silurian rise from ∼6 mM to
∼10 mM (41), and with a Silurian increase in the molar C/S ratio
of shales from ∼5 to ∼16 (15).

Other processes not yet included in the model warrant future
consideration, for example the effect of increasing atmospheric
mass on climate (42), and the effect of weathering forcing sce-
narios on δ7Li and 87Sr/86Sr, which enable additional tests against
data.

Conclusion
Our model can only reproduce Paleozoic geochemical data if

the rise of the earliest land plants caused a major oxygenation
event of the Earth’s atmosphere and oceans by ∼400 Ma. We
attribute this mid-Paleozoic oxygenation event to a persistent
global increase in organic carbon burial supported by the highC/P
ratio of early land plant material, augmented by a plant-driven
increase in P weathering flux relative to the weathering flux of al-
kalinity. The δ13C record suggests this increase in organic carbon
burial was essentially permanent, producing a new dynamically
stable state for atmospheric O2. In this new steady state, oxidative
weathering was increased (becoming less sensitive to variations
in O2) and new fire-mediated negative feedbacks on O2 were
instigated that have played a key role in stabilising atmospheric
O2 concentration up to the present day (22, 43). For the earliest
land plants to be responsible for such a major mid-Paleozoic
oxygenation event requires that they were much more productive
and globally extensive than has been previously assumed (7, 10,
33). This hypothesis makes testable predictions with regard to
effects on other biogeochemical cycles, notably sulfur. If it stands
up to further scrutiny, then we can infer that the earliest land
plants created a stable oxygen-rich atmosphere that was necessary
for the subsequent evolution of large, mobile, intelligent animals
with a high respiratory oxygen demand – including ourselves.

Materials and Methods:
Data compilation: The early charcoal record (table S1) was compiled from
the literature (11, 12, 28, 44-72), utilizing existing compilations (12, 44-
47) and checking them where possible against the original sources. This
involved some reconciling of disparate results between existing compilations
and revision of some erroneous quoted values. Where recalculations were
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warranted, inertinite percentages were calculated on a mineral-matter-free
(mmf) basis, following (45, 47).

The molybdenum isotope record from marine shales was updated from
(9) with data from (73, 74). Uncertainties shown in figure 1 represent 2
standard deviation of the mean (analytical precision) plus the propagated
uncertainty from matching in-house reference materials to the universal
standard NIST SRM 3136 where seawater display δ98/95Mo = 2.3‰ (see (75,
76)). The redox state of the host shales was determined using either Fe-
speciation or Mo-enrichment proxies. Euxinic shales are defined (77) by the
Fe-speciation proxy when FeHR/FeT > 0.38 and FeP/FeHR > 0.7 (black circles
in figure 1). Euxinic shales are defined (78, 79) by the Mo enrichment proxy
when Mo > 25 ppm (white circles in figure 1). Ferruginous shales (77) are
defined by the Fe speciation proxy when FeHR/FeT > 0.38 and FeP/FeHR <
0.7.

The carbon isotope record (17) was fitted with a smoothed spline
function in Matlab; spline = csaps(age, δ13C, rho), where ρ = 0.99 (close to
data, but the curve in figure 1 does not go through each data point).

The C/P ratio of extant bryophytes (table S3) was compiled from data
in the literature (34, 80-88). Where only values of mg P/g biomass were
available, a value of mg C/g biomass = 430 was assumed based on the mean
value across 6 bryophyte species from (89). Results for molar C/P ratios are
given to 2 significant figures, given the uncertainty in the input data, except
where authors themselves provide more precise values.

Ecophysiological model of cryptogamic vegetation: We used a trait-
based spatial model of cryptogamic vegetation (i.e. bryophyte and lichen)
cover to estimate the potential global net primary productivity (NPP) of
the early non-vascular plant biosphere (29, 30). The Late Ordovician (445
Ma, Hirnantian Stage) setup of the model is fully described elsewhere (32).
The model is driven by existing Late Ordovician climate simulations (31),
conducted at a range of different atmospheric CO2 and O2 concentrations.
Initially, we assume atmospheric O2 = 0.6 PAL (∼14 vol.%) at 445 Ma, which
is consistent with those COPSE model simulations (figure 3d) that go on
to produce O2 levels consistent with the fossil charcoal record. We also
initially assume atmospheric CO2 = 8 PAL, which is a widely quoted value
consistent with the occurrence of Hirnantian glaciations at 445 Ma (20), and
is consistent with those COPSE model simulations that assume an effect of
early plants on silicate weathering following (20). We explored the sensitivity
of predicted global NPP to variations in atmospheric CO2 and corresponding
climate state (figure S1), to constraining vegetation cover with extensive Late
Ordovician ice sheet cover (figure S2), and to varying O2 in combination
with CO2 (table S2). The relatively high global NPP results obtained are
consistent with present day cryptogamic covers providing ∼7% of global
NPP, despite making up only 1% of terrestrial vegetation by mass (90), and
being restricted to relatively resource-poor habitats, whilst also operating in
an atmosphere with a low CO2/O2 ratio.

Experimental P weathering calculation: In our previously reported (20)
weathering experiments with granite, the mean amounts of phosphate
weathered into aqueous solution were: control microcosms = 0.0137 μmol
P, biotic microcosms = 0.0726 μmol P. The mean moss biomass in the biotic
microcosms was 14.390 mg, which assuming 0.43 gC/g biomass and C/P = 2000
(table S3) suggests 0.26 μmol P in biomass, or for C/P = 1000-4000, 0.13-0.52
μmol P in biomass. This gives a biotic P weathering amplification factor ∼24
(range 15-43), whereas previously we suggested up to 60 (20). Clearly these
estimates are dominated by the unmeasured P content of biomass. However,
the P weathering amplification factor has to be >5.3 (the ratio of dissolved
phosphate entering solution in microcosms with moss to those without),
which is already considerably greater than the amplification factors for Ca
= 1.4 and Mg = 1.5 from granite, indicating selective weathering of P.

COPSE model: We used the COPSE model (10, 20) to study the effects of
the early rise of land plants on the coupled biogeochemical cycles of C, O, N, P
and S, including the δ13C record. The model is described in full in (10) and the
version used here incorporates the changes in model structure described in
(20). The model has several forcing parameters, including solar luminosity,
the geological factors degassing (D), and uplift (U), and the biological
forcing factors evolution/colonization (E), enhancement of weathering (W),
selective phosphorus weathering (F), and changes to the C/P burial ratio of
terrestrially-derived material (CP). The geologic and biologic forcing factors
are all normalized to 1 at the present day, except C/P = 1000 at present
day. Our overall modelling strategy was to try and reproduce key changes
in the δ13C record with plausible biological and geological forcing scenarios,
constrained where possible by available data. We focused initially on altering
the biological forcing scenario whilst using the original geological forcing
scenario. Then in a sensitivity analysis we considered uncertainty in geologic
forcing (91), and alternative initial conditions (altering the feedback struc-
ture of the model). The forcing scenarios and sensitivity analyses are detailed
in the SI Materials and Methods.
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