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ABSTRACT 

Telecare is increasingly used to remotely monitor long-term conditions such as congestive heart 

failure (CHF) and provide interventions based upon the data collected.  In order to improve health 

care efficiency, there remains a need for decision support tools to automate this monitoring 

function and help guide interventions; this study sought to develop such a tool. Data was obtained 

from 45 elderly individuals with CHF who participated in a telecare trial for an average duration 

of 18 months.  Physiological data along with subjective health perspectives and symptoms were 

reported. Clinicians responded to abnormalities in the data resulting in 154 key medical 

interventions/events.  A multivariate logistic regression model was developed to predict these 

medical interventions/events.  The developed model correctly predicted key medical events in 

75% of cases with a specificity of 74% and an overall cross-validated accuracy of 74% [68-80%, 

95% confidence interval].  Key predictors included:  number of system alerts, self-rated mobility, 

self-rated health, and self-rated anxiety, strongly suggesting the utility of subjective measures in 

addition to physiological ones for prediction of health status.  Overall this study demonstrates the 

potential of a multivariate decision-support model to enhance predictions of medical need in CHF 

patients using home-based telecare systems.   

 

INTRODUCTION 

In the United States alone, 4.8 million lives are affected by chronic heart failure (CHF), which 

accrues health care costs of $38.1 billion annually [1].  Regular monitoring is especially pertinent 

to the management of CHF wherein signs of diminishing health may be subtle and difficult to 

recognize by patients and their caregivers alone [1,2].  Nevertheless, it has been suggested that 

many of these symptoms of worsening health (i.e. edema, dyspnoea, weight gain) present 8 to 12 

days before hospitalization [3].  Telecare systems present the opportunity to address this issue in a 

cost-effective and patient-acceptable way [3,4].   



 3 

Despite growing interest and investment in this area, there remain numerous questions as to 

how to achieve the greatest increase in clinical and cost effectiveness [5]. For instance, questions 

remain as to the predictors that are most indicative for a particular cardiovascular population [6].  

In this paper, we ask:  how well can need for medical intervention be predicted by a telecare 

monitoring system based on self-rated health-related quality of life (HQOL), physical symptoms, 

lifestyle, and physiological measurements in individuals with CHF?   

 

METHODOLOGY 

Participants 

A review of Barnsley Hospital records identified potential participants for this study.  All 

participants had echocardiographic evidence of heart failure and conventional symptoms.  

Exclusion criteria included: (1) Ejection fraction >40%; (2) Unstable angina; (3) <60 years; (4) 

Debilitating dementia or psychiatric disorder; (5) Inability to comprehend words presented on an 

electronic screen; (6) Planned coronary revascularization procedures; (7) On a waiting list for 

heart transplantation; (8) Participation in another, conflicting heart failure research study within 

the past 6 months; (9) Lack of an operational home telephone line and electrical socket within 

close proximity; (10) Not living in the mainstream housing sector (e.g. residential or nursing 

care).  

Data collection 

Participants were provided with a Doc@Home (Docobo Inc, United Kingdom) health monitor 

through which they entered daily information pertaining to their symptoms and health status 

through a set of questions developed by the research and clinical team.  Daily physiological 

measurements of blood pressure, pulse rate, and weight were also entered using A&D UA-767 

Plus BT and Hanson HCV800 scales.  Twice weekly, patients also completed a health-related 

quality of life measure (EQ-5D [7]) directly on the Docobo unit, giving data on self-rated health 

(visual analogue scale), mobility, self-care, usual activities, pain/discomfort and 
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anxiety/depression. Data were transmitted nightly through telephone lines and screened for 

abnormalities.  If data fell outside user-specific parameters, clinicians were notified. This 

therefore provided two additional sets of data:  (a) daily record of system alerts generated by the 

Doc@Home system in accordance with the parameters listed in Table 1, and (b) qualitative log of 

clinical interventions and medical events recorded by the monitoring healthcare practitioners.   

Data analysis 

Data analysis was conducted using SPSS 14.0 statistical software with a standard significance 

level of p=0.05.  Logistic Regression (LR) [8-12] was used to predict the occurrence of key 

medical events/interventions as extracted from the healthcare practitioner logs.  For each week of 

the study duration, the average/median values of predictor variables were calculated, the number 

of system alerts was enumerated, and the presence of a key medical event or intervention was 

noted from the logs of monitoring healthcare practitioners.  The rationale motivating this 

approach was two-fold: 

(1) Data was collected with varying frequency (either weekly, twice a week, or daily).   

(2) A time lag was evident between user-inputted data, generated system alerts, and nurse 

response.    

Stepwise, forward selection based on the log likelihood ratio was used to avoid over-fitting the 

model [8]. The importance of all potential interactions was evaluated via the likelihood ratio test. 

Lastly, the model’s “goodness of fit” was assessed based on changes in deviance (i.e. > 4 

indicates poor fit [12]).       

Models were evaluated using K-fold cross validation with K=10.  Due to the large 

number of non-events (i.e. a meaningful healthcare intervention was not required) in comparison 

to key events (i.e. a meaningful healthcare intervention was required), over-sampling [13,14] was 

used to obtain a balanced data set.  The approximate proportion of key events to non-events was 

maintained in each test set.  Model sensitivity (i.e. the proportion of key events that were 

correctly classified), specificity (i.e. the proportion of non-events that were correctly classified), 
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and overall prediction accuracy were calculated and used to evaluate the performance of the 

model. 

Ethics  

This study received NHS research ethics approval and research governance approval from 

Barnsley Hospital.  

 

RESULTS 

Summary of participants  

Of the 45 participants, six individuals passed away during the course of the study and eight 

returned their equipment.  The average duration of data collection was 18  5 months. Detailed 

description of patient characteristics is presented in Table 2.      

 

Predicting need for medical intervention 

8576 alerts were generated by the telecare monitoring system based on self-reported symptoms, 

lifestyle, and physiological measurements.  In the majority of cases, response to system alerts did 

not require patient and service provider interaction. When system alerts were considered of 

greater severity, or if symptoms persisted, the patient was contacted.  171 key medical events (6 

deaths; 28 hospital admissions; 59 changes in medication; 54 advice given; 24 instances where 

immediate medical attention was recommended) were recorded in the monitoring logs.  As such, 

there were 154 weeks during which one or more key medical events occurred and 2779 weeks 

during which no key medical events were observed for the participants.  Generation of a system 

alert and subsequent response by a healthcare practitioner was not considered a key medical event 

unless a specific action was actually required and taken (i.e. false alarms were not counted as key 

medical events).  In order to obtain an approximately balanced data set, key medical events were 

over-sampled by a rate of 18 times.  The average number of medical events experienced per 

patient per year was 3.5 ± 4 (with a median of 2 and an interquartile range of 1-4).  The average 
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number of non-key alerts generated per patient per year was 49 ± 4 (with a median of 49 and an 

interquartile range of 47-51).  The average percentage of total alerts that were identified as key 

medical events was 6.4 ± 4% (with a median of 4% and an interquartile range of 1.4%-8%).   

Table 3 summarizes the univariate significance of predictor variables.  All variables with 

a p-value < 0.1 were examined for inclusion in the logistic regression model as per guidelines 

prescribed in [12].  Some of the variables listed in Table 3 were highly correlated.  For example, 

self-rated mobility and self-rated pain were also shown to be highly correlated (r = 0.742, 

p<0.01).  In these cases, the strongest predictor in the group of correlated variables was selected 

for inclusion in the model.      

Table 4 presents the optimal multivariate logistic regression model for prediction of key 

medical interventions/events.  The number of alerts generated by the system emerged as the 

primary predictor.  As evident by the odds ratio (e
β = 1.196) listed in Table 4, for every additional 

system alert generated, the probability of a key medical event increased by 19.6%.  Alone, this 

variable predicts 82% of non-events and 61% of key events with an unadjusted coefficient of β = 

0.183.  The addition of subjective factors (i.e. self-rated mobility, health, and anxiety) improved 

prediction significantly (log likelihood ratio, p<0.001).  Figure 1(a) presents the ROC (receiver-

operator curve) for this revised model.  With a classification cut-off probability of 0.5, the overall 

cross-validated prediction accuracy was 74% [68-80%, 95% confidence interval]. Most 

importantly, the sensitivity (i.e. prediction of key events) was increased from 61% to 75% with a 

specificity (prediction of non-events) of 74%.  With a maximum sensitivity of approximately 

80%, the specificity drops to 67% (cut-off = 0.62).  Figure 1(b) presents the sensitivity and 

specificity of the model for a range of classification cut-off values.  Of the data, 100% of key 

medical events and 97% of non-events were well-fitted (i.e. change in deviance <4).  

Approximately 72% of poorly fitted data points were associated with four particular participants.  

A significantly higher number of daily system alerts (1.5  0.5) were associated with these 

patients as compared to the average (0.5  0.5), p<0.001. 
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Lastly, a breakdown of all the daily system alerts (N=8576) generated by the telecare 

monitoring system indicates that a large proportion of the total number of alerts was attributable 

to the physiological measurements, namely pulse rate, blood pressure and weight gain.  In 

response to these alerts, monitoring practitioners typically flagged the patient for elevated 

observation.  If the symptom persisted, a phone call was made to ascertain the health of the 

patient and possible reasons for the physiological change (e.g. over-eating, an unrelated cold, 

etc.).  In approximately 86% of cases, alerts generated by these physiological measures were not 

accompanied by a key medical event/intervention.  Alerts pertaining to physical and 

psychological symptoms, such as anxiety, swollen ankles, and need for extra pillows at night, 

were most often correct in predicting a key event (Figure 2). 

    

DISCUSSION 

Key Findings 

The model predicted key medical events/interventions with an overall cross-validated accuracy of 

74% [68-80%, 95% confidence interval].  With a classification cut-off probability of 0.5, the 

sensitivity of the model was 75% and the specificity was 74%.  To minimize the risk of not 

identifying need for medical intervention, a higher classification cut-off probability could be 

used; this increase in sensitivity is of course accompanied by a decrease in specificity (i.e. more 

false alarms).  Of note, the strongest predictor in this model was the cumulative number of system 

alerts generated in a given week.  When considering Figure 2, it is the system alerts stemming 

from patients’ subjective descriptions of their symptoms as opposed to the physiological metrics 

that are most indicative of need for medical intervention.  This implies that patients are giving 

medically meaningful reports of their symptoms.  With additional predictors based on subjective 

health perceptions (i.e. self-rated mobility, health, and anxiety), correct predictions of key 

medical events are improved from 61% to 75%. Consequently, in order to increase the 

effectiveness of telecare systems, it may be important to record more than just physiological 
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parameters. Further research to objectively explore an even wider range of potential predictors is 

needed to identify those most effective for identifying need for health intervention. 

The performance of the model’s predictions was compared to the clinicians’ responses.  

To estimate the positive predictivity (i.e. the ratio of true key events to the total number of key 

events predicted) of the clinicians, the assumption was made that contact with a patient that 

ensued from a medical concern, but did not result in a key intervention, was a “false alarm” or a 

“false positive”.  Within the context of this definition, the positive predictivity was estimated at 

39% for clinicians as compared to 75% for the decision-support model.  Of note, two thirds of all 

“false alarms” generated by the model (i.e. incorrectly predicted key events) were instances 

where the clinician involved also demonstrated a heightened concern for the patient and decided 

to increase monitoring of and/or contact the patient based on the information collected.  This 

suggests that, although incorrect in its prediction of a key medical event in these cases, the 

decision-support model did identify instances of elevated risk in line with clinicians’ assessments.                      

Clinical Significance 

It is important to emphasize that predictive models should be regarded as a useful tool to 

assist, not supercede, clinical decision making and prioritizing.  It is further noted that “non-key 

interventions” (i.e. contact with patients that did not result in a tangible medical intervention), 

may still have rendered a meaningful healthcare service by promoting patient satisfaction, 

increasing confidence in the quality of care provided, alleviating feelings of social isolation, 

increasing perceived social support, encouraging adherence to treatment recommendations, 

addressing a co-morbidity or other issue, and improving clinician-patient relationships.  All of 

these social and healthcare perceptions have been implicated as factors in hospital re-admission 

rates, mortality, and/or quality of life in CHF patients [1,2,15-18].  Increasingly, emphasis is 

being placed on patients with CHF to self-care through initiatives such as the Expert Patient 

Programme [19]. It could be that telecare systems with predictive modeling could further 

complement such initiatives to ensure the best possible outcomes for patients and the funders of 
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health care systems. After all, early identification of high-risk patients, improved home care, and 

education on heart failure and self-management, are fundamental strategies to decrease morbidity 

and mortality among patients, and to alleviate the economic burden accrued by frequent hospital 

re-admissions [20-22].      

Study limitations and areas for future work  

This study explored the development of a practical decision-support tool that incorporates a 

mixture of physiological measurements, physical symptoms and subjective perspectives on health 

and well-being.  As such, we have identified a few important predictors of health status and have 

explored the factors framing self-rated HQOL.  Larger data sets will enable the development of 

more accurate, robust, and generalized models that can predict not only the occurrence of a key 

medical event and/or need for intervention, but the level of severity of the event.       

Logistic regression does not account for the longitudinal nature of the data.  It is a “safe” 

estimate in that it is more likely to include potentially unimportant variables, as opposed to 

exclude important predictors [23].   Although the odds ratios are likely to be comparable, 

standard errors may be underestimated in comparison to methods that account for repeated 

measures such as generalized estimating equations (GEE) [23].  The latter approach, however, 

requires the assumption that missing data occur completely at random and independent of the 

outcome variable.  In our study, missing data were commonly due to hospitalization and the 

patient’s inability to access their Doc@Home system.  For comparison purposes, a GEE model 

was constructed.  Systems alerts and self-rated mobility emerged as the primary predictors with 

odds ratios comparable to those of the simple logistic regression model.  As expected, the 

standard errors (SE) calculated through GEE were significantly larger for both system alerts (SE= 

0.017) and self-rated mobility (SE=.225).  The goodness-of-fit measure, the Corrected Quasi 

Likelihood under Independence Model Criterion (QICC), for the GEE model incorporating 

system alerts and self-rated mobility was slightly higher (QICC=934) than the model which also 

included self-rated health and self-rated anxiety (QICC=889).  This implies that the latter two 
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variables, although not statistically significant predictors, may contribute to the goodness-of-fit of 

the GEE model.           

The necessity of carrying out analyses on a weekly basis to account for time delays 

between user inputs, system response, and clinical action, should also be noted.  Inconsistent 

adjustments of system parameters by monitoring practitioners may also have been an issue.  For 

example, for some individuals whose physiological measurements had greater acceptable 

fluctuations than others, system parameters were changed to eliminate superfluous alerts, while 

for others, these alerts were simply ignored.  This may have affected the model fit and issued a 

higher number of false alarms.  Differences in each individual’s ability to self-manage (e.g. 

medication, diet) are also not captured in this analysis.  It is also possible that some individuals 

may be more in tune with their health needs than others and that the model could be refined on an 

individual-by-individual basis to reflect patient variations in sensitivity or anxiety regarding 

perceived symptoms.  It remains to be seen how and if this decision-support model applies on a 

daily or continuous basis, as is ideal for rapid identification of high-risk individuals and prompt 

provision of medical interventions.   

 

CONCLUSIONS 

From this study, four important conclusions emerged with respect to the performance and 

development of telecare systems.  Firstly, current systems for health monitoring are useful in 

indicating when medical interventions are needed.  Secondly, the performance of these systems 

can be improved by including targeted questions relating to health outcomes.  Thirdly, self-

perceived symptoms and health status surfaced as valuable indicators contrary to current trends 

which focus on physiological measurements.  Lastly, the potential of a multivariate decision 

support model to supplement practitioners and current telecare systems in identifying CHF 

patients in need of medical intervention is demonstrated. Inclusion of such systems in real time 

could enhance system effectiveness, enable preventative healthcare, and increase practitioner 
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efficiency. These developments could result in a step change in performance of telecare systems 

and therefore provides an important insight into present and future developments in the delivery 

of community based services to people with CHF and possibly other long term conditions.              
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Table 1.  Default criteria used by the monitoring system to generate system alerts.  Specific 

parameters could be tailored to each individual as appropriate. 

 

Health Factor Query Alert generated if… 

Daytime shortness of breath More than usual 
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Night time shortness of breath More than usual 

Need for extra pillows Yes 

Swollen ankles More than usual 

Bloated stomach More than usual 

Dizziness More than usual 

Urine excretion Less than usual + increased dizziness + increased 

bloating 

Cough New or worse than usual 

Weight gain If weight increases 2lbs since previous day or if 

weight increases 3lbs in a rolling 7 days 

Systolic blood pressure If below 100mmHg or drops by 20mmHg from 

previous reading 

Pulse rate If below 55 or above 120 

Diet (i.e. eating well) No or “less than usual” for a consecutive 7 days 

Medication taken No 

Angina More than usual 
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Table 2:  Summary of patient characteristics 

 

Population Characteristic Participants (N=45) 

Gender 

Male 

Female 

 

83% 

17% 

NYHA classification 

2 

2-3 

3 

 

43% 

17% 

40% 

Age (years) 

60-64 

65-69 

70-74 

75-79 

80-84 

85-89 

 

9.5% 

26% 

26% 

24% 

9.5% 

5% 

Living Arrangements 

Alone 

With partner/spouse 

More than 2 people in household 

 

26% 

62% 

12% 

Smoking 

Non-smoker 

Smoker 

 

82% 

18% 

Exercise 

None 

Light 

Moderate 

 

67% 

28% 

5% 

Number of prescribed medications 

<5 

5-10 

11-15 

>15 

 

13% 

59% 

23% 

5% 
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Table 3.  Variables considered as predictors of key medical events/interventions based on 

univariate statistical significance (Chi-squared test for binary predictors; independent t-test for 

continuous) 
 

 

Variable Scale p 

Number of system alerts Continuous <0.001 

Quality of sleep Binary (0-as usual or more; 1-less than usual or none) <0.001 

Extra pillows needed Binary (0-no; 1-yes) <0.001 

Short of breath (day) Binary (0-as usual or less; 1-more than usual) <0.001 

Diet Binary (0-as usual or more; 1-less than usual) 0.001 

Cough Binary (0-as usual or none; 1-new or worse cough) <0.001 

Weight Binary (0-within parameters; 1-outside of parameters) <0.001 

Fatigue Binary (0-as usual or less; 1-more than usual) <0.001 

Self-rated health Continuous <0.001 

Self-rated mobility Binary (0-no problems; 1-some problems or unable) 0.001 

Self-rated anxiety Binary (0-none; 1-moderate or extreme) 0.002 

Exercise Binary (0-some exercise; 1-No exercise) 0.002 

Self-rated pain Binary (0-none; 1-moderate or extreme) 0.012 
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Table 4.  Logistic regression model for prediction of key medical interventions/events. 

 

Variables Coefficient 

(β) 

Standard 

Error 

Wald p Odds Ratio (e
β
)  

[95% CI] 

System Alerts 0.179 0.008 545.1 <0.001 1.196 [1.178-1.214] 

Self-rated Mobility  0.441 0.093 23.3 <0.001 1.559 [1.299-1.871] 

Self-rated Health -0.009 0.002 16.8 0.012 0.991 [0.986-0.995] 

Self-rated Anxiety 0.144 0.084 3.6 0.192 1.157 [0.982-1.364] 

Constant -0.863 0.216 17.1  0.436 

 

 

 

Figure 1.  Performance of the logistic regression model predicting key medical 

interventions/events.   (a) Receiver-operator curve (ROC)  (b) Model sensitivity and specificity 

for a range of classification cut-off values. 
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 Figure 2.  Breakdown of the total number of system alerts generated by class (e.g. weight gain, 

increased anxiety, worsened cough etc.).  For each class of alert, the proportion with which it was 

associated with a key medical intervention/event is indicated (in black) as compared to a non-key 

alert (in grey).  For example, reports of increased dizziness generated 339 alerts during the course 

of this study.  In approximately 15% of cases, this symptom was associated with a key medical 

intervention/event, whereas in 85% of cases, it was not associated with a key medical 

intervention/event.     
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