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SUMMARY

The 2011 October 23 My 7.1 Van earthquake in eastern Turkey caused ~600 deaths and
caused widespread damage and economic loss. The seismogenic rupture was restricted to
10-25 km in depth, but aseismic surface creep, coincident with outcrop fault exposures, was
observed in the hours to months after the earthquake. We combine observations from radar
interferometry, seismology, geomorphology and Quaternary dating to investigate the geolog-
ical slip rate and seismotectonic context of the Van earthquake, and assess the implications
for continuing seismic hazard in the region. Transient post-seismic slip on the upper Van fault
started immediately following the earthquake, and decayed over a period of weeks; it may
not fully account for our long-term surface slip-rate estimate of >0.5 mm yr~!. Post-seismic
slip on the Bostanigi splay fault initiated several days to weeks after the main shock, and
we infer that it may have followed the My 5.9 aftershock on the 9th November. The Van
earthquake shows that updip segmentation can be important in arresting seismic ruptures on
dip-slip faults. Two large, shallow aftershocks show that the upper 10 km of crust can sustain
significant earthquakes, and significant slip is observed to have reached the surface in the late
Quaternary, so there may be a continuing seismic hazard from the upper Van fault and the
associated splay. The wavelength of folding in the hanging wall of the Van fault is dominated
by the structure in the upper 10 km of the crust, masking the effect of deeper seismogenic
structures. Thus, models of subsurface faulting based solely on surface folding and faulting in
regions of reverse faulting may underestimate the full depth extent of seismogenic structures
in the region. In measuring the cumulative post-seismic offsets to anthropogenic structures,
we show that Structure-from-Motion can be rapidly deployed to create snapshots of post-
seismic displacement. We also demonstrate the utility of declassified Corona mission imagery
(1960s—1970s) for geomorphic mapping in areas where recent urbanization has concealed the
geomorphic markers.

Key words: Seismic cycle; Geomorphology; Continental tectonics: compressional; Folds
and folding; Crustal structure.

and generated no primary surface ruptures, was one of the largest
continental reverse faulting events in recent decades (Wright et al.
2013).

1 INTRODUCTION
On 2011 October 23, the cities of Van and Ercis in eastern Turkey

were severely damaged by an My = 7.1 earthquake (Fig. 1), re-
sulting in the death of 604 people. A further 40 died as the result
of an My, 5.7 aftershock on 2011 November 9, which caused fur-
ther building damage, primarily in the city of Van (e.g. Erdik ef al.
2012; Elliott et al. 2013; Fielding et al. 2013). The earthquake,
which occurred on a relatively short (~25 km) reverse fault (Fig. 2)

The slip solution determined by InSAR for the Van earthquake
suggests the fault only ruptured below a depth of ~10 km. As such,
there is the potential for another, possibly even more damaging,
shallow earthquake if the upper portion of the fault fails seismically
(Elliott ef al. 2013). Alternatively, the upper sections of the fault
may creep aseismically; it is known that at least small amounts of
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Figure 1. Top: tectonic overview of the Turkish-Iranian plateau, the highlands between Iran and Turkey, where we see the transition from the localized
deformation on the north and east Anatolian faults (NAFZ, EAFZ) to distributed shortening and shear accommodated by conjugate strike-slip and thrust
faulting. BZSZ marks the Bitlis-Zagros Suture zone between Arabia and Eurasia. Modern earthquake focal mechanisms shown for magnitude > 5 from the
Global Centroid Moment Tensor catalogue (Dziewonski ef al. 1981; Ekstrom et al. 2012). Thrust mechanisms are shown in red, normal in blue and strike-slip
in grey. Regional GPS velocity vectors overlaid from Vernant ef al. (2004), McClusky ef al. (2000) and Reilinger et al. (2006). The box shows the outline of
Fig. 2. Bottom: the GPS velocity vectors projected onto the two profiles V-V” (000°) and C—C” (022°) demonstrate the distributed nature of shortening and
shear across the plateau. The dashed line at zero represents the Van fault (VF). The second dashed line on C—C” represents the right-lateral strike-slip fault, the
Chaldiran fault (CF).
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Figure 2. Active fault map of the Van region, based on work by Altinli (1966), Saroglu et al. (1992), Karakhanian et al. (2004), Ozkaymak et al. (2011),
Uner et al. (2015) and our own field and remote sensing mapping. Solid lines represent faults for which we have strong evidence of activity from earthquakes
and/or displaced Late Quaternary markers. Faults marked in red are those shown to have undergone post-seismic motion following the main shock. Dashed
lines represent faults inferred from the broader geomorphic markers, but lacking direct evidence for Holocene activity. The black box marks the region shown
in Figs 3 and 7. The focal mechanisms in red represent the various fault plain solutions for the 2011 October 23 main shock. The mechanisms in black are
for the two large aftershocks—the 23/10/11 mechanism is from bodywave modelling by Elliott ef al. (2013), while that of the 09/11/11 aftershock is from the
USGS solution. Both locations are from the USGS. Triangles denote Holocene volcanic centres. GPS velocity vectors are from Reilinger et al. (2006). Fault
labels: CF, Chaldiran Fault; EF, Ercis Fault; DF, Dorutay Fault; VF, Van fault; SLVF, South Lake Van fault; BF, Bostanigi fault; GF, Glirpinar Fault.

post-seismic creep occurred, as was imaged following the main
shock (Dogan & Karakas 2013; Elliott et al. 2013). However, the
largest aftershock (Myw 5.9) 10 hr after the main shock was asso-
ciated with shallow slip between 3—10 km depth at the eastern end
of the main fault rupture, indicating that this shallower portion of
the fault has the potential to be seismogenic (Elliott et al. 2013).
Therefore, resolving the depth extent of fault frictional behaviour
is important for assessing the potential size of a future earthquake
and consequent degree of hazard.

In addition to the depth-dependent frictional behaviour, there is
the potential for both structural and lithological controls on the
depth extent of faulting. Lithological layers such as salt and shale
detachment horizons act to compartmentalize slip in narrow depth
extents (Nissen ez al. 2010; Elliott ef al. 2015a), and the intersection
of faults at depth has been suggested as a possible (albeit poten-
tially temporary) barrier to rupture propagation (Elliott ef al. 2011,
2016). There has been much discussion on the effect of along-
strike segmentation on the length of ruptures in strike-slip earth-
quakes (e.g. Wesnousky 2008), but much less for downdip segmen-
tation in dip-slip earthquakes in intracontinental settings. The rapid

post-seismic motion observed with InSAR following the Van earth-
quake images the faulting in the upper 10 km of the crust, allowing
us to probe the influence of structure on slip propagation.

Further south from the Van fault (VF), Dogan ef al. (2014) noted
motion on a splay fault (the Bostanigi fault, BE, Fig. 2) at the sur-
face within the northern limits of the city of Van using post-seismic
GPS and InSAR data. We add further remote sensing observations
and field evidence of the surface expression of this splay fault. In
addition, we demonstrate the utility of two novel data sets in assess-
ing and monitoring Quaternary and modern geomorphology within
expanding cities—the exploitation of 1960s—1970s declassified US
spy satellite imagery (Hollingsworth et al. 2012); and the rapid, very
low cost, photogrammetric mapping using Structure from Motion
(SfM; James & Robson 2012; Johnson ef al. 2014).

Combining the tectonic geomorphology across the region with
Quaternary dating, we determine the long term slip-rate on the VE.
Studying the immediate post-seismic behaviour and the longer-term
slip rate allows us to probe the earthquake cycle in this region of the
Arabia-Eurasia collision zone where the cycle is much longer that
the instrumental catalogues and often the historical records too.
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2 BACKGROUND TO THE VAN
EARTHQUAKE

2.1 Tectonic setting

The Van region lies in a zone of general north—south shortening
within the continental collision zone between Arabia and Eurasia
(e.g. Copley & Jackson 2006). Early estimates suggest that the
initial collision was at ~10 Ma (Dewey et al. 1986), though palaeo-
climate studies suggest it may have begun as early as ~35 Ma
(Allen & Armstrong 2008). Much of the current rate of Arabia—
Eurasia convergence (23 mm yr~!) is accommodated by shortening
in the Caucasus, but around ~10 mm yr~!' is distributed across
the Turkish—Iranian Plateau (TIP; Reilinger ef al. 2006). In western
Turkey, Arabia—Eurasia shortening results in the westwards extru-
sion of Anatolia in a plate-like fashion, bounded by the north Anato-
lian and east Anatolian faults (e.g. McClusky et al. 2000; Reilinger
et al. 2006), whereas eastern Turkey is a zone of distributed crustal
shortening (Fig. 1).

Shortening within the TIP is accommodated by a combination of
thrust and conjugate strike-slip faults (Figs 1 and 2). The 2011 Van
earthquake occurred on a thrust fault approximately 10 km north
of Van which was previously unrecognized as active (Dogan &
Karakag 2013; Elliott ef al. 2013; Fielding et al. 2013). There have
been a number of large historical earthquakes in the Van region, the
most recent of which was the 1976 My = 7.1 Chaldiran strike-slip
earthquake ~80 km northeast of Van (Fig. 2), which caused heavy
damage in the town of Chaldiran and much of the surrounding
region (Giilkan et al. 1978).

Monastery archives record several damaging historical earth-
quakes in the region, including the 1648 Van-Hayotsdzor earth-
quake, estimated to be M ~6.7, which caused heavy damage in the
region from Van south to the Giirpinar valley (Fig. 2), completely de-
stroying or damaging beyond repair at least 11 different monasteries
across the region (Ambraseys 1989). In 1715, an M 6.6+ earthquake
occurred southeast of Van in the region of Mahmatan, causing dam-
age in the Mehmedik plain (Fig. 2), ruining the walls of the Hosap
Castle (modern town of Giizelsu, ~40 km southeast of Van), but po-
tentially causing damage as far as Ercis (Thierry 1979; Ambraseys
& Melville 1982; Ambraseys 1989). In 1903, the Mg 7.0 Malaz-
girt earthquake to the northwest of Lake Van, was reported to have
killed at least 700 people (Shebalin ez al. 1997). Utkucu (2013) sug-
gest that the 1715 event may have occurred on the same fault as the
2011 event, but it is difficult to associate these historical earthquakes
with specific faults with much certainty, as there are no records of
surface ruptures.

2.2 Geological setting

Van lies on the eastern shore of the alkaline Lake Van, which has
a mean elevation of 1650 m above mean sea level (Kadioglu et al.
1997). To the north and west of Lake Van, the exposed geology
is predominantly composed of Quaternary and Neogene volcanics
(Pearce et al. 1990). To the south of Lake Van, the Bitlis mountains
rise to ~3500 m, and are comprised of Palacozoic and Mesozoic
metamorphic and ophiolitic lithologies. Around the city of Van, are
regions of Pliocene basin deposits, Quaternary lake sediment de-
posits and extensive Quaternary volcanics (MTA 2002; Kuzucuoglu
et al. 2010), most of which have been faulted, folded and tilted by
tectonic activity.

The presence of soft sediment deformation structures (seismites)
in the varved lake sediments provides a rich record of prehistoric

earthquakes in the Van region. Uner ef al. (2012) map several dif-
ferent varieties of seismites at six different locations around the
south and east shores of Lake Van, which they attribute to occur-
rence of repeated My > 5 earthquakes in the Late Quaternary. The
recent International Continental Drilling Project (ICDP) PALAEO-
VAN project has focused on coring the varved sediments from two
locations within Lake Van (Litt ez al. 2009, 2012; Cukur et al. 2014;
Litt & Anselmetti 2014; Stockhecke et al. 2014). Work is ongoing
to establish the chronology, but Litt ef al. (2009) observe extensive
seismites in the test drill cores, attributing them to the repeated
occurrence of earthquakes throughout the last 500 ka.

2.3 The 2011 October 23 Van earthquake

Initial epicentres for the 2011 main shock were as far apart as
~20 km, but later solutions incorporating radar interferometry tie
the location to ~22 km due north of Van (Fig. 2). A summary of
the seismological and geodetic solutions is shown in Table 1.

InSAR, seismology, GPS and combined solutions (Zahradnik &
Sokos 2011; Irmak et al. 2012; Dogan & Karakas 2013; Elliott ez al.
2013; Fielding et al. 2013; Gallovic et al. 2013; Feng et al. 2014;
Moro et al. 2014; Zahradnik & Sokos 2014; Wang et al. 2015),
broadly agree that the earthquake occurred on a steep north dipping
(40-55°) fault, with a small left lateral component. The upper extent
of slip is generally agreed to be 7-10 km depth. Chequerboard tests
by Elliott et al. (2013) show that this top depth is well constrained
by the InSAR data. The pattern of uplift is consistent with the field
observations of Emre et al. (2011), who observed uplift of the lake
shore (inferred from the height of shoreline boulder deposits) of up
to ~40 cm near the village of Dagonii. The source models of Elliott
et al. (2013), Zahradnik & Sokos (2014) and Wang et al. (2015) go
further in breaking the rupture into two smaller discrete patches of
slip or sub-events, possibly on two fault segments aligned to two
geomorphic scarps.

The majority of well constrained aftershocks were shallow, in
the 0-10 km region, and appear to cluster around the uppermost
edge of the rupture region (Fielding et al. 2013), but the cumulative
moment release from the aftershocks over the entire region is still
small compared to that of the main shock (<10 percent over the
first 3-months, based on the ISC bulletin). Two large aftershocks
occurred in the hours to days following the earthquake. A My 5.9
aftershock occurred towards the northeastern extent of the fault 10
hr after the main shock with a thrust mechanism similar to the main
shock (Irmak et al. 2012; Elliott et al. 2013). The My 5.7 aftershock
on 9th November 2015 had a strike-slip/oblique mechanism and was
located to the southwest of the VE, within Lake Van (Fielding et al.
2013).

3 METHODS—STRUCTURE FROM
MOTION SURVEYING

One of the fundamental measurements in characterizing active fault-
ing from geomorphic markers is determining fault offsets in topog-
raphy, due to motion in single or multiple events. In the simplest
case of a uniform fault scarp running through a flat surface, a basic
differential GPS (DGPS) profile can be used to measure of the offset
in the surface. However, as the surface becomes more uneven, or
the strike of the fault changes, it becomes necessary to look at the
offset over a larger area and terrain range and take an average.
Similarly, if we wish to differentiate between individual events
(such as multiple lateral offsets of different amounts), it becomes
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Table 1. Table of earthquake mechanisms for the Van Earthquake main shock from various authors mentioned in the text. 1f and 2f refer to the single fault

and two fault models.

Source Data set Lat Long Centroid My Moment Strike Dip Rake Slip Top Bottom
) ©) depth (km) (10" Nm) ) ) ) (m) (km) (km)

KOERI Seismic  38.73 43.43 5 6.6(Mr)

GCMT Seismic ~ 38.67 43.42 12 7.1 6.40 246 38 60

USGS Seismic ~ 38.69 43.49 16 7.1 6.40 255 50 73

USGS-W Seismic  38.69 43.49 16 7.1 5.60 241 51 58

GFzZ Seismic ~ 38.72 43.55 10 7.0 4.70 268 36 85

EMSC Seismic  38.86 43.48 10 7.2 6.80 248 53 64

Elliott et al. (2013) Seismic  38.67¢  43.42¢ 19 7.0 3.26 243 50 60

Irmak et al. (2012) Seismic  38.782  43.337 15 7.1 246 46 59 3.6 11 24

Fielding et al. (2013) Seismic  38.69”  43.49Y 18 7.1 5.37 258 46 71 3.5 6 29

Utkucu (2013) Seismic  38.697  43.49% 11 7.1 4.60 255 50 73 5.5 5 20

Gallovic et al. (2013)¢  Seismic  38.689  43.351 10 7.2 7.40 246 52 75

Feng et al. (2014) SAR 43.403  38.702 12 7.03 261 49 80 6.5 8

Elliott et al. (2013)-1f SAR 38.592 43.386 14.1 7.0 4.44 258 45 83 3.7 8.6 19.6

Elliott et al. (2013)-2f SAR 13.7/13.8 6.8/6.8 2.13/2.31 254 40/55 64/93 3.3/6.7 8.3/10.2 19.1/17.4

Fielding et al. (2013) SAR 7.1 5.84 259 42.5 6 30

Wang et al. (2015)-2f SAR 25/25 7.19 6.08 253/253  40/54

“Fixed to the Global CMT (GCMT) location.
bFixed to the USGS location.

¢Solution used as the assumed fault plane by Zahradnik & Sokos (2014) who estimate a total moment release of 3.55-3.87 x 10'° Nm in two subevents.

necessary to take a full 3-D view of the fault expression at the sur-
face. For small areas, this can still be done with kinematic DGPS,
simply by walking the antenna over the ground (e.g. Campbell et al.
2015). But for larger areas, this procedure becomes too time con-
suming to achieve sufficient resolution. Instead we implement a
work flow using photogrammetric reconstruction by SfM, based on
the methods of James & Robson (2012), Fonstad et al. (2013) and
Johnson et al. (2014). This is a highly scalable technique, the util-
ity of which we demonstrate from scales of small (<10 cm) creep
offsets to much larger (5+ m) fault scarp offsets.

SfM uses many photographs taken from a variety of perspec-
tives, to construct a scale-independent 3-D model. Supplementing
this with accurately determined ground control points, we can make
digital elevation models (DEMs) with centimetric resolution. Tradi-
tional photogrammetry relied on a small number of photos from well
calibrated metric cameras, with multiple ground control points nec-
essarily visible in every photograph. In contrast, the SfM method
uses the redundancy of many highly overlapping photographs to
use a new feature identification algorithm (Scale Invariant Fea-
ture Transform, SIFT; Lowe 2004) to simultaneously solve for the
relative camera positions and calibration parameters, by matching
features between photos. This is followed by a multiview stereo
image correlation based reconstruction in a purely relative space,
based on the calculated camera orientations. A minimum of three
ground control points within the model are required to orient and
scale the model.

We use the Agisoft Photoscan commercial software to perform
the photogrammetric reconstruction, first using a sparse reconstruc-
tion to solve for the internal and external camera parameters, and
then a multiview stereo reconstruction to generate a dense point-
cloud. The pointcloud is then scaled and oriented using a small
number (typically 5-10) of ground control points consisting of or-
ange plastic squares pegged into position and whose location is
measured using realtime kinematic (RTK) DGPS. The pointcloud
is gridded using a tensioned minimum curvature algorithm, under
the Generic Mapping Tools package (GMT; Smith & Wessel 1990),
to generate a DEM. The gridded data is appropriate for hillshading
and display (Section 5.2.2), but analysis is performed on the raw

dense pointcloud. We manually mask any regions of the pointcloud
where the geomorphic marker has been modified, before measuring
displacements.

In this study we perform two different types of SfM survey; for
small offsets in anthropogenic markers which can easily be viewed
from many viewpoints, we use a handheld compact digital camera,
while for larger terrain offsets (scarps) we use a camera mounted
on a long pole to gain an elevated perspective. The survey design is
important in determining the ability of the SIFT algorithm to match
features between photos—photos were taken with significant over-
lap typically >60 per cent and minimal change in orientation (10°).
In the case of the pole survey (Section 5.2.2), we used a compact
digital camera (Ricoh GRII) mounted on a 6 m aluminium pole. The
camera is oriented downwards but angled forwards at ~20°-30°,
just clear of the operator, in order to incorporate a greater depth of
field (DOF) in the photographs (and remove the operator from the
frame). A 28 mm (full-frame equivalent) focal length camera pro-
vides a field of view of ~11 x 12 m on the ground, so we walk a grid
at 10 m spacing, covering an area of ~190 x 150 m. The pole was
carried in a rough grid pattern across the scarp, with adjacent (over-
lapping) ‘tracks’ moving in opposite directions. A simple downward
(nadir) looking geometry would provide the easiest approach, with
the best photograph overlap and feature matching, but this results in
very limited DOF in the photographs. That parallel-axis geometry
with limited DOF results in a trade-off between the focal length and
radial distortion coefficients when solving for the lens parameters,
resulting in uncorrected image distortion that propagates into the
whole model as a ‘bowl’ effect (James & Robson 2014). Our op-
posing geometry with the angled camera and pre-calibration, avoids
the special-case of parallel geometry so we can solve for the lens
parameters without ambiguity, even in scenes with relatively poor
texture (e.g. grassy fields).

4 POST-SEISMIC SLIP: INSAR AND
FIELD MEASUREMENTS

The very rapid first acquisition of post-earthquake COSMO-
Skymed data (4 hr), has provided a valuable opportunity to probe
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Table 2. Acquisition dates of the various interferogram pairs discussed in the text. CSK, COSMO-Skymed; TSX, TerraSAR-X; ASAR,
Envisat (the latter in the period after loss of orbit stability). Asc refers to ascending tracks, while dsc refers to descending tracks. The
perpendicular baseline is the average between that at the top and bottom of the scene.

Interferogram Orbit Date 1 Date 2 Perpendicular Incidence Postseismic period
(yyyy-mm-dd) (yyyy-mm-dd) baseline (m) angle (°) (days)
CSK1 dsc 2011-10-10 2011-10-23 194 28 0-0.167
CSK2 dsc 2011-10-10 2011-10-26 115 28 0-3
CSK3 dsc 2011-10-23 2011-10-26 309 28 0.167-3
TSX1 asc 2011-10-31 2011-11-11 194 33 8-19
TSX2 dsc 2011-11-09 2011-11-20 14 26 17-28
TSX3 dsc 2011-12-01 2012-01-03 29 26 39-72
ASARI1 dsc 2010-11-05 2011-10-31 138 41 0-8
ASAR2 dsc 2011-07-22 2011-11-19 221 41 0-27

the early post-seismic motion. The COSMO-Skymed interferogram
for the coseismic period (CSK1, Table 2) showed minimal surface
discontinuities from the earthquake itself. However, interferograms
for the period immediately following the earthquake (CSK3, 4 hr
to 3 d after) show a small discontinuity at the surface (Dogan &
Karakas 2013; Elliott et al. 2013; Feng et al. 2014), coincident with
surface displacements of up to 10 cm observed in the field (Emre
et al. 2011). It is likely therefore that most of the observed sur-
face displacements occurred post-seismically, over the two weeks
following the main shock (discussed below). In the following sec-
tions we further refine measurements of the post-seismic slip, using
both field measurements and InSAR. These motions provide impor-
tant constraints on fault behaviour, as well as providing an insight
into the upper crustal structure of the VF and associated splay, and
potential controls on rupture propagation.

4.1 Field measurements of post-seismic slip

4.1.1 Van—Ercig Highway

Very shortly after the main shock (1-5 d), a series of small surface
ruptures (typically <20 cm) were observed on the main Van—Ercis
highway (S1 in Fig. 3). The ruptures are indicative of oblique short-
ening, including cracking and folding of tarmac, displacement of
kerbstones and paved surfaces, and shallow cracking and moletracks
across agricultural fields (Emre et al. 2011; Ozkaymak et al. 2011;
Dogan & Karakag 2013; Elliott et al. 2013). The ruptures are along
strike from a fault exposure at the Van—Ercis highway, which dips
45-50°N in late Pleistocene deposits (photograph in Fig. 4c). The
fringe rate in the coseismic (CSK1) interferogram is too high to
distinguish phase discontinuities at the level of 1-2 fringes (<3 cm
LOS) so, reinspecting the coseismic interferogram, we cannot rule
out motion during the earthquake. However, we know from the post-
seismic interferograms (see below) that significant motion did occur
post-seismically.

The road surface has since been repaired, but the kerbstones
record the full displacement (Fig. 4a). Using SfM (see Section 3),
we created a 3-D terrain model (Fig. 4b) of the road and pavement
in order to accurately quantify the displacement at the surface, such
that we can compare the observed slip with that imaged in the post-
seismic interferograms. The length of six kerbstones measured in the
field was used to accurately scale the model. We measure an offset
of 23 £3 cm laterally and 11.7 £ 1.0 cm vertically (Fig. 4) in the
kerbline, as of 24th May 2014. The displacements are consistently
observed in each of the four kerblines of the dual-carriageway and
are coincident with the exposed fault in the road cutting. They are

also along strike from a topographic scarp of probable Holocene
age (Section 5.2).

4.1.2 Splay fault

Post-seismic slip on a southern fault strand, within the northern
suburbs of Van city, was imaged using the TSX1 interferogram
by Dogan et al. (2014) and Wang et al. (2015). Reprocessing this
interferogram with minimal downsampling (below) enabled us to
show that this displacement occurred within a zone no more than
~200 m wide, which we targeted for field investigation. Using the
approximate location derived from InSAR we examined optical
imagery and topographic data sets. The Shuttle Radar Topography
Mission (SRTM) and the Global Digital Elevation Model (GDEM)
data sets both show a low south-facing scarp running E-W through
the Altintepe and Iskele districts on the northern edge of Van (Fig. 3),
roughly paralleling the train tracks and reaching the coast at the port.

We use declassified Corona reconnaissance imagery from one
of the Key Hole satellite missions (KH-4B, data available from
the U.S. Geological Survey, nadir ground resolution of 1.8 m) to
view the region prior to the northward urban expansion of Van.
Fig. 5 shows the Corona scene from 20 July 1970, on which we
identify the faint trace of a scarp from minor stream incision and
shadowing on its uplifted northern side. By comparing the historical
imagery to the modern WorldView-2 imagery (0.5 m), we identified
several sites for field study where the fault cuts modern roads and
buildings. From inspection of high-resolution optical imagery on
the Google Earth historical archive, we can see that the majority
of the roads in a narrow band along the scarp (coincident with the
post-seismic deformation imaged with InSAR) were re-surfaced
approximately 1-2 yr after the earthquake. Most of the current road
surfaces are therefore not an appropriate record of the total post-
seismic deformation. Though the reason for resurfacing is not clear,
it is likely that the roads were re-surfaced due to damaged tarmac
as a result of post-seismic motion. The only exception is the main
road leaving Van to the north, which does not appear to have been
resurfaced (2014 May 24), but showed signs of needing repair from
cracking in the tarmac (Fig. 6d, location in Fig. 5).

In order to measure the total discrete post-seismic surface slip, we
primarily focused our field investigation on the kerblines, walls, and
buildings. Examples of deformed kerbstones and walls are shown
in Fig. 6. Verbal reports from local residents suggest that the wall in
Fig. 6(a), which was built in 1993, was intact immediately after the
earthquake, and that the visible extensional cracks have occurred
between 2011 and 2014, that is, post-seismically. The cracking in
this wall is consistent with uplift on the northern block. In contrast
to the surface displacements on the main VE, we find no clear
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Figure 3. Map of the field study region covering the same region as the interferograms in Fig. 7, on a hillshaded Shuttle Radar Topography Mission (SRTM,
30 m, illuminated from the northwest) basemap with the Van fault (VF) and the Bostanigi fault (BF) marked and the individual field study sites shown (S1,
S2, S3). The backthrust is marked as a dashed line, as is the possible lakewards extension of the BE. We infer from the topography that in the east the fault
motion collapses back onto a single strand (connected by a dashed line), consistent with the trace mapped by Dogan ef al. (2014) and Wang et al. (2015). The
inset shows the zoom of the northern Van city, with trace of the Bostanici splay fault visible in the SRTM elevation data (marked with black triangles). This

splay fault is laterally extensive and cuts palaeolake shorelines.

evidence for lateral displacements on this fault. The damaged walls
and buildings are superimposed on the pre-existing scarp shown in
Fig. 6(f). Using kinematic DGPS, we measured the vertical total
offset across the scarp to be ~5.5£0.5 m.

The kerbstones of both carriageways of the main road leaving
Van to the north showed clear displacements with the north side
uplifted where it crosses the splay fault, and the tarmacked surfaces
are distorted (see Figs 6¢ and d). The road does not appear to have
been resurfaced post-earthquake and the deformation of the tarmac
road surface is coincident with the displacement gradient imaged
in the post-earthquake InSAR. Despite not being resurfaced, we
suspect that deformation of the tarmac will still have been modified
by the impact of vehicles driving over it in the intervening years.
However, the kerbstones also appear not to have been replaced
since the earthquake, and so are more likely to reliably represent
the total post-seismic motion on the splay fault since the earth-
quake. We constructed a digital surface model of the road section
around the kerb offsets, using SfM (see Section 3) with a hand held
compact camera. The resulting 3-D model was scaled from tape-
measure length measurements of two sets of six kerbstones, agree-
ing to within 1 per cent. From the scaled surface model we mea-
sured 2—4 cm of discrete vertical displacement and negligible lateral
displacement.

4.2 Post-seismic InNSAR

In order to place firm constraints on the timing, spatial variabil-
ity and magnitude of post-seismic slip, we re-processed the post-
seismic interferograms CSK3, TSX1, TSX2 and TSX3 (first 3
months after the earthquake, described in Table 2). The InSAR data
were processed using the ROI_PAC software (Rosen et al. 2004),
multilooked to four looks in range and azimuth (5 m final pixel size),
with branch cut unwrapping. We use minimal down-sampling in or-
der to constrain the location of the splay fault for field study. Further
InSAR data from the TerraSAR-X mission was available, with regu-
lar acquisitions through to the end of January 2012 (through the Su-
persites web page http://supersites.earthobservations.org/van.php),
but these interferograms generally showed very poor coherence—
most likely due to winter snow cover, confirmed by inspection of
the Landsat ETM+ archive. The four interferograms processed show
good coherence near the shores of Lake Van, but poor coherence
to the east in the areas of higher topography due to topographic
decorrelation and localized snow cover.

Fig. 7 shows the wrapped and unwrapped interferograms, in
which we observe significant deformation following the earthquake,
localized on two different faults: the VF, and the Bostani¢i splay in
the northern suburbs of Van. The faults are identified by high phase
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Figure 4. (a) Photograph looking along kerbline (May 2013), person for scale, showing left lateral displacement. (b) Oblique 3-D perspective view of the
structure-from-motion reconstruction, showing a vertical offset in the same kerbline. Red arrows denote the displacement line. The poorly correlated trees have
been removed from the model (3 x vertical exaggeration to aid visualization). (c) Photograph of the cleaned road cutting, with contrast between hanging-wall
and footwall sediments, with coincident displaced kerbstones in the foreground. Dashed line and arrows mark the visible fault dipping 45°N. (d) Horizontal
profile along the top edge of the kerbline in the SfM pointcloud showing ~23 £ 3 cm lateral offset. Points shown in blue are those used for least squares fit. (e)
Vertical profile along the top edge of the kerbline in the SfM pointcloud showing ~11.7 & 1.0 cm vertical offset. A gradient has been removed to de-trend the

profile and aid visibility of the vertical offset.

gradients and phase discontinuities that correlate well from scene
to scene and map closely to the observed surface displacements.
Note that both the large aftershocks mentioned in Section 2.3 are
captured by these interferograms. The My 5.9 aftershock 10 hr after
the main shock is within the CSK3 scene and is likely responsible
for the enhanced uplift at the eastern end of the VF (Elliott et al.
2013). The second aftershock, My 5.7 on 2011 November 9, is
captured by both TSX1 (ascending) and TSX2 (descending), and
is visible as a series of concentric fringes in the wrapped image of
TSX2 (Fig. 7).

To study the spatial and temporal variability of the uplift associ-
ated with the fault motion, we take three fault perpendicular profiles
(swath width 1.5 km) through the interferograms, A—C (Fig. 8). The
CSK3 interferogram (0-3 d) shows a line-of-sight (LOS) displace-
ment signal associated with the VF across all three profiles, with a
wavelength of ~6—7 km, a magnitude of ~3 ¢cm and a discontinuity
at the mapped fault trace (2-3 cm in LOS). There is little motion on
the Bostanici splay fault in this interval.

The TSX1 ascending pass interferogram shows a small discon-
tinuity of ~1 cm at the VF and a larger step of 2-3 cm at the
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Figure 5. Top: declassified satellite photograph from the Corona mission, 1970 July 20 July, prior to much of the urban sprawl of Van. Circles show the field
sites shown in photos in Fig. 6. Black triangles denote the trace of the fault scarp on the Bostanigi fault. Bottom: modern satellite image (Google Earth, Imagery
from CNES/Astrium, Image date:19/07/2013) showing the same region, with much of the morphology covered by urban dwellings. Yellow triangles denote

the same trace.

splay fault, with a broad signal of ~4 cm LOS displacement over
a wavelength of 6-8 km north from the splay fault, associated with
post-seismic displacement on the splay fault. Though this interfer-
ogram spans the 9th November aftershock, there is no evidence of
displacement in this line of sight. The TSX2 descending pass in-

terferogram shows a LOS displacement towards the satellite at the
southern end of the profiles B, C, due to the 9th November after-
shock, masking the effect of the splay fault. Superimposed on the
aftershock deformation, we also see small discontinuities at both
the VF and the BF (~1 cm). At both faults, all four interferograms
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Figure 6. (a) Photo of a wall distorted by a few centimetres through post-seismic motion on the splay fault. The wall was constructed in 1993, but was
undisturbed immediately following the earthquake. A tension gap and a cracked block are circled. Person for scale. Arrows indicate the sense of displacement
of the wall. View east, location: 38.5283°N, 43.3472°E. (b) A second wall featuring cracks likely caused by the same post-seismic motion. The obvious crack
has split individual blocks, but a second crack on the right has been repaired too. The orientation of these cracks is consistent with uplift on the north (left).
View east, location: 38.5279°N, 43.3438°E. (c) Curb stones on the central reservation are displaced vertically, and gaps have developed between stones. The
vertical displacement is ~2—4 cm. (d) Distorted tarmac on the Van—Ercis highway. Note that the displacement here has likely been exaggerated by the action
of vehicles travelling over the displaced tarmac. Location (c and d): 38.5295°N, 43.3501°E. (e) Kinematic DGPS profiles across the scarp reveal a throw of
~5.540.5 m, Location: 38.5278°N, 43.3460°E. Points in grey were excluded from line fitting. (f) A view of a tarmac road ascending the scarp on the splay
fault. On top of the scarp is a new building being rebuilt following the earthquake. Location: 38.5276°N, 43.3397°E.

show LOS displacement towards the satellite on the north block and both of which span the earthquake. However, the USGS bodywave
away from the satellite on the south block, consistent with thrust or mechanism for the aftershock has a strike-slip mechanism with a
oblique left lateral fault slip. small oblique component, on an approximately E-W or NS strik-

The 9th November aftershock signal shows displacements of up ing fault plane. A simple elastic half-space model (Okada 1985),

to 4-5 cm LOS displacement in TSX2, but almost none in TSX1, resolved into the look direction shows that for the north dipping,
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Figure 7. Series of COSMO-Skymed and TerraSAR-X interferograms for the period up to 2.5 months after the main shock, in temporal order top to bottom
(outline shown in Fig. 2). Both the wrapped phase (left) and unwrapped interferogram (right) are shown—unwrapped LOS displacement is positive towards
the satellite. We see clearly delineated both the Van and Bostanigi faults (black arrows), along with a small backthrust (red arrows). There is a general uplift
signal across the 5-8 km region associated with topography, with discontinuities at both faults. The locations of the profiles A—C of Fig. 8 are shown on the
top right. The two middle interferograms (TSX1 and TSX2) also capture the edge of the displacement field for the 2011 November 9 My 5.9 aftershock near
the edge of Lake Van (as identified by Dogan et al. 2014).
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Figure 8. Profiles across the Van and Bostanigi faults through the post-seismic interferograms in Fig. 7. LOS displacement is positive towards the satellite.
Error bars represent the one sigma standard deviation in values of the points across the 1.5 km swath width of each profile, with the data binned in 100 m
increments along profile. Note, a constant offset has been applied to each profile for clarity. Labels: VF, Van fault; BE, Bostanigi fault; BT, Backthrust.

right lateral slip fault plane, the expected surface deformation pat-
tern matches closely that observed, with very little motion in LOS
for the TSX1 look direction, but significant motion in the TSX2
line of sight. Thus it is likely that the My 5.7 on 9th November
occurred on a north dipping fault plane off the shore of Lake Van
near the town of Edremit, though the fringes we observe suggest a
location closer to Van city than the published seismological loca-
tions from the USGS and Irmak et al. (2012). This is consistent with
the model of Wang et al. (2015) based on the TSX1 and ASAR2
interferograms.

Another common feature of all the interferograms is a small
discontinuity between the VF and the Bostani¢i splay fault in pro-
file C—C”, south side uplifted. This feature appears in both the
wrapped and unwrapped interferograms (Figs 7 and 8), so we sug-
gest that it is a small backthrust accommodating the transfer of
motion between the two faults. There is no geomorphic signature

associated with this structure however, so we expect it to be a minor
feature.

In summary, the sequence of interferograms show early shallow
slip on the upper section of the VF resulting in uplift over a wave-
length of ~6-7 km that is well correlated with the hanging-wall
topography, but decays very rapidly over the days to weeks after the
main shock. This is followed by an aftershock under the easternmost
edge of Lake Van, for which the interferograms show motion con-
sistent with right-lateral strike-slip/oblique faulting on an offshore
fault near Edremit, striking E-W and dipping to the north. Either
shortly before or following this aftershock, we observe creep on
the BF. Superimposed is the continued creep on the VF at shallow
depths (1-2 km). The final interferogram shows that both faults
were still moving aseismically at least until the start of December
(+39 d), though more slowly than in early interferograms (~1 cm
over the 1 month period). The signal associated with the VF has a
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wavelength of only ~1 km, so only very shallow motion remained
in this period, whereas the signal associated with the Bostanici has
a wavelength of ~6 km suggesting deeper slip was still continuing
over the final period. Both faults show a slightly longer wavelength
signal in the west suggesting that deeper slip was occurring there in
all four interferograms.

Akinci & Antonioli (2013), Moro et al. (2014) and Wang et al.
(2015) estimated the Coulomb stress changes on the fault planes
of the 9th November My 5.7 aftershock predicted by the centroid
moment tensor solutions; they suggest that the aftershock fault may
have been brought closer to failure by the main shock as the trans-
ferred stress values generally exceeded 1 bar for both possible fault
planes. The fringes associated with this aftershock in TSX2 sug-
gest a centroid location significantly north and east of the USGS
location. This suggests that the stress transfer values of Moro et al.
(2014) and Akinci & Antonioli (2013) are likely to be underesti-
mated, making it even more likely that the aftershock was triggered
by stress transfer following the main shock.

4.3 Post-seismic slip: summary

Projecting the field measurements into satellite LOS, the offset at
the Van—Ercis highway is equivalent to 14 cm towards the satel-
lite for the descending pass interferograms (CSK3, TSX2, TSX3)
and 4 cm away from the satellite for the ascending pass (TSX1).
However, TSX1 displays motion towards the satellite in the hanging
wall, suggesting that the large lateral offset may partly be a local
site effect. This echoes the findings of Elliott ez al. (2013) and Emre
et al. (2011) who noted that the strike-slip:dip-slip ratio at the high-
way was much larger than was seen at most other locations. The
descending interferograms are less sensitive to the lateral compo-
nent, so we can still compare the observed thrust offset to the InSAR
data. The CSK3 interferogram for the period of 4 hr — 3 d after the
main shock shows an offset of ~4 c¢cm at the highway, almost a
third of the total measured in 2014, while the later interferograms
show decreasing offsets of 2-0.5 cm over longer temporal baselines
(finally, 0.5 cm over the period 39-72 d), suggesting that the aseis-
mic slip-rate at the surface decayed very rapidly over at most the
first 8 d.

At the BE projecting the field measurements into radar LOS,
we expect displacements of at most ~5 cm, which is less that the
cumulative displacement measured in the interferograms (which
do not cover the full time period). This is most likely because
the surface displacement is more diffuse on this fault, with only a
proportion localized at the pre-existing scarp—the InSAR profiles
are generally smoother across this fault, with a length scale of 100—
200 m.

5 GEOLOGICAL SLIP RATE

5.1 Overview

As noted above, the post-seismic surface breaks on the main VF and
the BF were superimposed on pre-existing fault scarps. The surface
trace of the VF bounds the southern margin of a range of east—west
striking hills with a steepened southern slope, rising up to ~900 m
above the level of Lake Van (Fig. 3). The relief is highest in the
east, tapering down to the lake level in the west. These hills form
an anticline in the hanging wall of the fault, with a wavelength of
~7.5 km (further discussion in Section 6.1). Many sections of the
Late Quaternary fault scarp have been strongly altered by human
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influence, but we identify several points where clear Quaternary
scarps are visible, with heights of ~3-20 m. Both the fault and
the range it bounds are characterized by two distinct geomorphic
segments, an eastern and a western segment (Fig. 9).

The eastern segment of the VF extends from ~43.44°E to Lake
Ergek, though lack of surface observations in the lake make it
difficult to determine how far under the lake the fault extends and the
rupture continued. This segment is characterized by a continuous
scarp of typically ~30-50 m, consisting of an uplifted bedrock
terrace (Fig. 9d). The fault trace is shown in Fig. 9 a—there is a clear
change from incision to deposition in crossing from the hanging
wall to the footwall, but no coseismic surface displacements were
observed in this section. During our brief field survey we did not
find any Quaternary sediments on the terrace surface suitable for
determining a slip-rate, but the well preserved, extensive and large
scarp suggests it is likely that the fault extends to the surface in
this segment. The relief associated with this section of the fault
rises to ~900 m above the level of Lake Van, and is flanked by
Pliocene sediments on the backlimb of the fold in several locations
(see Section 6.1).

The western segment of the VF extends from the shore of Lake
Van to ~43.44°E (Fig. 9). It is unclear whether the fault continues
under the lake, though the decrease of the hanging-wall relief sug-
gests that the fault ends near the edge of the lake. This asymmetry
is not seen in the coseismic displacement field, suggesting that the
fault may be growing westwards. This western section of the fault
has cut through a series of the Quaternary alluvial and lake deposits,
forming a semi-continuous rangefront scarp. The scarps are devel-
oped primarily in volcanoclastic alluvial deposits and lacustrine
deposits. They have generally been modified by agriculture, but we
found a number of sites where the scarps are well-preserved. The
three sites (S1, S2 and S3) that we selected for slip-rate measure-
ments, where we see scarps of ~3 m, ~5 m and ~18 m respectively,
are shown in Fig. 9. We use a combination of optically stimulated
luminescence (OSL) dating and radiocarbon dating to estimate the
deposition age of two surfaces at sites S2 and S3. We use kinematic
DGPS and SfM to generate digital elevation models of the scarp
in two separate locations, and DGPS profiles in a third, to estimate
fault throw at the surface.

5.2 Slip-rate measurements

5.2.1 Site §1

The VF continues eastwards along strike of the deformation of
the Van—Ercis highway (described in Section 4.1) as a low scarp
tracking across agricultural fields (Fig. 10a). Despite significant
ploughing having occurred, the scarp is clearly visible in the
Late Quaternary volcanoclastic alluvial sands and gravels with a
10-20 cm soil developed at the surface. DGPS profiles across the
scarp show 2.7 £ 0.3 m of vertical throw (Fig. 10b). Quartz OSL
samples collected from a pit in the upthrown side of the scarp have
unfortunately not been possible to date due to the insensitivity of
the quartz. It is however still clear that at site S1 significant Late
Quaternary fault slip has reached the surface to generate the scarp.

5.2.2 Site S2

Immediately east of site S1, the land has been heavily modified by
building, but ~2 km further east, at site S2 (Fig. 9), we found further
scarps in similar materials (Fig. 11a). We use SfM (see Section 3)
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Figure 9. WorldView-2 Multispectral RGB true colour 0.5 m pansharpened imagery of the Van fault (May—June 2011). (a) An overview of the Van fault
showing both the eastern and western segments, denoted by yellow arrows. In the east, the scarps are primarily bedrock, but in the west they cut Quaternary
sediments. (b) The western section of the scarp, with the three field sites discussed in Sections 5.2.1-5.2.3 shown in yellow, and the new highway, which
provides the cutting for sampling at S3, shown as a dashed line. (c) Close up of the site S1, divided into two, S1-A - the road cutting in which we see a fault
exposure and displaced pavements (Fig. 4), S1-B a shallow scarp of 2.7 £ 0.3 m in Quaternary deposits (Fig. 10). (d) Photograph of the ~30-50 m bedrock
scarp of the eastern segment of the Van fault, near lake Ergek. Photo looking north, location: 38.5948°N, 43.4943°E.

to quantitatively assess topography of this site, using photographs
from a digital camera mounted on a 6 m pole, to create a DEM
of a 200 m stretch of the scarp (Figs 11c and d). Fitting parallel
planar surfaces to the pointcloud above and below the scarp, we
measure a vertical offset of 4.7 £ 0.3 m on this section of the scarp
(Fig. 11e).

We collected two OSL samples from the upthrown side of the
scarp to date the deposit (OSLS and OSL6 in Table 3, Fig. 11b,
OSL measurement protocol described in Section A). These two
samples give close agreement at 9.0 +2.7 ka for the age of the
offset surface. However, as we discuss in Section 5.2.3, the quartz
OSL in the region is generally dim for all samples and does not
agree well with radiocarbon dating at site S3, so we are cautious in
our interpretation of these dates.

5.2.3 Site §3

Site S3 is situated 2 km east of S2 (Fig. 9a). Here the fault is ex-
pressed as a much larger cumulative scarp within a series of alluvial
fans, as shown in Fig. 12(a). A vertical throw of 18 £1 m was
measured at this site from multiple DGPS profiles (Fig. 12b). Our
measurement of vertical displacement neglects footwall sedimen-
tation since surface abandonment, so the offset measurement here
is considered a minimum fault throw since the abandonment of the
upthrown surface.

The hanging-wall deposits again consist of volcanoclastic alluvial
sands and gravels which are well exposed in a new road cutting
(Fig. 12b). Most of the deposits are composed of well-rounded
clasts up to ~10 cm, consistent with a high-energy alluvial setting.
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Figure 10. (a) At site S1b, near the main road we observe a 2.7 m scarp in Quaternary material. Immediately behind the scarp, new apartment blocks have been
constructed on the hanging wall of the fault, built after the earthquake to replace some of the damaged building stock. Photo looking NW from 38.5826°N,
43.3029°E. (b) Four stacked kinematic DGPS profile across the scarp at S1, showing an offset of 2.7 £ 0.3 m. Points in black were excluded from line fitting.

However, we also found a few localized deposits consisting of fine-
grained sand and silt. The fine-grained deposits were laminated in
places, and contained abundant freshwater gastropod shells. The
fine-grained units were interbedded within the gravel deposits and,
due to their restricted extent, we interpret them to have formed as
small ponds perched on the aggrading alluvial fan surface.

We collected three OSL samples (OSL1, OSL2, OSL7 in
Table 3) and several gastropod shells for radiocarbon dating
(Table 4) from the fine-grained units. The sampled gastropod shells
were found in a single continuous layer in an undisturbed strati-
graphic sequence, suggesting they were living in place prior to an
extinction event—it is unlikely that they were transported there
after death of the organisms. The shells yield a mean calibrated
radiocarbon age of 44.0 2.0 ka (Shell_A, Shell_B and Shell_C in
Table 4). Each sample represents an individual shell and the individ-
ual probability density functions based on the IntCall3 calibration
(Reimer 2013) are shown in Fig. 12(d). The OSL samples give ages
of ~7.0, 7.2 and 11.1 ka (Fig. 12), which are much younger than
the radiocarbon ages obtained from the same outcrop. We attribute
the mismatch to low sensitivity of the quartz to OSL (e.g. Rhodes
2015). Low quartz sensitivities have been found in studies in nearby
Iran, similarly resulting in anomalously young burial ages (Fattahi
et al. 2007; Walker & Fattahi 2011). The low quartz content also
reduced measurement reliability due to a small quartz sample size.

5.2.4 Slip-rate estimates: summary

Taking the mean radiocarbon age at Site S3 as a reasonable bound
on the age of the displaced surface we calculate a minimum throw
rate of 0.4 = 0.1 mm yr~'. Fig. 13 shows a plot of offset against age
for each of the samples at site S3, with a line indicating an uplift rate
of 0.4 mm yr~!, calculated based on the mean radiocarbon age at
Site S3. The two OSL ages from site S2 (OSL 3 and 4) are consistent
to within error of this line, suggesting that those two samples ages
may be reliable, though as we have no independent age constraint
on the sediments at site S2 we cannot confirm it.

We note that 0.4 & 0.1 mm yr~' is a minimum bound on the throw
rate, as the measured offset assumes no post-formation deposition
in the footwall of the scarp, and we do not account for any folding
or off-fault deformation occurring in the near-surface. Taking the

fault dip of 45°-50° as estimated from the road cutting on the Van—
Ercis highway (consistent with the InSAR solution, though this may
differ from the shallow sub-surface dip), we find a minimum fault
slip-rate of 0.5 4 0.2 mm yr~'.

6 DISCUSSION

6.1 Fault geometry

The co-seismic geodetic models for the 2011 main shock broadly
agree, but there are a few key differences. The solution from Elliott
et al. (2013), based on the earliest co-seismic pair (10/10/2011—
23/10/2011, CSK1 in Table 2), shows no clear discontinuities
at the surface and gives evidence for two fault segments, with
only the lower sections (below 10 km) failing in the earthquake.
The west/east segments strike approximately east—west and dip at
40°/55°, with top depths of 10/8 km and bottom depths of 19/17 km
respectively. In their distributed slip model, they resolve a strong up-
dip gradient in slip, suggesting an abrupt arrest at the upper limit of
rupture at ~10 km. The updip projections of the two fault segments
are tied to the location of small ground displacements mapped in
the field, so the geometry is not entirely free, though the authors
note that their tied location gives a minimum misfit to the data.
The coseismic model of Wang et al. (2015), combining all of the
available geodetic data, finds a similar two-fault geometry, with two
distinct patches of intense slip up to a maximum of ~6.3 m.
Fielding et al. (2013), Moro et al. (2014) and Feng et al. (2014)
instead prefer single fault models for simplicity and lacking pri-
mary surface ruptures to tie segments to. These models incorporate
additional azimuthal displacements from multiple aperture interfer-
ometry (MAI) or amplitude image pixel correlation. They show slip
and significant moment release is restricted to depths below ~6—
8 km, consistent with a high density of aftershocks at this depth
due to a strong slip gradient. Feng et al. (2014) present the CSK1
coseismic interferogram, which includes only the first 4 hr of the
post-seismic period. In contrast, the CSK2 interferogram used by
Fielding et al. (2013) and Wang et al. (2015) includes the 3 d fol-
lowing the main shock, during which time a significant (My 5.9)
aftershock occurred in the epicentral region and significant shal-
low post-seismic slip occurred (Section 4). Thus, their coseismic
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Figure 11. (a) Scarp visible at Site S2 running through agricultural fields, person for scale. Photo taken looking E at 38.5909°N, 43.3282°E. (b) Sample pit
at S2 in the hanging wall, two OSL samples (OSL5 and OSL6, Table 3) collected from a depth of 58 cm. (c) Compact digital camera mounted on a 6 m pole
to collect photographs for structure from motion. (d) Shaded relief DEM of a 200 m stretch of the scarp at the S2 site, overlaid with 1 m contours, generated
from ~1100 photos by SfM. The horizontal banding in the image represents the individual plough furrows and irrigation channels of the agricultural field.
Three small patches with poor photograph coverage have been masked out. The small channel (dashed blue line) running through the middle of the scarp has
also been masked out for the purpose of measuring an offset. (¢) The fault throw here was measured by fitting parallel planes in the hanging wall and footwall
and measuring the vertical offset between them. This plot shows the points projected along the plane into a fault perpendicular profile. The inset shows the
residuals to fitting the planes, compared to a Gaussian of the same mean and standard deviation. We find rms misfits of 0.22 m and 0.25 m for the footwall and
hanging wall respectively, giving an uplift of 4.7 £ 0.3 m. Points in grey were excluded from plane fitting.

models will contain a small amount of post-seismic slip as well as due to the inclusion of a large fraction of the total post-seismic
the main shock coseismic slip. We note that studies using the CSK2 motion.
interferogram consistently estimate a larger cosesimic moment re- Similarly, the seismological models broadly agree. Modelled

lease than those modelling the CSK1 interferogram (Table 1), likely source-time functions from low-frequency teleseismic data are
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Table 3. Table of Optically stimulated luminescence (OSL) dates. The vertical throw for each site (locations in
Fig. 9) is also shown.

Name Sample Site Site offset Offset error Age B.P. Age error
(m) (m) (ka) (ka)
OSL3 X6333 S1 2.7 0.3 fail -
OSL4 X6334 S1 2.7 0.3 fail -
OSLS X6335 S2 4.8 0.5 9.2 2.6
OSL6 X6336 S2 4.8 0.5 8.9 2.6
OSLI X6331 S3 18 1 7.2 2.3
OSL2 X6332 S3 18 1 7.0 1.5
OSL7 X6337 S3 18 1 11.1 4.0

Sampling Site
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Figure 12. (a) Larger scarp at site S3, with a minimum throw of ~18 m. This location provides the main basis for our preliminary slip-rate. Photo taken
looking NW from 38.5874°N, 43.3732°E. (b) Setting of the two OSL samples and gastropod shells (14C) found at site S3. The two OSL samples are from fine
grained silt beds above and below that containing the gastropod shells. Note the presence of the occasional gravel layer interspersed, suggesting the presence
of occasional higher energy flows. The gastropod shells (including Shells A—C listed in table 4) are found in abundance in a sandy layer beneath silt and gravel
beds. The abundance of shells suggests that are unlikely to have been redeposited. (¢) Three stacked DGPS profiles used to estimate the minimum offset on
this surface. Points in black were excluded from line fitting. (d) Radiocarbon ages for three shells from the same horizon at site S3. Dates are presented using
the OxCal program V4.2 (Bronk Ramsey 2009), and calibrated using the IntCall3 atmospheric curve (Reimer 2013). Dashed line represents the unweighted
mean age.

Table 4. Radiocarbon ages for the three gastropod shell samples collected from site S3 (Fig. 9b). Ages calibrated
using the IntCall3 atmospheric curve (Reimer 2013).

Sample Conventional lo Error sBc Calibrated age 95 per cent confidence
age (ka) (ka) %/00 B.P. (ka) interval (ka)

Shell_A 37780 280 1.5 42100 420

Shell_B 39990 460 0.4 43710 820

Shell C 42710 620 -0.1 46140 1250
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Figure 13. Vertical offset against age for each of the samples. Line rep-
resents an uplift rate of 0.4 mm yr~! that we get using the Site S3 *C
sample only. Note that this line is consistent to within error of the OSL ages
observed for site S2 (OSL 5,6).

generally triangular with a total length of 10-15 s, though the
position of the peak varies between models (Zahradnik & Sokos
2011; Elliott et al. 2013; Fielding et al. 2013). Using a higher fre-
quency range with regional to near-regional stations and a multiple
point source model, Gallovic ef al. (2013) and Zahradnik & Sokos
(2014) resolved a source-time function consisting of two distinct
sub-events separated by 3—4 s, with locations corresponding well to
the two fault segments resolved with InSAR by Elliott et al. (2013).
Finite fault models by Irmak et a/. (2012) and Fielding ef al. (2013)
show close agreement in the source time functions, with the ma-
jority of the moment released in a triangular source-time function
spanning the first 10 s, and a subsidiary peak at around 14-15 s.
Using backprojection of strong motion waveforms, Evangelidis &
Kao (2013) image two distinct sources of high frequency radia-
tion at depths of 10—12 km in locations corresponding well to the
two fault segments, which are attributed to stopping phases or rup-
ture propagating through geometric complexities (possibly linking
between the two fault segments).

The seismological and geodetic models agree that coseismic slip
does not extend to the surface, with little significant moment release
above depths of 7-10 km. In addition there is strong evidence for
geometric complexity, with the two-fault models giving a good fit to
the SAR data and two discrete pulses of slip observed in the source
time functions and multiple-point source models.

Fig. 14(a) shows an overview of the VF and surrounding struc-
tures. From the large-scale topography it appears that the main VF
and the BF merge to form a single trace in the east, consistent with
the model of Wang et al. (2015). In the west, the two faults are
characterized by a footwall basin and a narrow range of hills in
their immediate hanging walls, which we attribute to folding of the
hanging wall. In both ranges, we see a series of prominent windgaps
likely resulting from earlier drainage across the folding axis.
Approximately 7 km north of the VF, near the village of Satibey,
we observed back tilted Pliocene sedimentary units (MTA 2002)
dipping north at ~20° (Fig. 14b). However, ~1 km further north
across the valley, the same Pliocene sediments are horizontal. The
wavelength of folding therefore stretches ~7.5 km north from the
fault, corresponding closely to the observed topography (Figs 15a
and b).

The coseismic uplift associated with the 2011 earthquake was
distributed over a wavelength of 20-25 km, much wider than
the hanging-wall uplift preserved in the large-scale topography
(Fig. 15a). It is unlikely, therefore, that repeated earthquakes of
the style of that in 2011 are responsible for generating the hanging-
wall topography. Discrete slip on the deeper section of the VF in
2011 must give rise to a deficit of slip in the uppermost 8 km, and our
observations of Quaternary scarps at the surface suggest that at least
some of this motion is localized onto the two faults. By contrast the
topography and wavelength of folding at the surface is closely cor-
related with the observed post-seismic displacement (CSK3). This
suggests therefore that displacement in the upper ~8 km is respon-
sible for the observed topography; a simple 2-D elastic half-space
model (Fig. 15a) gives a good fit to the CSK3 profile, with 8 cm of
slip on a 55° dipping fault plane (0.6—7 km depth). It is likely, how-
ever, that some of this topography is due to fold growth, so a 2-D
elastic model may not be entirely appropriate. Indeed, scaling this
model to the observed topographic relief gives net rotations of <1°
near Satibey, so to achieve the observed Pliocene bed rotations over
the 7-8 km wavelength, significant anelastic off-fault deformation
must also occur.

Fig. 15(c) presents our schematic model of the VF, which builds
on a model produced by Dogan et al. (2014), in which we have
brought together our observations from the co-seismic and post-
seismic InSAR, field observations of surface faulting, and of long-
term folding observed in the topography and bedrock geology. Our
model is for a profile orthogonal to the western segment of the VF in
order to compare results with our Late Quaternary slip rate (Section
5.2). The model consists of a ~45° N-dipping reverse fault within
the depth range of 8-25 km, which steepens at a depth of ~7—-8 km
beneath the northern edge of the observed fault related topography.
The steeply dipping VF reaches the surface at the observed Qua-
ternary scarps and small post-seismic surface displacements, while
the splay follows a shallower dipping detachment to steepen under
the northern edge of Van city, reaching the surface where we ob-
serve further post-seismic displacements. We mark the splay fault
dashed as, although it is likely to meet the main VF at depth, the
precise depth at which it does is poorly constrained. The change in
dip at depth on the VF (possibly the same depth at which the fault
splays) may have provided a barrier to rupture propagation during
the 2011 earthquake, consistent with the observations of Dogan &
Karakas (2013), Elliott e al. (2013), Fielding et al. (2013), Feng
et al. (2014) and Wang et al. (2015) who all observed a strong slip
gradient and rupture termination. This is also consistent with Evan-
gelidis & Kao (2013) who imaged a high-frequency (HF) source at
this depth and location which they relate to rupture termination or
geometric complexity. A similar trend was observed in the location
of the HF seismic radiation sources in the 2015 Gorkha Earthquake,
Nepal (Avouac et al. 2015); Elliott ef al. (2016) show that the HF
sources are co-located with a change in dip of the fault plane, though
in that case, they were in the middle of the rupture zone.

6.2 Post-seismic motion

Combining field observations with quantitative measurements from
the post-seismic InSAR interferograms, we have evidence of shal-
low, post-seismic creep on both the VF and the BF, consistent
with previous estimates of post-seismic motion imaged with GPS
(Altiner et al. 2013; Dogan et al. 2014) and InSAR (Elliott ef al.
2013; Fielding et al. 2013; Feng et al. 2014; Moro et al. 2014; Wang
et al. 2015). The main shock occurred on the VE, which breaks the

9102 ‘2T BnBny uo spsa Jo Aisealun e /Blo'sfeuinolpioxo1By/:dny woly papeojumoq


http://gji.oxfordjournals.org/

2011 Van earthquake 519

L
Googleearth *
© 2015 Cnes/Spot Image

Image © 2015 CNES / Astrium
© 2015 Basarsoft

Figure 14. (a) 3-D perspective view looking east along the Van fault and the Bostanigi fault. Also marked are the Giirpmar (GF) and Peninsula (VPF) faults.
Arrows indicate the location of several prominent windgaps in the ridges and folded sedimentary units. (b) Back tilted Pliocene beds near the village of
Satibey, dipping ~20°N. Photo looking west, location: 38.6843°N, 43.4823°E. (c) Oblique view of the Quaternary Travertines (labelled in (a)) and folded

Oligocene-Miocene sediments in the hanging wall of the Giirpinar thrust.

surface ~8 km north of Van, but Dogan er al. (2014) and Wang
et al. (2015) use post-seismic regional GPS and TerraSAR-X data
(TSX1 and TSX2, Table 2) to identify a second, splay fault (the BF),
which reaches the surface in the northern suburbs of Van. Thus, in
the weeks following the main shock, a small amount of slip reached
the surface, both at the surface projection of the main VE and
on the splay fault ~7 km to the south. Dogan et al. (2014) also
identify fringes in the TSX1 and TSX2 interferograms relating to
the My 5.9 aftershock on 9th November (strike-slip mechanism).
Wang et al. (2015) go further to model slip on both faults based
on the time-series of TSX scenes—estimating as much as 0.7 m of
slip.

Post-seismic surface displacement due to slip on the VF occurs
over a wavelength of ~6—7 km—the simple 2-D forward model for
fault slip on the upper VF closely matches the observed post-seismic
surface displacement (Fig. 15a), suggesting the creep is confined
to the upper, largely locked section of the VE. This is in agreement
with the suggestions of Wang et al. (2015) and Altiner et al. (2013)
who find that the majority of the post-seismic motion occurs over
a broader region than the coseismic rupture. Shallow post-seismic
slip is also consistent with the observations of Acarel ef al. (2014)

from cross correlation of ambient seismic noise, which show a
velocity decrease at the main shock that does not recover for the
higher frequency bands which sample the shallower crust, suggest-
ing continued shallow slip. Combining the observations from both
CSK3 and the TSX scenes, we observe creep on the VF decaying
over a very short timescale of hours to days, whereas the BF does not
creep during the 3 d following the earthquake, but is clearly creep-
ing following the My 5.7 aftershock, with a slower decay constant
(evidenced by significant displacement in the TSX3 interferogram,
more than 24 d after the aftershock). This is consistent with the sug-
gestions of both Dogan et al. (2014) and Wang et al. (2015), that
there was a time delayed migration in post-seismic motion from the
VF plane onto the splay fault, possibly due to static stress change or
fluid migration. We do not observe a longer wavelength signal that
would suggest significant afterslip in the coseismic rupture region.

In the recent 2014 Napa Earthquake, significant rapid post-
seismic motion was also shown to occur in the hours to days follow-
ing the earthquake (e.g. Hudnut ef al. 2014; Brocher et al. 2015),
though the first post-event InSAR pass was not until 3 d after the
event. Lienkaemper et al. (2016) estimate that up to around one
quarter of total expected afterslip motion may have been taken
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Figure 15. (a) Coseismic (blue, 10/10/2011-23/10/2011, CSK1) and early post-seismic (yellow, 23/10/2011-26/10/2011, CSK3) line-of-sight displacement
profiles. The thin black line shows a simple forward model for 8 cm slip on the uppermost 7 km of the fault, closely fitting the wavelength observed in the
post-seismic InSAR. (b) The same profile through SRTM topography, average elevation in black, with minimum/maximum bounds shaded grey. The locations
of the tilted/undisturbed Pliocene units are also shown. (¢) Structural cross-section based on the observed topographic wavelength associated with each fault
north of Van. This transect is taken through the western segment of the fault where we observe two distinct faults, the Van fault (VF) and the Bostanigi fault

(BF).

up within the first day on some sections of the fault. Both the
Napa and Van earthquakes have shown very rapidly decaying post-
seismic motion after the event, declining over periods of hours
to days. Inclusion of this short-term post-seismic displacement in
InSAR-derived slip models could give systematic overestimates
of coseismic moment release and shallow fault slip. In order to
accurately characterize this shallow afterslip and to differentiate
between coseismic and post-seismic slip, we need very rapid and
easily deployed measurement techniques. Shortened revisit times
with new radar satellites will improve InSAR capabilities (Elliott
et al. 2015b), but post-seismic acquisitions are still likely to be mul-
tiple days after events instead of hours. We have shown that a single

person with minimal training can generate a DEM of a ~200 m
area in under an hour with minimal cost—this can be achieved
even faster with a small quadcopter or fixed wing drone as was
performed by several teams following the Napa earthquake. Thus
observations are limited only by time required to travel to the event
location and re-visits can be near continuous. In the future, with
the increase in availability of cheap and rapid observation, we ex-
pect to see much higher temporal sampling of post-seismic motion
particularly in the acquisition of near zero-delay type observations,
giving the chance to better constrain the evolution and behaviour
of surface and near-surface faulting both in the coseismic and
post-seismic phases.
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6.3 Earthquake Hazard

We have imaged a post-seismic transient on the VF which decayed
rapidly after the main shock, amounting to <20 cm of measurable
aseismic fault slip. Transient slip on the Bostanigi splay fault is also
imaged, and likely decayed with time.

Wang et al. (2015) estimate up to 0.7 m (34 per cent of main
shock moment) of post-seimic slip on the fault plane, over the first
3 months of the post-seismic period, and hence suggest that the
fault does not represent significant future seismic hazard. Although
we do not model the fault slip, the total surface displacements we
observe amount to less than 15 per cent of those observed after the
deeper main shock in the radar line of sight. The solution of Wang
et al. (2015) requires larger lateral slip on the upper fault, which the
InSAR measurements are less sensitive to, but there still remains a
slip deficit if one considers the thrust component of slip. As such,
the maximum thrust slip we estimate on both the upper VF and the
splay fault in the earthquake and the first 2.5 months of post-seismic
motion is still only a small fraction of the average slip modelled at
depth (though a much longer time-series is needed to determine the
full post-seismic behaviour). The two large, shallow aftershocks,
combined with the presence of fault gouge at the surface (Elliott
et al. 2013) suggests that the upper crust is capable of sustaining
earthquakes, so the fault may represent significant seismic hazard
to the region. Palaeoseismic trenching is required to characterize
the earthquake behaviour of the upper fault. It is clear, however,
that significant slip does reach the surface on a discrete fault plane
(>0.5 mm yr~!) and that the upper 8-10 km of crust is capable of
sustaining earthquakes.

Considering the unruptured upper part of the VF, the fault length
of ~25 km and a bottom depth of 10 km gives a fault plane of
similar area to that which failed in the 2011 earthquake. Assuming
the same average slip (~3.7 m, Elliott ef al. 2013) modelled at depth
(or equivalently that average slip scales with fault area e.g. Wells &
Coppersmith 1994), would yield another earthquake of My 7.1. The
slip would be equivalent to 2.6-2.8 m uplift at the surface (assuming
a dip of 45-50°), suggesting that the scarp at site S3 is comprised
of at least ~6—7 earthquakes, with recurrence intervals of <8 ka
if the fault fails in characteristic earthquakes. It is likely however,
that some of the slip at depth is accommodated as folding, giving
rise to the anticlinal ridge that forms the hanging-wall topography
(see Section 6.1, Fig. 14). An earthquake on the upper section of the
fault would have a centroid 10 km shallower than the 2011 event,
and would also be ~10 km closer to the city of Van, and hence
would likely result in much heavier damage to the city than the
2011 earthquake.

The 2011 Van earthquake occurred on the fault below a depth of
~8-10 km, with a magnitude My 7.1. As discussed, the coseismic
uplift does not correlate with the topography, and so the surface
topography reflects the structure of the upper ~7-8 km of the crust.
Thus the Van earthquake illustrates difficulties for palacoseismic
and geomorphic investigations in regions of thick skinned faulting,
as we see that large (M>7) earthquakes can be generated by deep
ruptures which do not affect the surface geomorphology. The lack
of primary surface ruptures also means that palacoseismic trenches
on reverse faults in the region can ‘miss’ earthquakes of at least
My 7.1 and estimates of earthquake hazard in the region based
on surface data will underestimate the depth extent of seismogenic
faulting and hence maximum earthquake magnitudes.

Using the diagnostic features of uplift observed in the hanging
walls of the VF and BF, we map several more faults across the
region (see Fig. 2), complementing previous studies (e.g. Altinli
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1966; Saroglu et al. 1992; Ozkaymak et al. 2003; Karakhanian
et al. 2004; Ozkaymak et al. 2011; Uner et al. 2015). These include
the Giirpinar fault to the south of Van city (Figs 14 a and c¢) on which
we identify a series of wind gaps in the ridge line and north-dipping
tilted sedimentary units on the backlimb (Quaternary Travertines
and Oligocene—Miocene sediments). An earthquake on this fault
would also be damaging to the city of Van, as the inferred north-
dipping fault plane projects directly beneath the city given similar
dip ranges. The Giirpinar fault ridge is ~50 km in length, longer
than the VF, and from scaling relationships one could expect slip
in even larger magnitude events to occur on this structure (Wells &
Coppersmith 1994).

7 CONCLUSIONS

The My 7.1 Van earthquake involved rupture of a reverse fault
over a depth range of 10-25 km and did not break the surface. The
main shock was followed by post-seismic slip on two upper crustal
splays above the seismic rupture. We suggest that a change in dip
and possible splaying of the fault at a depth of 7-8 km created a
structural barrier to propagation of the main earthquake rupture. It
is clear from aftershocks that the upper fault has the potential to
fail seismically and we have shown that at least 0.5 mm yr~! of
discrete slip reaches the surface averaged over the long term. How-
ever, palacoseismic trenching is required in order to characterize the
likely slip and magnitude of earthquakes occurring on this upper
segment. The Van example is also important more generally, as we
have shown that in cases of sub-surface structural complexity, the
effects of deeper parts of the structure on bedding-dip and topog-
raphy may be masked by the larger amplitude, shorter wavelength
and possibly anelastic effects arising from the shallower parts of the
structure. Therefore, models of sub-surface structure built solely
on surficial and upper-crustal measurements may underestimate the
seismogenic depth of faulting, and might underestimate possible
earthquake magnitudes or cause hazardous deep faults to remain
hidden. Additionally, we have demonstrated the utility of two new
techniques; SfM, a very low cost tool for accurate measurement
of 3-D fault displacements, both for small creep type offsets of
cm’s and fault scarps of meter displacements, and the declassified
Corona mission imagery for geomorphic mapping in areas where
urbanization has removed geomorphic markers. In particular StM
can be deployed very rapidly following an event in order to capture
offsets due to rapidly decaying shallow afterslip and is inexpensive
enough to allow frequent re-surveying.
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APPENDIX A: OPTICALLY
STIMULATED LUMINESCENCE DATING

OSL dating was performed on quartz grains from sediment sam-
ples collected in well packed stainless steel tubes to ensure sample
stability in transport. Sample preparation was carried out under low-
intensity light emitting diode (LED) light (at ~588 nm), to yield
clean, sand-sized (180-250 pum) quartz, using standard methods
including wet-sieving, HCL acid digestion, heavy liquid separation
and etching in concentrated HF (40 per cent) to dissolve potassium
feldspar minerals and the alpha-dosed outer layer of the quartz
grains. At least 12 aliquots were prepared and measured for each
sample, mounting the quartz grains as a multigrain monolayer on
aluminium disks of ~4 mm diameter using a silicon oil adhesive. To
estimate the burial age of our samples, we need two components,
the equivalent dose De (integrated radiation required to produce
the luminescence signal observed) and the environmental dose rate
received during burial.

The equivalent dose (De) was recovered using the single aliquot
regeneration measurement protocol (Murray & Wintle 2000; Wintle
& Murray 2006), conducted on an automated TL/DA-15 Rise lu-
minescence reader (Botter-Jensen 1997; Batter-Jensen et al. 2000).
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The sample was bleached with clusters of 870 nm infrared LEDs
providing circa 131 mW cm~2 at 50 °C for 100 s to confirm the
absence of any infrared sensitive signal (Banerjee & Murray 2001),
before blue light stimulation with clusters of blue LEDs (42 Nichia
470A20 nm, ~34 W cm™?) at a raised temperature of 125°. The
natural and regenerative luminescence dose samples were preheated
at 260 °C for 10 s, while the fixed test dose samples (to calibrate
for sensitivity change) were preheated to 240 °C for 10 s prior to
optical stimulation. Ultraviolet (~370 nm) OSL emission was mea-
sured using an Electron Tubes Ltd 9235QA photomultiplier tube
fitted with a blue-green sensitive bialkali photocathode and either
two Corning U-340 glass filters or a 7.5 mm Hoya U-340 glass filter.

After measuring the natural luminescence, a calibrated *°St/*°Y
beta source housed in the reader was used to construct the regen-
erative dose response curve. The luminescences were measured at
6-8 different doses, including a zero dose point and a duplicate
measurement of the lowest regenerative dose to check recovery.
Following each luminescence measurement, a test dose and second

pre-heat are applied to the aliquot to normalize the luminescence
measurement and calibrate for sensitivity change (Murray & Wintle
2000). Fitting a dose response curve, we determined the equivalent
dose De from the natural luminescence.

The 5 cm of sediment at either end of the collection tube (deemed
to have been exposed to light), was used to estimate the concentra-
tions of potassium-40, uranium-238 and thorium-232 by inductively
coupled plasma mass spectrometry (ICP-MS) with a lithium metab-
orate/tetraborate fusion. These concentrations are used to estimate
an environmental dose rate from the gamma and beta components
of the decay chains for “°K, 2*2Th, 233U, using the attenuation factors
estimated by Adamiec & Aitken (1998), with corrections for wa-
ter content (Zimmerman 1971) and grain size Mejdahl (1979). We
estimate a cosmic ray dose rate based on data reported by Prescott
& Hutton (1994), accounting for the geomagnetic latitude and el-
evation along with the density and thickness of the overburden.
Table 3 shows the OSL ages determined, with the relevant site and
the displacement at that site.
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