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ABSTRACT 

Multi-strand systems include, but are not limited to, electrical wire conductors, structural cables, and 
some composite reinforcements. These systems (apart from composite reinforcements) are generally 
metallic for a variety of reasons. One often overlooked advantage is that dry friction between metal 
contacts can provide damping over significantly wider temperature ranges than is typical for common 
damping materials such as viscoelastic polymers. This paper, proposes a mathematical model that 
describes the hysteretic vibrational behaviour of a frictionally constrained multi-strand bar constructed 
from strands that have a circular cross-section. The mathematical model analytically predicts the 
frictional system stiffness under simply supported boundary conditions. The assembled strands are 
numerically simulated using finite elements and hysteresis behaviour is compared to that obtained 
from the mathematical model. This shows that the mathematical model is capable of predicting the 
stiffness and the force-displacement hysteresis response of the system for a variety of conditions. 
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1. INTRODUCTION 

Systems comprising dry friction contact can provide considerable amounts of damping over 
large operating temperature ranges. Energy dissipation from friction interfaces involving a small 
number of relatively large contact surfaces, such as turbine blade roots, has received significant 
research interest. On the other hand, damping from a large number of relatively small contacts, such 
as might be found in a multi-strand cable, is not nearly as well understood. There is therefore a need 
for efficient and accurate models to allow optimisation of this kind of damping mechanism in order 
to improve vibration control in mechanical systems. Practical examples of these systems are fibre 
bundles, suspension systems, woven fabrics, multi-stranded wire dampers, composite materials with 
dry frictional contact between the mating layers, and damaged/delaminated fibre composites. 

Dry friction provides a nonlinearity within a system and therefore adds complexity. A 
considerable amount of work has been presented previously [1]–[10] which focus on introducing 
the associated frictional damping as an approximated equivalent viscous damping. The analytical 
models presented were compared to results from either numerical models, experimental data, or 
both demonstrating the usefulness and accuracy of this approach. Both empirical or semi-empirical 
models have been introduced [11], [12] That are dependent on unique parameters extracted from 
experimental data. A substantial amount of existing mathematical models describe multi-layered 
structures as either bonded or jointed layers [13]–[15] and ignore the frictional effect in the 
interface contact between the mating layers. 
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In this paper, the mathematical model developed includes the frictional effects by introducing 
them directly into the system stiffness. This does not depend on any empirical parameters other than 
material properties and the coefficient of friction.  The interface of the un-bonded strands is allowed 
to slide against each other reducing the system stiffness as these structures, when sliding, have 
multi neutral axes. The results from the model are capable of defining the stick and sliding regions. 
A comparison between the mathematical model and numerical models using finite element (FE) 
analysis is made and good agreement is obtained 

2. MATHEMATICAL MODEL 

In this study, the system considered was a multi-strand bar comprising seven steel strands of 
circular cross-section, each one experiencing frictional contact with its neighbours. Two 
configurations were considered: one with 3 mm and the other with 4 mm diameter strands. The 
arrangement allowed for six strands to be placed radially around a core strand.  Each of the outer 
strands was in contact with the adjacent outer strand and simultaneously with the core strand. This 
is depicted in Fig. 1.    

 
 
 
 
 
 
 
 

 
 
 
 

Figure 1 - Seven strand bar. Contact points are indicated by the ‘dashed ovals’. 
The contact condition between the mating surfaces has a direct effect on the overall system 

stiffness and its response. Therefore, it is essential to estimate the stiffness of the multi-stranded bar 
system in order to accurately describe the damping behaviour. The prediction of the frictional 
second moment of area for the multi-stranded bar is thought to be the prerequisite to estimating the 
system stiffness in the current study. 

 
2.1 Frictional second moment of area  

The stiffness of the system can be represented by the frictional second moment of area. The 
term “frictional second moment of area” in this paper refers to taking into consideration the friction 
effect with the second moment of area. When these systems are either bonded or frictionless, the 
second moment of area can be calculated using the parallel axis theorem as shown in Eq. (1),  
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where In is the second moment of area for the system, I0 is the second moment of area for an 
individual strand, A is the cross-section area, d is the transfer distance from the strand centre to the 
system geometrical centre and n is the number of involved strands.  

For a bonded case, d is equal to the strand radius as shown in Fig. 2a. For a frictionless case, d 
is equal to zero (as shown in Fig.2b) as each strand has its own neutral axis and there is no transfer 
distance between the strand’s neutral axis and the geometric centre of the system. For instance, in 
Fig. 2b there will be two separate systems. In a frictional case, d should increase with increasing the 
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coefficient of friction, μ, and the direction of this increment is towards the contact regions as shown 
in Fig. 2c. 

For a case that the friction is involved between the mating strands, it is the authors’ 
understanding that until now no equation has previously been formed that can describe this case. In 
this section, a mathematical method will be introduced to predict the frictional second moment of 
area at any magnitude of μ up to a limit of the equivalent of the strands being bonded. This is 
achieved firstly by estimating the deformation relationship with a range of μ magnitudes from 
frictionless contact and end with bonded contact. Second, the estimated deformation magnitudes are 
used to predict the frictional second moment of area at any specific μ magnitude. 

 
 
 
 
 
 
 
 
 
 
 

Figure 2 - Transfer distance, d, for strands that are (a) bonded, (b) frictionless, and (c) frictional. 
Dashed lines represent the neutral axes. 

 
2.1.1  Effect of coefficient of friction, μ, on stiffness 

To provide upper and lower bounds for the frictional second moment of area, two cases were 
considered: perfectly bonded and frictionless. Eq. (2) was used to calculate the second moment of 
area for a system with frictionless contact  

4

4frictionless
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where N is the number of strands involved in the system and r is the radius of the individual strands 
in the multi-strand bars system. Using Eq. (2), the total deformation in the system can be estimated 
from Eq. (3), 
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where E is the modulus of elasticity, l is the span distance, and F is the applied force at the centre of 
l. For the bonded case, the second moment of area can be calculated by Eq. (4), 

455
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The total deformation can be calculated by the use of Eq. (5), 
3
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To calculate the equivalent μ during the bonding case, a correlation at the contact between the 
strands for the shear stress and the frictional stress, from the frictional forces, is required. The shear 
stress is identified by Eq. (6), [16],  
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where t is the total height for the multi-stranded bar, yc is the distance from the body centre to the 
interfacial contact surface where the slip initiated and in a bonded contact the yc is equal to zero. 
The friction stress is provided in Eq. (7), 

 c
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where A is the contact area between two cylinders and can be found through Eq. (8) [17], 
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where ν is Poisson’s ratio. 
 Initiation of the sliding stage is when the shear stress is equal to the frictional stress and 
therefore, the μ between each strand can be calculated by Eq. (9), 
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where Fc is the clamping force, Ibond is the second moment of area for a bonded case. 
By knowing that μ in the frictionless contact is zero, a relationship can be plotted between the 

deformations, δ, and μ as shown in Fig. 3. This plot provides the magnitude of the δ at any specific 
μ between frictionless and bonded states. The corresponding δ for each μ can be used to calculate 
the related frictional second moment of area in Eq. (10), 
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Figure 3 - δ versus μ for (a) mathematical model and (b) FE results. 
 
The relation between the deformation and the μ is near linear with R2=X.  

It is crucial to investigate the validity of this linear relationship therefore a FE model 
(described in Section 3) was compared in Fig. 3b. The FE model δ is normalised due to the model 
being from a slightly different set of parameters. From the FE results it is shown that the 
relationship tends to be near linear hence the relationship in the mathematical model can be 
considered acceptable. 

(a) (b) 
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Fig. 4 depicts the nonlinear behaviour of the second moment of area through frictionless, 
frictional and bonded stages. It is apparent the importance the frictional second moment of area has 
on the system stiffness through the different contact stages. In order to model a system with 
frictional behaviour, describing the stiffness accurately is essential. 

 
          Figure 4 - Frictional second moment of area versus μ. 

 
 

2.2 Sensitivity of the frictional second moment of area 

  FE models were used to demonstrate the effect of the μ on the system stiffness by creating 
force-displacement curves as shown in Fig. 5. The stick-slip part of the force-displacement curve is 
considered of an importance because it indicates the transition between bonding and sliding contact 
and how the second moment of area (or stiffness) changes. It is clearly shown the stick region, 
stick-slip region and the sliding region during the loading process in the multi-strand bar system 
with different individual strand diameters. 

 
 

Figure 5 - Stick-slip region (dashed lines indicate upper and lower bounds) of the multi-strand bar 
for strands of (a) 3mm and (b) 4mm. 

The sensitivity of the frictional second moment of area, to the applied force was investigated 
through revealing the part where the stick-slip region lay as depicted in Fig. 6. 
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Figure 6 - Sensitivity of the frictional second moment of area to the applied load for a multi-strand 
bar system with strands diameters for (a) 3 mm and (b) 4mm. 

 
The transition of the frictional second moment of area from the sticking stage (dashed line) to 

the sliding stage (solid line) passing through the stick-slip stage is depicted clearly in Fig. 7. 
 

2.3 Mathematical hysteresis loop 

A mathematical model has been developed to describe the overall system stiffness of a multi-
strand bar by accounting for the effect of friction. The model produces a force-displacement 
response. This can be extended into a force-displacement hysteresis loop to estimate the system loss 
factor. 

Fig. 7 shows the various loading and unloading stages for the hysteresis loop. The starting 
point for the hysteresis loop begins from the origin point (0, 0) in the Cartesian coordinate system. 
Point (1, 1) presents the sliding stage and ends in point (1, 2). 

 
 
     
 
 
 
 
 
 
 
      
 
 
 
 
 

Figure 7 - Hysteresis loop stages 
 
To estimate the force-displacement hysteresis loop, the shear stress between the mating 

strands and the frictional stresses at the contact regions can be used to estimate the force required  
to start the slipping in the multi-strand bar system. At the moment when the contacted strands begin 
to slide, the frictional force equals the shear force that tries to initiate the slipping. This force is 
described by Eq. (11) [18], 
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Eq. (12) is used to calculate the deformation resulting from that force, 
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The third stage starts from point (1, 2) and represents the maximum force and displacement applied 
on the system. In this stage, depending on the applied force, the resulting deformation is calculated 
by Eq. (13), 
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The fourth stage starts from point (2, 1) which is considered the start of the unloading stage. For 
this stage, Eqs. (14) and (15) calculate the force and deformation respectively. 

 slipFFF 2)1,2( −=          (14) 
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The unloading stage ends at the point (2, 2). Eqs. (16) and (17) are used to calculate the force and 
deformation respectively. 

( ) ( )2,12,2 FF −=          (16) 

( ) ( )2,12,2 δδ −=          (17) 

The sliding starting between mating strands when the system transitions from the unloading to 
loading stage is represented between the end of the fourth stage (2, 2) and the start of fifth stage 
(3,1) which is calculated by the use of Eqs. (18) and (19). 

 ( ) ( )1,21,3 FF −=          (18) 

 ( ) ( )1,21,3 δδ −=          (19) 

2.4 Numerical models 

FE models for a seven strand multi-strand bar were created to simulate the frictional 
behaviour. For the purpose of comparison, the FE models were supposed to mimic the 
mathematical models. Two sets of models were built with each strand length of 250mm but with 
different strand diameters of 3mm and 4mm. The types of elements used consisted of 3-D 20-node 
hexahedral (SOLID186), 8-node surface-surface contact (CONTA174) and target segment 
(TARGE170). The number of nodes was 70033 and 105176 for the models with individual bar 
diameters of 3mm and 4mm respectively. The modulus of elasticity used was 190GPa and between 
the strands and the contact it was assumed μ=0.25. 

2.4.1  Boundary conditions and loadings 

The boundary and loading conditions were applied to the FE models to match those applied in 
the mathematical model as simply supported. The clamping force was presented in the simulation 
as a radially distributed pressure [19] on the bars surface in the direction toward the centre strand as 
depicted in Fig. 8.  
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Figure 8 - FE model for (a) loads and boundary conditions and (b) for the seven strand bar 
under bending. 

The peak-to-peak displacement controlled loadings were 0.5mm, 1mm and 1.5mm. The clamp 
pressure was the ratio of the clamping forces to the area where the clamping forces was applied. 
The FE models were exposed to cyclic static flexural loading (ignoring transient effects) to obtain 
force-displacement hysteresis loops that were used to determine the system loss factor.  

3 RESULTS AND DISCUSSION 

Figs. 9 and 10 show the force-displacement hysteresis loops obtained both from the 
mathematical and FE models for the multi-strand bar system consisting of seven strands. 

 

 
 

Figure 9 – Mathematical and FE model comparison for a 3mm diameter seven strand bar 
system for peak-to-peak displacements of  (a) 0.5mm, (b) 1.0mm, and (c) 1.5mm. 

 
 
 

Figure 10 – Mathematical and FE model comparison for a 4mm diameter seven strand bar 
system for peak-to-peak displacements of  (a) 0.5mm, (b) 1.0mm, and (c) 1.5mm. 

 
In the hysteresis loops obtained from the FE models, the lower edge presents the loading 

stage and the upper edge presents the unloading stage as the applied displacement started from zero 
to the maximum amplitude. For comparison purposes with the mathematically obtained hysteresis 
loops, the numerical results were re-centred to represent being loaded equally between the positive 
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and negative parts of the hysteresis loops, while in reality they had been loaded in the negative part 
only. 

In the FE obtained hysteresis loops, and especially in Fig. 9, the transition between the 
loading and unloading stages has a nonlinear trend with a decrease in the system stiffness. This 
transition between the sticking and sliding is ignored by the mathematical model and replaced with 
a linear discontinuity. Although this is not accounted for, there is still a good correlation between 
the sticking and slipping regions. 

In this study, the loss factor was decided to be an indicator for the damping levels in the 
system. The loss factor was compared between the mathematical and FE model results. The 
difference in loss factor is shown in Table 1. 

 
Table 1: Difference in loss factor as a function of strand diameter and peak-to-peak displacement 

loads 

0.5mm 1mm 1.5mm
3 0.0% 0.3% 6.2%
4 9.0% 5.0% 12.0%

Peak-to-peak displacement loadsStrand diameter 
(mm)

 
 
The frictional behaviour between the mathematical and FE model for the hysteresis loops 

compare well with one another. While the mathematical model mostly represents the loading and 
un-loading stages, it does was not represent the precise nonlinear behaviour for the stick-slip region. 
When the system is largely dominated by slipping, the stick-slip region carries minimal importance 
and the presented mathematical model is valid. Conversely, when the system is dominated by stick-
slip, the proposed model loses its’ accuracy. 

4 CONCLUSIONS 

Several conclusions can be drawn from the results obtained in this paper. The main 
conclusions are: 

 
• The mathematical model provides an approximate prediction which follows the 

numerically-computed force-displacement response over most stages of loading and the un-
loading. 

• The relationship between the frictional second moment of area and the coefficient of friction 
is highly nonlinear. 

• The transition region between the stick and slip stages plays an important role in changing 
the system stiffness from being bonded to frictional to being frictionless. 

• The relationship between the system deformation and the coefficient of friction is linear. 
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