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Abstract Increased interest over the levels of pharma-

ceuticals detected in the environment has led to the need

for new approaches to manage their emissions. Inappro-

priate disposal of unused and waste medicines and release

from manufacturing plants are believed to be important

pathways for pharmaceuticals entering the environment.

In situ treatment technologies, which can be used on-site in

pharmacies, hospitals, clinics, and at manufacturing plants,

might provide a solution. In this study we explored the use

of Pyropure, a microscale combined pyrolysis and gasifi-

cation in situ treatment system for destroying pharmaceu-

tical wastes. This involved selecting 17 pharmaceuticals,

including 14 of the most thermally stable compounds

currently in use and three of high environmental concern to

determine the technology’s success in waste destruction.

Treatment simulation studies were done on three different

waste types and liquid, solid, and gaseous emissions from

the process were analyzed for parent pharmaceutical and

known active transformation products. Gaseous emissions

were also analyzed for NOx, particulates, dioxins, furans,

and metals. Results suggest that Pyropure is an effective

treatment process for pharmaceutical wastes: over 99 % of

each study pharmaceutical was destroyed by the system

without known active transformation products being

formed during the treatment process. Emissions of the

other gaseous air pollutants were within acceptable levels.

Future uptake of the system, or similar in situ treatment

approaches, by clinics, pharmacists, and manufacturers

could help to reduce the levels of pharmaceuticals in the

environment and reduce the economic and environmental

costs of current waste management practices.

Keywords Pharmaceutical waste � Thermal

decomposition � Pyrolysis–gasification � Stewardship �

Take-back strategy � Antimicrobial resistance

Abbreviations

(PGWTS) Pyrolysis–gasification waste treatment system

Introduction

Active pharmaceutical ingredients (APIs) have been

shown to persist in ground, surface, and drinking waters,

and have been detected in these water bodies around the

world; there is growing concern that these residues can

adversely impact the health of ecosystems (Musson and

Townsend 2009). It has generally been assumed that

excretion by treated individuals is the main source of

pharmaceuticals in the environment (Ort et al. 2010).

However, there is now increasing recognition that other

pathways of exposure such as emissions from manufac-

turing and the inappropriate disposal of unused medicines

could be contributing to the problem (Tong et al. 2011;
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Daughton and Ruhoy 2009; Daughton 2003; Daughton

and Ternes 1999; Larsson 2014; Seehusen and Edwards

2006; Musson et al. 2007).

Medicines can go unused for various reasons including

changes in dosage, discontinuation due to side effects, or

because the product has reached its expiry date (Boxall

et al. 2014). Across several western countries, it has been

estimated that anywhere between 3 and 65 % of prescribed

pharmaceuticals are not used by the patient (Musson and

Townsend 2009; Braund et al. 2009; Seehusen and

Edwards 2006). The majority of these unused medicines

will be disposed of down the toilet or sink to the sewerage

system, or in the household waste to landfill (Vellinga et al.

2014; Glassmeyer et al. 2009). In some regions, these two

pathways of disposal are the routes that are recommended

to the public (Musson et al. 2007). A percentage of the

pharmaceuticals released to the sewerage system can pass

through wastewater treatment plants (WWTPs) to receiv-

ing surface waters, thus adding to the environmental load.

APIs sent to landfills can leach through the site and con-

taminate groundwater (Musson and Townsend 2009; Uni-

ted States Geological Survey (USGS) 2014; Rodrı́guez-

Navas et al. 2013; Heim et al. 2004; Schwarzbauer et al.

2002; Barnes et al. 2004; Eckel et al. 1993; Holm et al.

1995). As landfill leachate is often transported to WWTPs,

APIs sent to landfill can also find their way into rivers and

streams (Lubick 2010). Disposal of unused pharmaceuti-

cals or pharmaceutically contaminated waste to landfill

could also pose a risk to wildlife which scavenge off these

sites, as demonstrated by the poisonings of avian scav-

engers by sodium pentobarbital contained in euthanized

animal carcasses (Langelier 1993; Thomas 1999; Russell

and Franson 2014; Boehringer 2004).

From an environmental perspective, the safest way to

dispose of unused medicines is to return them to the

pharmacy as part of ‘take back’ strategies, where they can

be collected and sent to be destroyed in a hazardous-waste

high-temperature incinerator (Boehringer 2004; Smith

2002). High-temperature incinerators are also used to treat

waste material from pharmaceutical manufacturing plants,

e.g., contaminated overalls, batches of APIs that do not

meet quality standards, and waste from cleaning machines.

Take-back strategies are in operation in a number of

regions, although the level of participation in these

schemes varies. Data collected in some of the most recent

studies into the use of take-back strategies found partici-

pation was highest in Sweden with 43 % of people sur-

veyed having returned unused medicines to the pharmacy

in the last 12 months (Persson et al. 2009; Tong et al.

2011). Participation was lowest in the USA with only

1.4–5.9 % (Glassmeyer et al. 2009; Kotchen et al. 2009).

A recent study in York (UK) found that 17 % of people

returned unused medicines to the pharmacy (Williamson

and Boxall 2014, unpublished data) which is similar to the

22 % obtained for a UK-wide study a decade previously

(Bound and Voulvoulis 2005). These data suggest there is

great spatial variability in take-back participation, but in

the UK at least, there has not been much change over

time.

However, take-back strategies can prove economically

costly, as the waste often has to be transported long dis-

tances to hazardous-waste incineration facilities. For waste

containing controlled substances, the transport has to be

secure, adding additional costs. In the UK, for example,

there are presently only 22 high-temperature incinerators

(DEFRA 2013), meaning that some high value wastes have

to be transported hundreds of miles across the country for

disposal. Take-back strategies also have an environmental

cost e.g., emissions of greenhouse gases during transport to

the treatment facility and emissions from the treatment

process itself. The availability of in situ treatment systems

for waste APIs would reduce disposal costs by eliminating

transportation (cost and associated CO2 emissions) and

associated security costs when wastes contain drugs with

street value. Thus in situ waste treatment for pharmaceu-

tical wastes would potentially make take-back strategies

economically viable for a greater number of pharmacists

and manufacturers. One potential in situ approach is to use

combined pyrolysis and gasification treatment technolo-

gies. These technologies have the potential to improve

environmental compliance by reducing the amount of solid

waste produced, effectively destroying the air pollutants

generated during the treatment process while simultane-

ously enabling on-site energy recovery in a way that ear-

lier, separate pyrolysis or gasification units or incinerators

cannot (Malkow 2004).

A new microscale pyrolysis–gasification waste treat-

ment technology (hereafter referred to as PGWTS, Pyrol-

ysis–gasification waste treatment system), which could be

suited for treatment of chemically contaminated wastes,

has recently been developed by Pyropure Ltd (Hampshire,

UK). Each unit is about the size of a domestic chest freezer.

At the time of this study, up to 8 kg of waste could be

treated in each run lasting 3–4 h, but the latest model will

treat 16 kg in the same time period. Materials other than

glass and metal are reduced to less than 1 % of the initial

volume by the end of the run. A waste bag or clinical waste

bin can be loaded at one end of the unit into a sealed ‘bin.’

The ‘bin’ part of the PGWTS unit is then heated up by

electrical elements (controlled automatically by software)

in the absence of air, reaching temperatures in excess of

550 �C (up to 700 �C). Processes of pyrolysis break the

waste down to a blackened char. The off-gases are treated

by a catalytic converter. On completion of the treatment,

the chamber is rinsed by water which then drains to the

sewerage system.
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In situ PGWTS, like Pyropure, and other new treat-

ment methods, could play an important role in controlling

the emissions of APIs to the natural environment (Online

Resource 1). However, before these systems are used in

the management of pharmaceutically contaminated

wastes, it is important that they are shown to be effective

at treating APIs. In this paper, we describe the results of

the first ever study to evaluate the use of a PGWTS for

decomposing APIs in a range of representative waste

matrices. As transformation products from treatment

processes can pose a risk to the environment (Boxall et al.

2004), we also explored the potential for known active

transformation products of the APIs to be formed during

the treatment process, using high-resolution mass spec-

trometry (Fourier transform ion cyclotron resonance mass

spectrometry). While the focus of the paper is on

assessment of the Pyropure system as an example of a

PGWTS, the assessment used could be applied to other

new treatment methods for API-containing wastes in the

future.

Materials and Methods

Selection of Test Pharmaceuticals

There are over 4000 APIs in use in Europe and it would be

a mammoth task to explore the treatability of all of these

molecules (Monteiro and Boxall 2010). As pyrolysis is a

thermal-based process, we adopted an approach where the

most thermally resistant pharmaceuticals were identified

and tested. The assumption being that, if the treatment

approach could be shown to work for these, then it should

be able to treat all organic APIs. We attempted to obtain

thermal decomposition data for the top 300 most highly

used APIs in both primary and secondary care in Great

Britain (Guo et al. 2016). Decomposition temperatures

were obtained for 249 pharmaceuticals (Fig. 1) using the

procedure presented in Online Resource 2. A selection of

14 of the most thermally stable pharmaceuticals were

selected for use in the waste treatment simulations. Three

additional APIs, diclofenac, ethinylestradiol, and carba-

mazepine, were also selected as these substances have been

previously proposed as potential priority substances under

the European Water Framework Directive (WFD) along

with ibuprofen and estradiol. Ibuprofen and estradiol had

already been included in the 14 APIs on the basis of

decomposition temperature (Lyons 2014). In the event that

these compounds are adopted as WFD priority compounds,

better controls of emissions will likely be required in the

future. The 17 substances were from a diverse range of

therapeutic classes (Table 1).

Test Chemicals and Reagents

Allopurinol (C98 %), amantadine (C98 %), aspirin

(C99 %), atenolol (C98 %), carbamazepine (C98 %),

chloramphenicol (C98 %), diclofenac (C98 %), estradiol

(C98 %), ethinylestradiol (C98 %), 5-fluorouracil (C99 %

purity), fluoxetine (C98 %), gliclazide (C98 %), ibuprofen

(98C %), indomethacin (C99 %), ketoprofen (C98 %),

sulfamethoxazole (C99 %), and verapamil (C99 %) were

purchased from Sigma-Aldrich (Gillingham, Dorset, UK).

Sodium hydroxide solution (50 % in water) and formic

acid (C95 %) used in analytical work were also purchased

from Sigma-Aldrich, UK. For the bulk waste trials (see

waste treatment simulations), ibuprofen (200 mg), and

aspirin (300 mg) tablets were purchased from a local

supermarket (Tesco, Cheshunt, UK). Chloramphenicol eye

ointment was purchased from Lloyd’s Pharmacy (4 g, 1 %

w/w, Martindale Pharmaceuticals, Romford, UK). All

solvents used were high performance liquid chromatogra-

phy (HPLC) grade, methanol ([99.9 %), acetonitrile
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Fig. 1 Cumulative percentage of pharmaceuticals looked up in
literature review against decomposition temperature (�C). The
decomposition temperatures of the 17 pharmaceuticals run through
a Pyrolysis–gasification waste treatment system (PGWTS) are marked
by white circles and all pharmaceuticals (out of the 600 we looked up)
for which we found a decomposition temperature are marked with
black crosses. The white circles represent the maximum decompo-
sition temperature quoted in the literature for chloramphenicol (CHL),
sulfamethoxazole (SMX), gliclazide (GLZ), ketoprofen (KTPF),
allopurinol (ALPL), amantadine (AMN), atenolol (ATEN), estradiol
(E2), indomethacin (IND), verapamil (VPL), fluoxetine (FLX),
ibuprofen (IBF), 5-fluorouracil (5-FLU), diclofenac (DCF), carba-
mazepine (CBZ), and ethinylestradiol (EE2). The gray box represents
the typical temperature range in which the PGWTS developed by
Pyropure operate. Patient usage (based on NHS prescription cost
analysis and over the counter availability (National Health Service
(NHS) 2013) and toxicity were also considered when selecting
pharmaceuticals, meaning a pharmaceutical with higher toxicity and
or usage (E2 and CBZ) was selected over pharmaceuticals with low
usage or toxicity e.g., pioglitazone hydrochloride and glimepiride
(two black crosses between GLZ and SMX)
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([99.9 %), acetone ([99.9 %), and water were purchased

from Fisher Scientific (Loughborough, UK).

Waste Treatment Simulations

The PGWTS trial was designed in accordance with Annex

1, Sect. 1.8 of the Environment Agency Sector Guide

EPR5.07 Clinical Waste (Environment Agency (EA)

2011a). The trial was delivered in two phases: Phase 1

included all 17 pharmaceuticals and three waste types.

Phase 2, was conducted because results from Phase 1 were

inconclusive or indicated that some cross-contamination

with select APIs had occurred. Phase 2 included six of the

APIs (5-fluorouracil, ibuprofen, ketoprofen, atenolol,

estradiol, and ethinylestradiol) and one waste type. All

trials were performed at the Pyropure factory in Bordon,

Hampshire, UK.

Phase 1 Trials

The Phase 1 trials simulated the treatability of the study

pharmaceuticals in three waste types: (1) pharmacy take-

back waste (termed ‘bulk’ waste) which included blister

packs, unused tablets, and packaging; (2) manufacturing

production line waste (‘manufacturing’) which included

powdered pharmaceutical, placebo tablets, paper towels,

overalls, and lab gloves, and (3) healthcare waste which

included waste found in a yellow bins such as needles,

syringes, packaging, blister packs, and placebo tablets.

Details of the composition of each waste simulation are

provided in Online Resource 3. For the manufacturing and

healthcare waste streams a mixture of the 17 pharmaceu-

ticals, containing between 43 and 430 mg of each API, was

added to the waste in a sealed 50 mL polypropylene cen-

trifuge tube. The centrifuge tube was inserted into the

middle of the waste load where the heat presumably pen-

etrates last. For the bulk waste, three pharmaceuticals were

investigated, aspirin, ibuprofen, and chloramphenicol, and

these were added in either tablet or gel form (see Online

Resource 4).

For each simulation, the waste matrix and APIs were

placed in the PGWTS unit and treated following the

manufacturer’s guidelines. There were five runs for each of

the three waste streams: two control runs containing just

the waste mix (i.e., no pharmaceuticals) and three phar-

maceutical runs containing the waste and the pharmaceu-

ticals. The gaseous emission was passed through a water

‘trap’ to collect parent API or their transformation products

emitted in the gaseous phase. For each run, three types of

samples were collected: liquid effluent, gas trap, and

residual solids. Tap water was also taken from the site for

analysis. Samples were placed into wide-necked solvent

Table 1 The 17 pharmaceuticals selected for testing in the Pyrolysis–gasification waste treatment system (PGWTS) trials, therapeutic class,
decomposition temperature, and usage (kg/yr) in Great Britain in 2012

API Therapeutic class or use class Decomposition temperature range (�C) Usage (kg/yr) Reference decomp. temp

5-Fluorouracil Anticancer, cytotoxic 282 12,648.7 1

Allopurinol Antigout 379.5–386 38,593 2

Amantadine Antiviral/AntiParkinson’s 360 626.6 3

Aspirin Analgesic 370 96,644.6 4

Atenolol Beta-blocker 303–335 26,411.5 5

Carbamazepine Antiepilepsy 190–195 45,331.9 6

Chloramphenicol Antibiotic, cytostatic 200–704 484.6 7

Diclofenac Nonsteroidal antiinflammatory drug [260 16,369.7 8

Estradiol Hormone 275–317 151.6 9

Ethinylestradiol Hormone 178 12.9 10

Fluoxetine SSRI antidepressant 200–300 6200.1 11

Gliclazide Diabetes 271–429 40,781.2 12

Ibuprofen Nonsteroidal antiinflammatory drug 180–300 151,739.9 13

Indomethacin Nonsteroidal antiinflammatory drug 230–330 837.2 14

Ketoprofen Nonsteroidal antiinflammatory drug 235–400 903.47 15

Sulfamethoxazole Antibiotic 380–600 1940.2 16

Verapamil Calcium channel blocker 300–320 6969.9 17

1: Lewis (2007), 2: Samy et al. (2010), 3: RSC (2013), 4: Ribeiro et al. (1996), 5: Pereira et al. (2007), 6: McGregor et al. (2004), 7: Macedo et al.
(1999), 8: Tudja et al. (2001), 9: Martin and Wotiz (1962), 10: Cotter et al. (1978), 11: Silva et al. (2007), 12: Zayed et al. (2010), 13: Tita et al.
(2011a), 14: Tita et al. (2010), 15: Tita et al. (2011b), 16: Fernandes et al. (1999), 17 Lide and Milne (1994)
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rinsed 125 mL amber glass bottles and stored at -20 �C

prior to transportation to the laboratory (at 5 �C) for

analysis for APIs.

Phase 2

In Phase 2, a mixture of the three wastes, used in Phase 1,

was investigated (See Table S1 in Online Resource 3).

Ibuprofen was again added in tablet form, the other five

APIs were added in a 50 mL centrifuge tube but in these

simulations, Vernagel (C3H3NaO2)n was also added to

create an insulating layer to surround the powdered APIs.

The addition of Vernagel is likely to mimic the effects of

excipients that would be present in a real situation. The

simulations and sampling followed the same approach as in

Phase 1 but additionally, samples from the ashpot, which

essentially contains the majority of particles removed from

the gaseous stream, were also taken and analyzed (Online

Resource 5).

Preparation of Samples for Analysis

for Pharmaceuticals

Each sample was analyzed in triplicate for APIs. The liquid

effluent and ‘gas trap’ samples (2 mL in Phase 1 and 3 mL

in Phase 2) were concentrated by a factor of ten in Phase 1

and a factor of 60 in Phase 2 using a centrifugal concen-

trator. Samples were placed inside the centrifugal con-

centrator overnight until dry, before reconstituting to

200 lL firstly by adding 100 lL of methanol and then by

adding 100 lL of HPLC grade water. Samples were vortex

mixed after the addition of both the methanol and the water

for 10 s each time. The reconstituted sample was then

passed through a syringe filter (0.2 lm PTFE (Oasis)) into

an amber glass HPLC vial containing a glass insert. In

Phase 2, the filtered sample was then concentrated again

inside glass insert (contained in the vial) using the cen-

trifugal concentrator. The sample was then reconstituted to

50 lL with 50:50 methanol:water prior to analysis.

APIs were extracted from the sludge using a method

adapted from Martin et al. (2010). Briefly, for each repli-

cate 1 ± 0.05 g of sludge (wet weight) was weighed

directly into a Pyrex glass tube. The sludge was extracted

using ultrasonication with methanol three times (2, 0.5 and

0.5 mL). Samples were ultrasonicated with the Pyrex tubes

standing in a beaker filled with deionised water, to the level

of the sample liquid, for 15 min each time. After each

extraction, samples were centrifuged for 5 min at

9609g and the supernatant was combined in a separate

glass tube. The supernatant was then dried in the cen-

trifugal concentrator, as per the effluent and gas samples,

before reconstituting to 500 lL (Phase 1) with half the

volume first added as methanol and then the remainder

added as water. The sample was vortex mixed after each

addition of solvent. In Phase 2 the total volume was

250 lL. Once reconstituted, samples were passed through a

0.2 lm (13 mm) syringe filter into an amber glass HPLC

vial (see note in Online Resource 6 about cleaning of

glassware).

For each matrix, the extraction procedure was validated

by spiking in a stock solution containing the 17 pharma-

ceuticals at known concentrations into the appropriate

matrix collected from the control runs at seven different

levels in the range 0–100,000 ng/mL. Where the calibra-

tion series was reasonably linear (R2
[ 0.9) (Online

Resource 7), then the matrix-specific calibration series was

used to determine percentage recovery and quantify levels

remaining in the sample (see ‘‘Results’’ section). Where the

calibration series was not reasonably linear or recoveries

were low, the high end standards were compared with

solvent standards to determine percentage recovery. In

these cases, the calibration was done using the solvent

standards and an adjustment made for the percentage

recovery.

Analysis using Liquid Chromatography Triple

Quadrupole Mass Spectrometry (LC–MS/MS)

and LC - Fourier Transform - Ion Cyclotron

Resonance - Mass Spectrometry (LC-FT-ICR-MS)

Concentrations of pharmaceuticals in concentrated samples

or sample extracts were determined using an Applied

Biosystems/MDS Sciex API 3000 triple quadrupole mass

spectrometer interfaced with a Dionex UltiMate� 3000 LCi

system, for LC–MS/MS analyses. Positive ion mode was

used in Phase 1 and both positive and negative ion modes

were used in Phase 2 analyses. For the liquid chromatog-

raphy, a Dionex Acclaim� RSLC C18 Polar Advantage II

column (2.2 lm, 120 Å, 2.1 9 100 mm) was used. Full

details of LC–MS/MS methods can be found in Online

Resource 8.

The presence of 12 known active transformation prod-

ucts of the 17 parent APIs (not all parent APIs had known

active transformation products and some had more than

one) in the samples of the emissions from the Pyropure

system was assessed. Table S8 (Online Resource 9) pre-

sents full details of molecular formulae and monoisotopic

mass for the following 12 metabolites: 5-fluoro-2-deox-

yuridine 50-monophosphate, oxypurinol, salicylic acid,

carbamzepine-10, 11 epoxide, 40hydroxy-diclofenac,

estrone, estriol, 2-methoxyestradiol, norfluoxetine, 2-hy-

droxyibuprofen, carboxyibuprofen, norverapamil. We

focussed on the transformation to products that would

retain pharmacologic activity as this was the primary

concern (relating to transformation) for the regulator in

Environmental Management

123



England (Personal communication, Robert McIntyre of the

Environment Agency, May 2014).

Our aim here was to show that the parent compound was

not being broken down into something that also possessed

pharmacological activity. We also investigated the mass

spectra of any significant chromatographic peak to assess

whether large quantities of unknown breakdown products

were being produced consistently across samples. Liquid

chromatography coupled with an ion cyclotron resonance

Fourier transform mass spectrometer (ICR-FT-MS) was

used to assess levels of these active transformation prod-

ucts. An Agilent 1200 HPLC was interfaced with a solariX

XR 9.4 T (Bruker) FT-ICR mass spectrometer (See Online

Resource 9). Where an active metabolite was identified as

being the most likely explanation for the signal, semi-

quantification was made by expressing the peak height of

the active metabolite relative to the size of the parent API

peak in a standard.

Calculation of the Percentage Decomposition

Using the total volume of the matrix (effluent, sludge, and

water used to collect the gas sample), it was possible to

determine the percentage of each API destroyed by relating

the concentration in the extracted samples and the starting

mass of the API (see Online Resource 10 Tables S9–12).

Where the analyses detected nothing, the concentration in

the sample was assumed to be half of the limit of detection

(LOD) and the percentage of the mass balance that this

constituted was calculated accordingly. A value of[99 %

decomposition of an API was considered appropriate as the

treatment success measure.

Air Emissions: Other Pollutants

A standard suite of air emissions tests was conducted by

EmCO Air Emissions Ltd (Hook, Hampshire, UK), who

are a UKAS and M-Certs accredited contractor for testing

for particulate matter (PM10), nitrogen dioxide, hydrogen

chloride, hydrogen fluoride, sulfur dioxide, volatile organic

compounds, dioxins, furans, and specific metals (mercury,

cadmium, thallium, arsenic, cobalt, chromium, copper,

manganese, nickel, lead, antimony, vanadium). Concen-

trations of these determinands in air emission samples were

expressed as a process contribution for the PGWTS using

dispersion factors. The percentage that the PGWTS con-

tributed to the environmental assessment limit (EAL) fol-

lowing the H1 guidelines of the Environment Agency

(England) for each of the determinands was used to assess

whether air emissions from treating pharmaceutical waste

would pose a risk to human health or the environment, see

Online Resource 11 Table S13 (Environment Agency (EA)

2014).

Results

The limits of detection of the analytical methods in Phase 1

and Phase 2 are presented in Tables 2 and 3. The per-

centage recovery of the extraction of pharmaceuticals from

the solid material ‘sludge’ is also presented in Table 2.

In Phase 1, the PGWTS achieved over 99 % parent API

decomposition for ten of the 17 pharmaceuticals (Fig. 2a).

The other seven pharmaceuticals had an average destruc-

tion of 94 %, with all but three pharmaceuticals having a

level of destruction in excess of 90 %, the exceptions being

atenolol, estradiol, and ethinylestradiol. There was no

apparent effect of waste type on the ability of the PGWTS

to destroy pharmaceuticals. The frequency of detection was

highly variable between matrices and pharmaceuticals (see

Online Resource 12, Tables S14 and S15 for a full break-

down of the frequency of detection). In Phase 1, five

pharmaceuticals were detected in the controls (corre-

sponding to 0.01–0.23 % of the added APIs) and 11 in tap

water (corresponding to 0.01–16.1 % of added APIs,

mean = 2.3 %) (Online Resource 12 and 13). The con-

tamination of tap water is believed to result from cross-

contamination during the sampling, as additional checks of

the factory’s tap water taken a month after the trials, and

sump and chamber drain water taken from the same

machine used in the trials did not show any trace of the

seventeen pharmaceuticals. This highlights one of the

challenges in performing studies of this type at an indus-

trial site (such as the Pyropure facility) when using highly

sensitive analytical equipment. Due to the presumed cross-

contamination, a second trial was performed on those

active ingredients where destruction levels corresponding

to \99 % destruction were determined in the Phase 1

simulation samples. In these Phase 2 trials, the destruction

levels for the worst performing APIs from Phase 1 were

above 99.9 % for five APIs and above 99.7 % for the other

API (ethinylestradiol) (Fig. 2b).

Three activemetabolites were detected in Phase 1 and five

in Phase 2 samples (out of 12 metabolites searched for).

Where they were detected, with the exception of 5-fluoro-2-

deoxyuridine 50-monophosphate (F-dUMP), the semi-

quantification suggests that the levels are likely to be such

that they are of less concern than their parent compounds

(Table 4). In Phase 1, the amount of the active metabolite of

5-fluorouracil, F-dUMP, in air was approximately 25.2 % of

the added amount of 5-fluorouracil, 60.3 % in liquid effluent

but less than 0.001 % in the sludge. The amount of F-dUMP

may well be overestimated due to differences in sensitivity

for the metabolite and parent compound. The presence of

active metabolites in control samples, of parent compounds

that were not included in these runs, suggests that cross-

contamination occurred in Phase 1 simulations. In Phase 2,
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the highest (approximate) percentage of added 5-fluorouracil

converted to F-dUMP was only 0.54 % (in liquid effluent).

F-dUMP could not be detected in air and was less than 0.1 %

of added 5-fluorouracil in the ashpot and sludge. Significant

quantities of unknown transformation products were not

consistently identified across samples in the mass spectra.

None of the non-API determinands monitored for in the

air emission studies was found to exceed short- or long-

term EALs. The highest process contribution for any

determinand was for PM10 (0.41 %). Full data on the

process contributions for each determinand can be found in

Online Resource 11.

Discussion

This study was conducted to provide the Environment

Agency with evidence of the efficacy of an alternative (to

high-temperature incineration) treatment technology for

treating pharmaceutically contaminated waste (EA 2011b).

We are not aware that others have done this before, and if

they have, this information would be commercially sensi-

tive, so it is unlikely we would gain access. Indeed, we are

not aware of any studies testing the efficacy of high-tem-

perature incineration, or any thermally or chemically (e.g.,

alkaline hydrolysis) based alternative treatment technology

for pharmaceutically contaminated wastes (World Health

Organization (WHO) 2014). This makes our data timely,

novel, and relevant to the needs of the healthcare sector,

regulators, and the waste management and pharmaceutical

industries.

The results indicate that in situ PGWTS offer an

effective treatment process for pharmaceutically contami-

nated wastes. When the findings of both trials are com-

bined, all parent APIs were demonstrated to be more than

99 % decomposed by the PGWTS (or below the LOD as

with fluoxetine). Analysis for known transformation prod-

ucts in Phase 1 suggested that the formation of known

Table 2 Limits of detection
(ng/mL) (LOD) for each of the
17 APIs in Phase 1 simulation

API Recovery of analytical extraction method (%) LOD (ng/mL)

5-Fluorouracil 28.5 100

Allopurinol 21.4 10

Amantadine 52.1 50

Aspirin 0 100

Atenolol 58.3 100

Carbamazepine 86.8 10

Chloramphenicol 75.2 50

Diclofenac 79.4 10

Estradiol 79.7 500

Ethinylestradiol 79.8 100

Fluoxetine 80.6 50

Gliclazide 45.8 100

Ibuprofen 41.6 10

Indomethacin 13.9 10

Ketoprofen 68.5 50

Sulfamethoxazole 55.5 100

Aspirin could not be recovered from the solids

Table 3 Limits of detection (LOD) and quantification (ng/mL) (LOQ) for each of the six retested APIs in Phase 2 simulation in liquid effluent,
sludge, ashpot solids, and the air emission

API Liquid effluent Sludge Ashpot Air

LOD (ng/
mL)

LOQ (ng/
mL)

LOD (ng/
mL)

LOQ (ng/
mL)

LOD (ng/
mL)

LOQ (ng/
mL)

LOD (ng/
mL)

LOQ (ng/
mL)

5-Fluorouracil 35.3 117.6 188.2 627.3 188.2 627.3 313.6 1045.5

Atenolol 2.6 8.6 1.0 3.4 0.9 2.9 1.7 5.7

Estradiol 12.6 42.1 7.8 26.1 15.7 52.2 18.3 60.9

Ethinylestradiol 63.2 210.5 35.5 117.6 70.6 235.3 84.7 282.4

Ibuprofen 180.0 600.0 120.0 400.0 150.0 500.0 300.0 1000.0

Ketoprofen 540.0 1800.0 144.0 480.0 160.0 533.3 32.0 106.7
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active metabolites and breakdown products was negligible

except for F-dUMP. F-dUMP acts slower than its parent

compound but is known to be more toxic to cells (Matuo

et al. 2009). The fact that in excess of 85 % of the added

5-fluorouracil (in Phase 1) was detected as F-dUMP, when

expressed as parent equivalents, was potentially a concern.

Thus in Phase 2, we increased the amount of 5-fluorouracil

added to the PGWTS. This revealed a maximum of only

0.5 % of the added 5-fluorouracil which was detected as

F-dUMP. It is probable that the detection of F-dUMP in

Phase 1 was an issue of contamination which was over-

estimated due to the low sensitivity for the parent

compound.

Based on the evidence of Phase 1 and 2, it is unlikely

that levels of active metabolites and transformation prod-

ucts discharged from the PGWTS would be of concern to

human health and the environment. Nevertheless, further

research is needed, particularly in the area of transforma-

tion products. The gaseous emission from the PGWTS was

sampled by bubbling through water. Therefore, only water-

soluble APIs and transformation products would be

collected. All 17 parent APIs and known active metabolites

are sufficiently water soluble for this method to enable their

collection should they have been present (e.g., see www.

drugbank.ca). While the insoluble component of the

effluent is essentially the solids that we extracted with a

polar solvent (Martin et al. 2010), we cannot rule out

nonpolar transformation products, originating from either

the APIs (Kern et al. 2010) and/or other components of the

simulated waste mix. For example, these could include

water-soluble organics such as alcohols, ethers, aldehydes,

and carboxylic acids; pyrolytic oils e.g., (asphaltenes,

aliphatics, aromatics, or polars), gases containing carboxyl

groups; and pyrolytic chars with a high ash content (Kar-

yaldirim et al. 2006). Determining whether this is the case

is now a priority for research into the efficacy of PGWTS

for treating pharmaceutically contaminated wastes.

Nevertheless, our data suggest PGWTS could provide an

in situ alternative to high-temperature incineration. By

providing households, pharmacies, hospitals, and manu-

facturers with a convenient and safe alternative to dispos-

ing of unused medicines to sewer or in solid waste PGWTS
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Fig. 2 Mass balance showing
the fate of pharmaceuticals
tested in a Pyrolysis–
gasification waste treatment
system (PGWTS) in Phase 1
(a) and Phase 2 (b). The
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could reduce the amounts of APIs being inappropriately

disposed of. Ultimately, PGWTS could contribute to

reducing pharmaceutical contamination of both the terres-

trial and aquatic environments (e.g., McClellan and Halden

2010; Kasprzyk-Hordern et al. 2010).

Inappropriate disposal of unused pharmaceuticals has

been identified as an issue in several developed countries

(Daughton and Ruhoy 2009, 2013; Thach et al. 2013; Tong

et al. 2011). Data are highly variable among countries, and

in some cases among studies conducted within the same

country. A number of factors could affect the data reported

by these studies: e.g., data collection method, question

types, demographics, sample size, and changes in attitudes

over time. Studies in Sweden and Germany (Persson et al.

2009; Tong et al. 2011) found only 3 and 7 %, respectively

of unused medicines were disposed of in household waste,

while Lithuania and Kuwait had 87–89 % and 97 %,

respectively (Krupiene and Dvarioniene 2007; Abahussain

and Ball 2007; Abahussain et al. 2006). However, in the

US (45–54 %; Kotchen et al. 2009; Glassmeyer et al.

2009), the UK (63 %, Bound and Voulvoulis 2005), and

Republic of Ireland (51 %, Vellinga et al. 2014) disposal in

household waste appears similar. For disposal down the

sink or toilet,\1 % did this in Sweden and New Zealand

(Persson et al. 2009; Braund et al. 2009) while in the US

54 % dispose of medicines to the toilet and 35 % down the

sink (Seehusen and Edwards 2006; Glassmeyer et al.

2009). Other fates for unused medicines included storing at

home in case of future personal use or needs of a friend/

relative, burning, placing in recycling boxes, or disposing

to hazardous waste.

Providing the public with knowledge of appropriate

disposal methods for unused medicines and ensuring con-

venient access to take-back strategies should help to

decrease inappropriate disposal (Persson et al. 2009; Thach

et al. 2013). In Sweden, as many as 85 % of respondents

Table 4 Active metabolites detected in Phase 1 and Phase 2, in
samples of air, mains water (i.e., water straight from the tap taken at
the same time as the unit was being drained and washed out with tap

water), liquid effluent, the solid ashpot residue and the sludge (solid
part of the effluent)

Phase 1 Phase 2

API run 1 API run 2 API run 3

Metabolite Approximate
parent
equivalent %

Metabolite Approximate
parent
equivalent %

Metabolite Approximate
parent
equivalent %

Metabolite Approximate
parent
equivalent %

Air F-dUMP 25.2 – – – – 2-me 0.03

Mains
water

NA NA 2-hydoxyIBF

2-me

0.028

0.050

2-me 0.010 2-me 0.007

Liquid
Effluent

F-dUMP

2-me

SA

60.3

0.04

0.35

– – F-dUMP 0.54 2-hydroxyIBF 0.014

Solid
Ashpot

NA NA 2-me

F-dUMP

Est

0.00002

0.02

0.00003

2-me

F-dUMP

Est

0.00007

0.012

0.0003

carboxyIBF

Est

0.0005

0.0005

Sludge
rep 1

2-me 0.0007 2-me

2-hydroxyIBF

F-dUMP

carboxyIBF

Est

0.007

0.012

0.024

0.006

0.0016

2-me

2-hydroxyIBF

carboxyIBF

Est

0.007

0.00011

0.0040

0.00014

2-me

F-dUMP

Est

0.00009

0.042

0.00014

Sludge
rep 2

NA NA Est 0.0015 2-me

2-hydroxyIBF

carboxyIBF

Est

0.00009

0.011

0.0056

0.000023

2-me

F-dUMP

carboxyIBF

Est

0.0001

0.043

0.001

0.0007

In Phase 1, means are presented for the three waste types (bulk, manufacturing, and sharps as only 15 samples were run in total (3 air, 3 sludge,
and 9 liquid effluent). In Phase 2, a larger number of samples were analyzed and so the data are presented separately for each run. The
metabolites detected were: 5-fluoro-2-deoxyuridine 50-monophosphate (F-dUMP)), 2-methoxyestradiol (2-me), estrone (Est), 2-hyroxyibuprofen
(2-hydroxyIBF), and carboxyibuprofen (carbIBF). Where an active metabolite was detected, the concentration was estimated in terms of parent
equivalent and then related to the percentage of the starting mass that this was equivalent to. For control and blank runs containing only
Polyethylene terephthalate (PET) and all mains water samples, no API was added and so detection must be due to background levels in the tap
water. Note the F-dUMP parent equivalent is likely to be overestimated due to the low sensitivity of the MS assay for its parent compound
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knew that returning unused medicines to the pharmacy was

the appropriate way to handle them, and 43 % said they

had done so in the last 12 months (Persson et al. 2009).

However, in the UK, a 2013–14 survey suggested only

17 % of people use take-back strategies (Williamson and

Boxall 2014, unpublished data) and as many as 30 % of

people were found to dispose of medicines inappropriately.

Furthermore, a study in the Republic of Ireland found only

6 % used take back and 72 % disposed of medicines

inappropriately (Vellinga et al. 2014). However, this is still

better than reported participation in the USA (1.4 %)

(Glassmeyer et al. 2009). Based on these studies, it appears

a lack of knowledge around appropriate disposal and

access to take-back strategies are the main reasons for

inappropriate disposal (Thach et al. 2013). Furthermore,

initiatives that have not advised best practice for handling

unused medicines such as the SMARxT disposal partner-

ship in the USA are also likely to have contributed to

pharmaceutical emissions from landfill. This initiative

recommends that unused medicines are crushed, mixed

with unappealing material such as cat litter (to prevent

scavenging and illicit use) and disposed of to landfill in a

sealable bag or box. Such strategies are unlikely to protect

the environment, as a sealed bag or box can easily be

crushed and opened in the landfill (Musson and Townsend

2009). The pharmaceuticals can then end up in leachate.

Both leachate and flushed (or rinsed) medicines can end up

in the WWTP where removal is often incomplete, thus

leading to contamination of the aquatic environment

(Daughton 2003).

The study of pharmaceutical contamination of leachate

has been largely neglected (Musson and Townsend 2009).

Recent studies in the US and Spain have detected several

pharmaceuticals at the lg/L level in landfill leachate (in-

cluding amoxicillin, carbamazepine, furosemide, ibupro-

fen, and omeprazole) (United States Geological Survey

(USGS) 2014; Rodrı́guez-Navas et al. 2013). Lubick

(2010) reported details of a similar study from Maine in

which paracetamol was detected in leachate at 117 lg/L,

ciprofloxacin at 269 ng/L, and even cocaine was detected

at 57 ng/L. Many landfills pipe their leachate to wastewater

treatment plants (Musson and Townsend 2009). Some

healthcare facilities advise staff to flush unused medicines

down the toilet or rinse down the sink and in these

instances APIs will be released directly to the sewerage

system (Daughton 2003; Boxall et al. 2014; Mackridge

2005).

In healthcare facilities where medicines are rinsed down

the sink, antibiotics are often used (Bumpass et al. 2014).

Antibiotic resistance (Starlander and Melhus 2012), and

particularly resistance to ‘last resort’ carbapenem antibi-

otics (Kotsanas et al. 2013), is of particular concern.

Repeated washing of traces of these medicines down can

lead to the development of a biofilm containing persistent

gram-negative bacteria from multiple genera (Kotsanas

et al. 2013). This biofilm acts as a reservoir for the trans-

mission of antimicrobial resistance making nosocomial

transmission highly likely (Kotsanas et al. 2013). Cleaning

and replacing sinks with better designed ones have both

been suggested by some as the way towards antimicrobial

stewardship (Kotsanas et al. 2013). However, this is a

rather narrow-minded view of stewardship which simply

transfers the problem out of the hospital and into the

environment. PGWTS and other in situ waste treatment

technologies offer a real solution. By destroying unused

antibiotics and antibiotic contaminated waste at source, the

risks of these drugs, and the transfer of antimicrobial-re-

sistant bacteria to the environment in this way could be

eliminated. This could also be important at manufacturing

plants. Although manufacturing emissions of pharmaceu-

ticals to the environment are concentrated in specific areas,

they may also be significant, particularly for antibiotics, as

their emission even at trace levels will promote the

development of antimicrobial-resistant microorganisms

(Larsson 2014). To this extent, PGWTS could still have a

significant role to play in terms of human and environ-

mental health at the global scale (Larsson 2014).

In situ PGWTS could realistically be installed at phar-

macies, manufacturers’ sites, hospitals, and healthcare

facilities across the world. The adoption of alternative

treatment technologies such as PGWTS could make take-

back strategies much more effective than they currently

are. Pharmacies and clinics are likely to be willing par-

ticipants in such strategies as in situ waste management

comes with economic incentives in addition to environ-

mental benefits. By removing the need to transport waste

across potentially long distances to high-temperature

incinerators (there are currently only 22 in the whole of the

UK (DEFRA 2013)), fuel, labor, and security (in the case

of wastes containing controlled substances such as mor-

phine) as well as reducing CO2 emissions. The cost-bene-

fits to the user of using PGWTS over separate collections

and high-temperature incineration are compelling, which is

an important factor in the likelihood of their incorporation

in take-back strategies. For a typical pharmaceutically

contaminated medical waste, which has a high plastic

content and assume its calorific value is 27 MJ/kg, the

electrical cost to process this in a PGWTS is approximately

$300 per metric tonne. Factoring in costs associated with

regulatory requirements, water, and maintenance costs

adds an additional $180 per metric ton, giving a total

running cost of $480 per metric ton for PGWTS.

A waste producer can pay between $3748 and $4410 per

metric ton (or $1.70 to $2.00 per lb) for collection, trans-

port, and treatment of hazardous waste (Rich et al. 2013).

Taking the midrange figure of $4000 per metric ton, the on-
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site PGWTS could save the user around $3520 per ton of

waste. In addition to these costs savings, the PyroPure

PGWTS generates 2.68 kW h per ton of usable energy in

the form of heat for a high plastic content load. This means

a user processing 20 tons per year would generate

53,600 kW h of free heat (worth the equivalent of $5400 in

replacing electricity at $0.1/kW h). Combining the value of

energy generated with reduced costs in waste collection

and processing, PGWTS offer approximately 95 % cost

savings compared to collection high-temperature inciner-

ation. To purchase a single PGWTS currently costs

approximately $75,000. For a user treating around 20

metric tons per year, the PGWTS investment would start to

make cost savings in a little over a year. These fig-

ures suggest PGWTS are economically viable and envi-

ronmentally friendly which could help improve the density

with which take-back strategies are offered to a population.

As it is estimated that up to 65 % of prescribed

medicines remain unused by patients (Boxall et al. 2014),

but only around 17 % are being safely disposed of in the

UK (Williamson and Boxall 2014, unpublished data)

(ranging from 1.4–65 % in other Western countries) (Tong

et al. 2011; Persson et al. 2009; Glassmeyer et al. 2009;

Vellinga et al. 2014; Musson and Townsend 2009;

Daughton 2003; Seehusen and Edwards 2006; Musson

et al. 2007; Isacson and Olofsson 1999; Cameron 1996),

there is clearly a significant proportion of these unused

medicines which are disposed of in ways that result in

environmental contamination. Any technology that will

help to close the gap between what is unused and what is

disposed of in take-back strategies can only be beneficial to

the environment.

To ensure the success of PGWTS, we believe they

should be implemented as part of wider stewardship

strategies which involves a wide range of stakeholders.

Doctors should prescribe smaller doses to help reduce the

number of unused medicines in households (Daughton and

Ruhoy 2013). Governments and manufacturers should set

up education and advertising strategies to raise the public’s

awareness of the availability of take-back facilities in their

area while highlighting the consequences of flushing to

sewer or disposing of medicines in household waste (EU

2015).

Changing people’s attitudes and raising awareness of

take-back strategies will be paramount to a successful

outcome. Strategies such as the EU’s ‘no pills in waters’

cooperation project have been in place for a while in

Europe to encourage greater use of take-back strategies

(EU 2015). In such strategies, partnerships between envi-

ronmental, social scientists, and communications and

software experts have been demonstrated to be very

important to gain an idea of the scale of the problem and

create a pathway towards making changes for the better.

For example, connecting with young people to inform them

about the issue of pharmaceuticals in the environment was

identified as an important issue to ensure the future sus-

tainability of such strategies (EU 2015). Other means of

connecting with demographic groups (e.g., the elderly and

their carers) could be through strategies that introduce

information boards in doctors’ surgeries, pharmacies,

placing adverts on healthcare-related websites and adding

labels to pharmaceutical packaging.

Conclusions

PGWTS have the potential to make significant reductions

to current levels of pharmaceutical contamination in the

environment. Not only are there potential benefits in terms

of pharmaceutical contamination of the environment, there

are also financial and environmental incentives. This makes

PGWTS a viable alternative to waste collection and

transport to high-temperature incinerators. The initial

investment in a PGWTS could be repaid in a little over a

year due to approximately 95 % cost-saving compared

with high-temperature incineration (Rich et al. 2013).

Alternative treatment (to high-temperature incineration)

technologies for pharmaceutically contaminated waste will

only be effective if the public and healthcare workers gain

a greater awareness of the consequences of inappropriate

disposal of API-containing wastes and with it a sense of

environmental responsibility. Education can pave the way

towards a cultural change in the way that we deal with

unused medicines and in situ waste treatments will repre-

sent a convenient disposal option that can help smooth this

transition.
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