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Background: Single-reference density functional theory is very successful in reproducing bulk nuclear properties
like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the
multi-reference level allows for restoring symmetries and, in turn, for calculating transition rates.

Purpose: We propose a new variant of the no-core-configuration-interaction (NCCI) model treating properly
isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron-
and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and
short-range forces acting in the atomic nucleus.

Methods: The method is based on solving the Hill-Wheeler-Griffin equation within a model space built of
linearly-dependent states having good angular momentum and properly treated isobaric spin. The states are
generated by means of the isospin and angular-momentum projection applied to a set of low-lying (multi)particle-
(multi)hole deformed Slater determinants calculated using the self-consistent Skyrme-Hartree-Fock approach.

Results: The theory is applied to calculate energy spectra in N ≈ Z nuclei that are relevant from the point
of view of a study of superallowed Fermi β-decays. In particular, a new set of the isospin-symmetry-breaking
corrections to these decays is given.

Conclusions: It is demonstrated that the NCCI model is capable to capture main features of low-lying energy
spectra in light and medium-mass nuclei using relatively small model space and without any local readjustment
of its low-energy coupling constants. Its flexibility and a range of applicability makes it an interesting alternative
to the conventional nuclear shell model.

PACS numbers: 21.10.Hw, 21.60.Jz, 21.30.Fe, 23.40.Hc, 24.80.+y

I. INTRODUCTION

Atomic nucleus is a self-bound finite system com-
posed of neutrons and protons that interact by means of
short-range, predominantly isospin-symmetry-conserving
strong force and long-range isospin-symmetry-breaking
Coulomb force. In studies of phenomena related to the
isospin-symmetry violation in nuclei, capturing a deli-
cate balance between these two forces is of utmost im-
portance. This is particularly true when evaluating
the isospin-symmetry-breaking (ISB) corrections to su-
perallowed β-decays between isobaric analogue states,
[I = 0+, T = 1] −→ [I = 0+, T = 1].

Such β-decays currently offer the most precise data
that give estimates of the vector coupling constant GV

and leading element Vud of the Cabibbo-Kobayashi-
Maskawa (CKM) flavor-mixing matrix [1, 2]. The uncer-
tainty of Vud extracted from the superallowed β-decays
is almost an order of magnitude smaller than that from
neutron or pion decays [3]. To test the weak-interaction
flavor-mixing sector of the Standard Model of elemen-
tary particles, such precision is critical, because it allows
us to verify the unitarity of the CKM matrix, violation
of which may signal new physics beyond the Standard
Model, see Ref. [4] and references cited therein.

The isospin impurity of the nuclear wave function –

a measure of the ISB – is small. It varies from a frac-
tion of a percent, in ground states of even-even N = Z
light nuclei, to about six percent in the heaviest known
N = Z system, 100Sn [5]. Nevertheless, its microscopic
calculation poses a real challenge to theory. The reason is
that the isospin impurity originates from the long-range
Coulomb force that polarizes the entire nucleus and can
be, therefore, calculated only within so-called no-core ap-
proaches. In medium and heavy nuclei, it narrows the
possible microscopic models to those rooted within the
nuclear density functional theory (DFT) [6, 7].

The absence of external binding requires that the nu-
clear DFT be formulated in terms of intrinsic, and not
laboratory densities. This, in turn, leads to the sponta-
neous breaking of fundamental symmetries of the nuclear
Hamiltonian, including the rotational and isospin sym-
metries, which in finite systems must be restored. Fully
quantal calculations of observables, such as matrix el-
ements of electromagnetic transitions or β-decay rates,
require symmetry restoration. In most of practical appli-
cations, this is performed with the aid of the generalized
Wick’s theorem [8]. Its use, however, leads to the en-
ergy density functionals (EDFs) being expressed in terms
of the so-called transition densities, that is, to a multi-
reference (MR) DFT. Unfortunately, the resulting MR
EDFs are, in general, singular and require regularization,
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which still lacks satisfactory and practical solution, see,
e.g., Refs. [9–11]. An alternative way of building a non-
singular MR theory, the one that we use in the present
work, relies on employing the EDFs derived from a true

interaction, which then acquires a role of the EDF gener-
ator [12]. The results presented here were obtained using
in this role the density-independent Skyrme interaction
SV [13], augmented by the tensor terms (SVT ) [11].

Over the last few years we have developed the MR
DFT approach based on the angular-momentum and/or
isospin projections of single Slater determinants. The
model, below referred to as static, was specifically de-
signed to treat rigorously the conserved rotational sym-
metry and, at the same time, tackle the explicit Coulomb-
force mixing of good-isospin states. These unique ap-
proach allowed us to determine the isospin impurities in
N ≈ Z nuclei [5] and ISB corrections to superallowed
β-decay matrix elements [14, 15].

In this paper, following upon preliminary results an-
nounced at several conferences [16–18], we introduce
a next-generation dynamic variant of the approach,
which we call no-core configuration-interaction (NCCI)
model. It constitutes a natural extension of the static
MR DFT model, and allows for mixing states that are
projected from different self-consistent Slater determi-
nants representing low-lying (multi)particle-(multi)hole
excitations. Technically, the model is analogous
to the generator-coordinate-method (GCM) mixing of
symmetry-projected states, see, e.g., Ref. [19]. However,
the GCM pertains to mixing continuous sets of states,
and thus builds collective states of the system, whereas
NCCI involves mixing of discrete configurations.

In quantum chemistry such a method is commonly
known under the name of configuration interaction (CI),
where the interaction means mixing of different electronic
configurations. In nuclear physics, models of this type
go by the name of the shell model (SM), whereupon all
configurations within a specific valence shell are consid-
ered. In recent years, in relatively light nuclei, a no-core
variant of the shell model (NCSM) has been very suc-
cessfully implemented [20]. Our approach combines the
no-core aspect of the NCSM and the mixing aspect of the
CI, and, by using sets of selected DFT configurations, it
is not limited to light nuclei.

In nuclear physics the name CI is seldom used, and, in
our opinion, it is meaningful to import it from quantum
chemistry, as exemplified in the name proposed for our
model. In spite of apparent similarities, there are also
differences between the SM and CI methods. Indeed,
the SM indiscriminately uses expansions on large bases
(most often of the harmonic-oscillator states), which are
unrelated with the interaction used or properties of the
system. As a result, the SM is bound to use milions or
billions of states, which strongly limits its applicability
range. On the other hand, the CI uses bases of approx-
imate states of the very system that is being described.
In this way, the most important correlations are already
built in into the basis states, and thus much smaller bases

can be used. At present, another diference between the
NCSM and NCCI methods is in the fact that the former
is often rooted in true nucleon interactions, and thus be-
longs to the class of ab initio methods, whereas the lat-
ter still usees phenomenological density functionals. This
difference may eventually disapear once ab initio nuclear
DFT methods are developed in analogy to those available
for electronic systems [21].

There are several cases when, to perform reliable calcu-
lations, the NCCI approach is indispensable. One of the
most important ones relates to different possible shape-
current orientations, which within the static variant of
the model appear in odd-odd nuclei [15]. The configura-
tion mixing is also needed to resolve the issue of unphysi-
cal ISB corrections to the analogous states of the A = 38
isospin triplet [14, 15].

The states that are mixed have good angular mo-
menta and, at the same time, include properly evalu-
ated Coulomb isospin mixing; hence, the extended model
treats hadronic and Coulomb interactions on the same
footing. The model is based on a truncation scheme dic-
tated by the self-consistent deformed Hartree-Fock (HF)
solutions, and can be used to calculate spectra, transi-
tions, and β-decay rates in any nucleus, irrespective of
its even or odd neutron and proton numbers.

We begin by giving in Sec. II a short overview of the
theoretical framework of our NCCI model. In Sec. III, a
new set of the ISB corrections to the canonical set of su-
perallowed β-decay is presented. As compared to our pre-
vious results [15], the new set includes mixing of reference
states corresponding to different shape-current orienta-
tions in odd-odd N = Z nuclei. In Sec. IV, applications
involving mixing of several low-energy (multi)particle-
(multi)hole excitations are discussed. Here, we deter-
mined low-spin energy spectra in selected nuclei rele-
vant to high-precision tests of the weak-interaction flavor-
mixing sector of the Standard Model. The calculations
were performed for: 6Li and 8Li nuclei (Sec. IV A), A=38
Ar, K, and Ca nuclei (Sec. IV B), 42Sc and 42Ca nuclei
(Sec. IV C), and 62Ga and 62Zn nuclei (Sec. IV D. Sum-
mary and perspectives are given in Sec. V.

II. THE NO-CORE

CONFIGURATION-INTERACTION MODEL

The static model developed in our previous works [15,
22] involved the isospin and angular momentum projec-
tions (after variation) of a single Slater determinant, fol-
lowed by a rediagonalization of the Coulomb force, so
as to account properly for the isospin mixing. Here we
extend the model towards a variant, in which we allow
for a mixing of states projected from different low-lying
(multi)particle-(multi)hole Slater determinants ϕi with
the mixing matrix elements derived from the same Hamil-
tonian that is used to calculate them.

The computational scheme of our NCCI model is
sketched in Fig. 1. It proceeds in four major steps:
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MEAN FIELD
compute a set of n self-consistent Slater determinants

corresponding to low-lying p-h excitations

PROJECTION
compute the I-,K- and T-projected states

K- AND T-MIXING
compute the K-mixing of Coulomb T-mixed states

CONFIGURATION INTERACTION
solve the Hill-Wheeler equation

Ek , |Ik〉

FIG. 1. (Color online) Computational scheme of the NCCI
model. See text for details.

• First, a set of relevant low-lying (multi)particle-
(multi)hole HF states {ϕi} is calculated along with

their HF energies e
(HF)
i . States {ϕi} form a sub-

space of reference states for subsequent projections.

• Second, the projection techniques are applied to
the set of reference states {ϕi}, so as to determine

the family of states {Ψ
(i)
TIK} having good isospin

T , angular momentum I, and angular-momentum
projection on the intrinsic axis K.

• Third, states {Ψ
(i)
TIK} are mixed, so as to prop-

erly take into account the K mixing and Coulomb
isospin mixing – this gives the set of good angular-

momentum states {Ψ
(i)

T̃ Iα
} of the static model [14,

15]. Here we label them with the dominating val-

ues of the isospin, T̃ , and auxiliary quantum num-
bers α. Note that in this step, the mixing is
performed for each configuration i separately (the
static model).

• Finally, the results of the dynamic model corre-

spond to mixing non-orthogonal states {Ψ
(i)

T̃ Iα
} for

all configurations i, and for all values of T̃ and α.
This is performed by solving the Hill-Wheeler equa-
tion H|Ik⟩ = EkN|Ik⟩ [23] in the collective space

spanned by the natural states corresponding to suf-
ficiently large eigenvalues of the norm matrix N .

This is the same technique that is used in the code
to handle the K-mixing alone. The method is de-
scribed in details in Ref. [24].

We note here that all wave functions considered above
correspond to good neutron (N), and proton (Z) num-
bers, and thus to a good third component of the isospin,
Tz = 1

2 (N − Z). We also note that the configuration
interaction, which is taken into account in the last step,
could have also equivalently been performed by directly

mixing the projected states {Ψ
(i)
TIK}. The procedure out-

lined above simply aims to obtain separately the results
of the static and dynamic model. The NCCI calculations
discussed below were performed using a new version of
the HFODD solver [25], which was equipped with the
NCCI module. This new implementation was based on
the previous versions of the code [24, 26, 27].

Numerical stability of the method depends on neces-
sary truncations of the model space. In this work, numer-
ically unstable solutions are removed by truncating the
natural states corresponding to small eigenvalues of the
norm matrix N . It means that only the natural states
corresponding to the eigenvalues of the norm matrix that
are larger than certain externally provided cut-off param-
eter ζ are used to built the so-called collective space. Al-
though such a truncation procedure gives reliable values
of the energy, a full stability of the method still requires
further studies. Other methods, e.g., based on truncating

high-energy states {Ψ
(i)

T̃ Iα
}, or combined methods involv-

ing both truncations simultaneously, need to be studied
as well.

III. A NEW SET OF THE ISB CORRECTIONS

TO SUPERALLOWED β-DECAYS

In this section we present results obtained within the
NCCI model, which pertain to removing the uncertainty
related to ambiguities in the shape-current orientation.
Similar to our previous applications within the static
model, the ground-states (g.s.) of even-even nuclei,
|I = 0, T ≈ 1, Tz = ±1⟩, are approximated by the
Coulomb T -mixed states,

|I = 0, T ≈ 1, Tz = ±1⟩ = Ψ
(1)

T̃=1,I=0,K=0

=
∑

T≥1

c
(1)
T Ψ

(1)
T,I=0,K=0, (1)

which were angular-momentum projected from the MF
g.s. ϕ1 of the even-even nuclei, obtained in the self-
consistent Hartree-Fock (HF) calculations. States ϕ1 are
always unambiguously defined by filling in the pairwise
doubly degenerate levels of protons and neutrons up to
the Fermi level. In the calculations, the Coulomb T -
mixing was included up to T = 4.

Within our dynamic model, the corresponding isobaric
analogues in N = Z odd-odd nuclei, |I = 0, T ≈ 1, Tz =
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0⟩, were approximated by

|I = 0, T ≈ 1, Tz = 0⟩ =
∑

k=X,Y,Z

∑

T̃=0,1,2

c
(k)

T̃
Ψ

(k)

T̃ ,I=0,K=0
.

(2)

The underlying MF states ϕk were taken as the self-
consistent Slater determinants |ν̄ ⊗ π; k⟩ (or |ν ⊗ π̄; k⟩)
representing the antialigned configurations correspond-
ing to different shape-current orientations k = X,Y, Z.
Let us recall that the antialigned states are constructed
by placing the odd neutron and odd proton in the low-
est available time-reversed (or signature-reversed) s.p. or-
bits. These states are manifestly breaking the isospin
symmetry. Using them is the only way to reach the
|I = 0, T ≈ 1, Tz = 0⟩ states in odd-odd N = Z nuclei.
The reason is that, within a conventional MF approach
with separate proton and neutron Slater determinants,
these states are not representable by single Slater deter-
minants, see discussion in Ref. [22].

For odd-odd nuclei, mixing coefficients c
(k)

T̃
in Eq. (2)

were determined by solving the Hill-Wheeler equation.
In the mixing calculations, we only included states

Ψ
(k)

T̃ ,I=0,K=0
with dominating isospins of T̃ = 0, 1 and 2,

that is, the Hill-Wheeler equation was solved in the space
of six or nine states for axial and triaxial states, respec-

tively. We recall that each of states Ψ
(k)

T̃ ,I=0,K=0
contains

all Coulomb-mixed good-T components Ψ
(k)
T,I=0,K=0.

The three states corresponding to a given dominating
isospin are linearly dependent. One may therefore argue
that the physical subspace of the I = 0 states should
be three dimensional. In the calculations, all six or nine
eigenvalues of the norm matrix N are nonzero, but the
linear dependence of the reference states is clearly re-
flected in the pattern they form. For two representative
examples of axial (46V) and triaxial (50Mn) nuclei, this is
depicted in Fig. 2. Note, that the eigenvalues group into
two or three sets, each consisting of three similar eigen-
values. Note also, that the differences between the sets
are large, reaching three-four orders of magnitude. Lower
part of the figure illustrates dependence of the calculated
ISB corrections, δC, on a number of the collective states
retained in the mixing. As shown, the calculated correc-
tions are becoming stable within a subspace consisting
five (or less) highest-norm states. Following this result,
we have decided to retain in the mixing calculations only
three collective states built upon the three eigenvectors
of the norm matrix corresponding to the largest eigen-
values.

Based on this methodology, we calculated the set of the
superallowed transitions, which are collected in Tables I
and II. Table I shows the empirical ft values, calcu-
lated ISB corrections, and so-called nucleus-independent
reduced lifetimes,

Ft ≡ ft(1 + δ′R)(1 + δNS − δC) =
K

2G2
V(1 + ∆V

R)
, (3)
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FIG. 2. (a) Eigenvalues of the norm matrix obtained in the
NCCI calculations for the I = 0 states of odd-odd nuclei.
Depicted are typical results obtained for two representative
examples of axial (46V) and triaxial (50Mn) nuclei. The boxes
give values of eigenenergies obtained by including three, six,
or nine eigenvalues of the norm matrix. (b) Dependence of the
ISB corrections to superallowed 46V→46Ti and 50Mn→50Cr
decays on a number of collective states retained in the mixing
calculations. Dimension of the collective space decreases from
the left to the right hand side from D=9(6) in 50Mn(46V),
respectively.

where δ′R and δNS are the radiative corrections [28].
Errors of Ft include errors of the empirical ft val-
ues [29, 30], radiative corrections δ′R and δNS [28], and
our uncertainties estimated for the calculated values of
δC.

Except for transitions 14O→14N and 42Sc→42Ca, all
ISB corrections were calculated using the prescription
sketched above. For the decay of a spherical nucleus 14O,
the reference state is uniquely defined and thus the mix-
ing of orientations was not necessary, whereas for that of
42Sc, an ambiguity of choosing its reference state is not
related to the shape-current orientation. For both cases,
the values and errors of δC were taken from Ref. [15]. For
the remaining cases, to account for uncertainties related
to the basis size and collective-space cut-off, we assumed
an error of 15%. This is larger than the 10% uncertain-
ties related to the basis size only, which were assumed in
Ref. [15].

Systematic errors related to the form and parametriza-
tion of the functional itself were not included in the error
budget. Moreover, similarly to our previous works [14,
15], transition 38K→38Ar was disregarded. We recall that
for this transition, the calculated value of the ISB cor-
rection is unacceptably large because of a strong mixing
of Nilsson levels originating from the d3/2 and s1/2 sub-
shells. The problem can be partially cured by performing
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configuration-interaction calculations, see Ref. [18] and
discussion in Sect. IV B.

To conform with the analyzes of Hardy and Towner
(HT) and Particle Data Group, the average value
Ft = 3073.7(11)s was calculated using the Gaussian-
distribution-weighted formula. This leads to the value of
|Vud| = 0.97396(25), which is in a very good agreement

both with the Hardy and Towner result [30], |V
(HT)
ud | =

0.97425(22), and central value obtained from the neutron

decay |V
(ν)
ud | = 0.9746(19) [31]. By combining the value of

|Vud| calculated here with those of |Vus| = 0.2253(8) and
|Vub| = 0.00413(49) of the 2014 Particle Data Group [3],
one obtains

|Vud|
2 + |Vus|

2 + |Vub|
2 = 0.99937(65), (4)

which implies that the unitarity of the first row of the
CKM matrix is satisfied with a precision better than
0.1%. Note that, in spite of differences between indi-
vidual values of δC, the values of Ft and |Vud| obtained
here are in excellent agreement with the results of our
previous works [14, 15].

The last two columns of Table I show results of the
confidence-level (CL) test, as proposed in Ref. [29]. The
CL test is based on the assumption that the CVC hy-
pothesis is valid up to at least ±0.03%, which implies
that a set of structure-dependent corrections should pro-
duce statistically consistent set of Ft-values. Assuming
the validity of the calculated corrections δNS [32], the
empirical ISB corrections can be defined as:

δ
(exp)
C = 1 + δNS −

Ft

ft(1 + δ′R)
. (5)

By the least-square minimization of the appropriate χ2,
and treating the value of Ft as a single adjustable pa-
rameter, one can attempt to bring the set of empirical

values δ
(exp)
C as close as possible to the set of δC.

The empirical ISB corrections deduced in this way are
tabulated in Table I. The table also lists individual con-
tributions to the χ2 budget, whereas the total χ2 per
degree of freedom (χ2

d = χ2/nd for nd = 11) is χ2
d = 6.3.

This number is considerably smaller than the number
quoted in our previous work [15], but much bigger than
those obtained within (i) perturbative-model reported in
Ref. [29] (1.5), (ii) shell model with the Woods-Saxon
radial wave functions (0.4) [28], (iii) shell model with
Hartree-Fock radial wave functions (2.0) [33, 34], (iv)
Skyrme-Hartree-Fock with RPA (2.1) [35], and relativis-
tic Hartree-Fock plus RPA model (1.7) [36]. It is worth
stressing that, as before, our value of χ2/nd is deterio-
rated by two transitions that strongly violate the CVC
hypothesis, 62Ga→62As and 34Cl→34S. These transitions
give the 62% and 15% contributions to the total error
budget, respectively. Without them, we would have ob-
tained χ2

d = χ2/9 = 1.7.

IV. LOW-ENERGY SPECTRA OF SELECTED

NUCLEI

In this section, we present a short overview of results
obtained using the NCCI approach. Since the model is
based on simultaneous isospin and angular-momentum
projections, it is particularly well suited to study N ≈ Z
nuclei. These nuclei are of paramount importance for
stringent many-body tests of the weak sector of the Stan-
dard Model [30, 37]. Besides, they show specific struc-
tural features, like the Wigner energy or Nolen-Schiffer
anomaly, which are difficult to reproduce within state-
of-the-art nuclear models, in particular those rooted in a
standard DFT.

A major goal of this work is to pin down strong and
weak points of the NCCI approach proposed here. Hence,
instead of performing a detailed study of a single nucleus,
with many configurations being mixed, we decided to use
a modest number of configurations and apply the model
to a rather broad set of nuclei, starting from very light
systems like 6,8Li up to 62Zn. By adding additional con-
figurations, the present results can certainly be refined.
We believe, however, that such refinements will not affect
the physical conclusions drown in this work.

To efficiently track the MF configurations and to im-
prove convergence properties of self-consistent calcula-
tions, all reference states used in the NCCI calculations
below were determined assuming the conservation of par-
ity and signature symmetries. For the A ≤ 42(A = 62)
nuclei, we employed the s.p. basis consisting of N =
10(12) spherical harmonic oscillator shells, respectively.

A. Lithium isotopes: 6Li and 8Li

The Slater determinants, which we selected for the
NCCI calculations in these two very light nuclei, are
listed in Table III. For the sake of simplicity, the states
are labeled by spherical quantum numbers p1/2 or p3/2
that dominate in the s.p. wave functions of the odd-
proton and odd-neutron states. It turns out that such
a labeling constitutes an intuitive and relatively unam-
biguous way to describe the configurations, even in cases
of large deformations where the Nilsson picture formally
prevails. The strategy behind selecting the reference con-
figurations is to cover basic combinations of neutron or
proton particle-hole (p-h) excitations having all possible
alignments predicted by a simple K-scheme.

Results of our calculations are shown in Fig. 3. In the
case of 6Li, theory clearly disagrees with data, with re-
spect to both the ordering and values of energies. Let us
first discuss the T = 0 multiplet, composed of the 1+ and
3+ states. The ground state of 6Li has quantum num-
bers I = 1+, T = 0 and the experimental total energy
of this state is −31.995 MeV. In calculations, the lowest
I = 1+ state is placed above the lowest I = 0+, T = 1 and
I = 3+, T = 0 solutions, and its energy of −27.037 MeV
is almost 5 MeV higher than in experiment. For compar-
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TABLE I. Results of calculations performed for nuclei, for which the superallowed transitions have been measured. Listed

are empirical ft values [30]; calculated ISB corrections δ
(SV)
C and the corresponding Ft values; empirical corrections δ

(exp)
C

calculated using Eq. (5); contributions coming from the individual transitions to the χ2 budget in the confidence-level test. As
in Ref. [30], we give two digits of the calculated errors of the Ft values.

Parent ft δ
(SV)
C Ft δ

(exp)
C χ2

i

nucleus (s) (%) (s) (%)
Tz = −1 :
10C 3042(4) 0.579(87) 3064.5(52) 0.37(15) 3.5
14O 3042.3(27) 0.303(30) 3072.3(33) 0.36(6) 0.0
22Mg 3052(7) 0.270(41) 3081.4(72) 0.62(23) 1.4
34Ar 3053(8) 0.87(13) 3063.6(91) 0.63(27) 1.3

Tz = 0 :
26Al 3036.9(9) 0.329(49) 3071.8(20) 0.37(4) 0.8
34Cl 3049.4(12) 0.75(11) 3067.6(38) 0.65(5) 10.9
42Sc 3047.6(14) 0.77(27) 3069.2(85) 0.72(6) 3.1
46V 3049.5(9) 0.563(84) 3075.1(32) 0.71(6) 1.3
50Mn 3048.4(12) 0.476(71) 3076.5(32) 0.67(7) 2.4
54Co 3050.8(+11

−15) 0.586(88) 3075.6(36) 0.75(8) 1.3
62Ga 3074.1(15) 0.78(12) 3093.1(48) 1.51(9) 43.2
74Rb 3085(8) 1.63(24) 3078(12) 1.86(27) 0.3

Ft = 3073.7(11) χ2 = 69.5
|Vud| = 0.97396(25) χ2

d = 6.3
0.99937(65)

TABLE II. Similar as in Table I but for the transitions that
are either unmeasured or measured with insufficient accuracy
to be used for the SM tests.

Parent δ
(SV)
C Parent δ

(SV)
C

nucleus nucleus
(%) (%)

Tz = −1 : Tz = 0 :
18Ne 1.37(21) 18F 1.22(18)
26Si 0.427(64) 22Na 0.335(50)
30S 1.24(19) 30P 0.98(15)

ison, the calculated energy of the I = 3+, T = 0 member
of the isoscalar multiplet is only 1.8 MeV higher than in
experiment. Hence, it is quite evident that the model
lacks the isoscalar pairing I = 1, T = 0 correlations,
cf. Ref. [38]. In the N = Z nuclei, the model, or the un-
derlying mean-field, seems to favor the maximally aligned
T = 0 configurations. In Sec. IV C we demonstrate that
the results obtained for 42Sc corroborate these conclu-
sions.

It is worth recalling here that in the context of search-
ing for possible fingerprints of collective isoscalar pn-
pairing phase in N ≈ Z nuclei, the isoscalar pairing,
or deuteron-like correlations, were intensely discussed
in the literature, see Refs. [39–43] and references cited
therein. In particular, the isoscalar pn-pairing was con-
sidered to be the source of an additional binding energy
that could offer a microscopic explanation of the so-called
Wigner energy [44] – an extra binding energy along the
N = Z line, which is absent in the self-consistent MF

TABLE III. Properties of the reference Slater determinants
in 6Li and 8Li, numbered by index i and labeled by spherical
quantum numbers of particle states above 4He. Listed are:
the HF energies EHF in MeV, quadrupole deformations β2,
triaxiality parameters γ, and neutron and proton s.p. align-
ments, jν and jπ, together with their orientations k in the
intrinsic frame.

i |6Li; i⟩ EHF β2 γ jν jπ k

1 νp3/2 ⊗ πp3/2 −25.972 0.008 0◦ −0.50 1.50 Z

2 νp3/2 ⊗ πp3/2 −26.787 0.330 0◦ 0.50 0.50 Z

3 νp3/2 ⊗ πp3/2 −26.510 0.216 60◦ −1.50 1.50 Y

4 νp3/2 ⊗ πp3/2 −27.244 0.207 60◦ 1.50 1.50 Y

5 νp3/2 ⊗ πp3/2 −26.846 0.090 60◦ 1.50 0.50 Y

i |8Li; i⟩ EHF β2 γ jν jπ k

1 νp3/2 ⊗ πp3/2 −39.081 0.381 0◦ −1.50 0.50 Z

2 νp1/2 ⊗ πp3/2 −34.041 0.361 0◦ 0.50 0.50 Z

3 νp3/2 ⊗ πp3/2 −39.025 0.356 0◦ 1.50 0.50 Z

4 νp3/2 ⊗ πp3/2 −35.680 0.027 0◦ −1.50 1.50 Z

5 νp1/2 ⊗ πp3/2 −33.443 0.352 0◦ −0.50 0.50 Z

mass models. In spite of numerous recent works follow-
ing these early developments attempting to explain the
isoscalar pn-pairing correlations and the Wigner energy,
see Refs. [45–50] and refs. cited therein, the problem still
lacks a satisfactory solution.

There are at least two major reasons for that: (i) an
incompleteness of the HFB (HF) approaches used so far,
which consider the pn mixing only in the particle-particle
channel, see discussion in Ref. [22], and (ii) difficulties
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FIG. 3. Comparison between experimental and theoretical
energy spectra of 6Li and 8Li.

in evaluating the role of beyond-mean-field correlations.
Recently, within the RPA including pn correlations, the
latter problem was addressed in Ref. [47]. Their sys-
tematic study of the isoscalar and isovector multiplets in
magic and semi-magic nuclei rather clearly indicated a
missing relatively strong T = 0 pairing. This seems to
be in line with our NCCI model findings concerning de-
scription of T = 0, I = 1 states, but seems to contradict
the conclusions of Ref. [46, 48].

Concerning the T = 1 multiplet consisting of the 0+

and 2+ states, the theory tends to overbind the 0+ state
by 0.8 MeV and underbind the 2+ state by 0.4 MeV. This
level of agreement is much better than the one obtained
for the isoscalar multiplet. It should be rated as fair,
but not fully satisfactory. It is, therefore, interesting and
quite surprising to see that the addition of two neutrons
in 8Li seems to change the situation quite radically. In-
deed, in this nucleus, for both the binding energies and
distribution of levels below 5 MeV, the overall agreement
between theory and experiment is very satisfactory, even
if the calculated 1+1 and 3+1 states are interchanged, see
Fig. 3. The largest disagreement is obtained for the 1+2
state, where the theory underbinds experiment by almost
3 MeV. The states 0+1 , 2+2 , and 4+1 are predicted at the
excitation energies of 5.3, 4.7, and 6.2 MeV, respectively,
in fair agreement with the data.

B. 0+ states in 38Ca, 38K, and 38Ar

Recently, Park et al. [51] performed high-precision
measurement of the superallowed 0+ −→ 0+ Fermi de-
cay of 38Ca→38K, see also [52]. The reported ft value
of 3062.3(68) s was measured with a relative precision of
±0.2%, which is sufficient for testing and determining the
parameters of electroweak sector of the Standard Model.
This piece of data is the first, after almost a decade, ad-
dition to a set of canonical 0+ −→ 0+ Fermi transitions,
which are used to determine |Vud|. Moreover, being a
mirror partner to superallowed 0+ −→ 0+ Fermi tran-
sition 38K→38Ar, it allows for sensitive tests of the ISB

corrections and, in turn, for assessing quality of nuclear
models used to compute the ISBs [51].

Unfortunately, using the DFT with the SV Skyrme
functional, which gives a strong mixing between the 2s1/2
and 1d3/2 orbits, it is difficult to determine the ISB cor-

rections to the 38K→38Ar and 38Ca→38K superallowed
transitions. In particular, in our previous static DFT
calculations, the ISB corrections turned out to be of the
order of 9%, and thus were disregarded [14, 15].

In Ref. [18], we presented preliminary results of the
NCCI study of 38Ca and 38K. Here we extend them to
calculations that include three low-lying antialigned ref-
erence configurations in 38K and four configurations in
both 38Ca and 38Ar. Basic properties of these reference
states are listed in Table IV.

TABLE IV. Similar as in Table III, but for 38K, 38Ca, and
38Ar. Here, the reference Slater determinants are labeled by
the Nilsson quantum numbers pertaining to dominant com-
ponents of the hole states below 40Ca. The first excited
state in 38Ar, marked by asterisk, was converged with a weak
quadrupole constraint.

i |38K; i⟩ ∆EHF β2 γ jν jπ k

1 |202 3
2
⟩−2 0.000 0.083 60◦ −0.50 0.50 Y

2 |220 1
2
⟩−2 1.380 0.035 0◦ 0.50 −0.50 Z

3 |211 1
2
⟩−2 1.559 0.042 0◦ −1.50 1.50 Z

i |38Ca; i⟩ ∆EHF β2 γ jν jπ k

1 |200 1
2
⟩−2 0.000 0.088 60◦ 0 0 –

2 |200 1
2
⟩−2 0.762 0.006 0◦ 0 0 –

3 |211 1
2
⟩−2 1.669 0.045 0◦ 0 0 –

4 |220 1
2
⟩−1 ⊗ |202 3

2
⟩−1 2.903 0.015 60◦ 0 0 –

i |38Ar; i⟩ ∆EHF β2 γ jν jπ k

1 |200 1
2
⟩−2 0.000 0.088 60◦ 0 0 –

2 |200 1
2
⟩−2 0.651(∗) 0.002 46◦ 0 0 –

3 |211 1
2
⟩−2 1.600 0.045 0◦ 0 0 –

4 |220 1
2
⟩−1 ⊗ |202 3

2
⟩−1 2.754 0.017 60◦ 0 0 –

Results of our NCCI calculations, including the bind-
ing energies of the lowest 0+1 states, excitation energies
of the first excited 0+2 states, and the ISB corrections
to superallowed β-decays, are visualized in Fig. 4. The
total binding energies of the 0+1 states in these three nu-
clei are underestimated by circa 1%. Concerning the
first excited 0+2 states, our model works very well in
38Ca. In this nucleus, the measured excitation energy,
∆EEXP = 3057(18) keV, is only 186 keV larger than the
calculated one, ∆ETH = 2871 keV. Note, however, that
the calculated excitation energies of the 0+2 states are pre-
dicted to decrease with increasing Tz, at variance with
the data. In turn, the difference between experimen-
tal and theoretical excitation energies of the 0+2 in 38Ar
grows to approximately 0.7 MeV.

The ISB corrections δC to the 38Ca→38K transitions
between the 0+1 → 0+1 and 0+2 → 0+2 states are equal to
1.7% and 1.5%, respectively. As compared to our previ-
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ous static model, which for the 0+1 states was giving an
unacceptably large correction of 8.9%, the NCCI result
is strongly reduced. Nevertheless, it is still almost twice
larger than that of Towner and Hardy [28], who quote
the value of 0.77(7)%.

Similar results were obtained for the 38K→38Ar tran-
sitions, where the calculated corrections are 1.3% (0+1 →
0+1 ) and 1.4% (0+2 → 0+2 ). Again, as compared to the
static variant of our model, the value for the 0+1 → 0+1
transition is strongly reduced, but it is considerably
larger than the Towner and Hardy result of 0.66(6)%.
Nevertheless, we see that the NCCI model removes, at
lest partially, pathologies encountered in the static vari-
ant.
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FIG. 4. (a) Excitation energies of the 0+
2 states with respect

to the 0+
1 states in the A = 38 isobaric triplet nuclei: Ca, K,

and Ar. Theoretical predictions and data [53] are shown with
solid and dashed lines, respectively. Calculated values of δC
are also shown. Decays 0+

2 → 0+
1 indicated in the figure are

predicted to be strongly hindered. (b) Comparison between
the total binding energies of the 0+

1 states (N = 10 harmonic
oscillator shells were used).

C. A=42 nuclei: 42Sc and 42Ca

Within the conventional shell model, the 42Ca and 42Sc
nuclei are treated as two-body systems above the core
of 40Ca. Hence, they are often used by the shell-model
community to adjust the isoscalar T=0; I=1, 3, 5, 7, and
isovector T=1; I=0, 2, 4, 6 matrix elements within the
f7/2 shell. Here, we use these nuclei to test our NCCI
model but, at least at this stage, without an intention
of refitting the interaction. The aim of this exercise is
to capture global trends and tendencies, which may al-
low us to identify systematic features of the NCCI model

in describing these seemingly simple nuclei. From the
perspective of our approach, such tests are by no means
trivial, because these nuclei are here treated within the
full core-polarization effects included, cf. discussion in
Refs. [54, 55].

The results of the NCCI calculations for the isovector
and isoscalar multiplets in A = 42 nuclei are depicted in
Figs. 5 and 6, and collected in Table V. The reference
states used in the calculation for 42Sc are listed in Ta-
ble VI. They cover all fully aligned (Kν = Kπ) states,
which are almost purely isoscalar, all possible antialigned
states (Kν = −Kπ), and two K = 1 aligned states. The
antialigned states manifestly violate the isospin symme-
try and, as discussed in Ref. [56], are approximately fifty-
fifty mixtures of the isoscalar and isovector components.
The K = 1 aligned states also violate the isospin sym-
metry.
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FIG. 5. Excitation energies of the isovector (circles) and
isoscalar (squares) multiplets in 42Sc with respect to the 0+

state. Theoretical and experimental results are marked with
open and filled symbols, respectively.
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FIG. 6. Same as in Fig. 5, but for the isovector multiplets in
42Sc (circles) and 42Ca (diamonds).
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TABLE V. Excitation energies (total energies) of low-lying
states (ground states) in 42Sc and 42Ca. For 42Sc, we show
calculated and experimental energies of the isovector (I=0+,
2+, 4+, and 6+) and isoscalar (I=1+, 3+, 5+, and 7+) multi-
plets. For 42Ca, we show the analogous energies of the isovec-
tor multiplet. All energies are in MeV.

42Sc 42Sc 42Ca 42Ca

Iπ ∆E
(th)
I ∆E

(exp)
I ∆E

(th)
I ∆E

(exp)
I

0+ −352.961 −354.687 −360.200 −361.895

2+ 1.012 1.586 1.357 1.525

4+ 1.590 2.815 2.005 2.752

6+ 1.696 (3.200) 2.154 3.189

1+ 1.785 0.611

3+ 1.656 1.490

5+ 1.336 1.510

7+ −0.347 0.617

The following three general conclusions can be drown
from the results presented in Fig. 5:

• The model lacks isoscalar pairing T = 0, I = 1 cor-
relations. A similar deficiency was already observed
in 6Li, Sec. IV A.

• The model strongly prefers fully aligned isoscalar
T = 0, Imax = 7 states. Again, the conclusion is
consistent with the one drown from the calculated
spectrum of 6Li.

• The energy range spanned by the isovector states,
∆ET=1 = ET=1,I=6 − ET=1,I=0, is by a factor of
two smaller in theory than in experiment. It is not
obvious, however, whether this difference signalizes
that the model underestimates the isovector pair-
ing correlations, overbinds the stretched (aligned)
configurations, or both.

In the case of 42Ca, we focused on calculating the
excitation energies of the 0+ states, addressing, in par-
ticular, the question of structure and excitation energy
of the intruder configuration. Experimentally, the in-
truder configuration is observed at very low excitation
energy of 1.843 MeV, see Ref. [57] and references cited
therein. In the calculations presented below we as-
sumed that the structure of intruder state is associ-
ated with (multi)particle-(multi)hole excitations across
the N = Z = 20 magic gap, which in 40Ca is of the or-
der of 7.0 MeV, see Ref. [54] and references cited therein.
The mechanism bringing the intruder configuration down
in energy is sketched in Fig. 7.

The energy needed to elevate particles from the d3/2
subshell to f7/2 is at (near)spherical shape reduced by
the energy associated with the spontaneous breaking of
spherical symmetry in the intruder configuration, and
further, by a rotational correction energy associated with
the symmetry restoration. Owing to the configuration in-
teraction, an additional gain in energy is expected too.

TABLE VI. Similar as in Table III, but for 42Sc. Here, the
reference Slater determinants correspond to configurations
νf7/2 ⊗ πf7/2, and are labeled by intrinsic K quantum num-
bers of valence neutrons and protons as |ν;Kν⟩⊗|π;Kπ⟩. Ref-
erence states i=1–4 correspond to antialigned configurations,
Kν = −Kπ, thus carrying no net intrinsic alignment. Refer-
ence states i=5–8 represent aligned configurations, Kν = Kπ,
thus having the total alignments of 7, 5, 3, and 1, respec-
tively. The remaining two configurations i=9–10 carry net
alignments of 1. The Table also lists the HF energies ∆EI=|K|

relative to the |ν; 1
2
⟩⊗ |π; 1

2
⟩ solution. The last column shows

excitation energy of the lowest I = |K| state projected from
a given Slater determinant.

i |42Sc; i⟩ ∆EHF β2 γ ∆EI=|K|

1 |ν; 1
2
⟩ ⊗ |π; 1

2
⟩ 0.000 0.063 0 0.000

2 |ν; 3
2
⟩ ⊗ |π; 3

2
⟩ 0.802 0.031 0 0.561

3 |ν; 5
2
⟩ ⊗ |π; 5

2
⟩ 0.986 0.008 60 0.551

4 |ν; 7
2
⟩ ⊗ |π; 7

2
⟩ 0.759 0.062 60 0.085

5 |ν; 7
2
⟩ ⊗ |π; 7

2
⟩ −0.929 0.061 60 -0.647

6 |ν; 5
2
⟩ ⊗ |π; 5

2
⟩ 0.082 0.007 60 1.160

7 |ν; 3
2
⟩ ⊗ |π; 3

2
⟩ 0.345 0.032 0 1.594

8 |ν; 1
2
⟩ ⊗ |π; 1

2
⟩ 0.340 0.060 0 1.719

9 |ν; 3
2
⟩ ⊗ |π;− 1

2
⟩ 0.716 0.043 0 2.164

10 |ν; 5
2
⟩ ⊗ |π;− 3

2
⟩ 0.986 0.011 0 2.338

The rotational correction and configuration interaction
are also expected to lower slightly the MF g.s. energy. As
shown in Fig. 7, the final value of the intruder excitation
energy is an effect of rather a delicate interplay of several
factors. Therefore, it is not surprising that the intruder
states pose a real challenge for both the state-of-the-art
nuclear shell models and MF-rooted theories.
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FIG. 7. Schematic illustration of the interplay between the
primary physical ingredients contributing to the excitation
energy of the intruder state within our model. See text for
details.

In the NCCI calculations presented below, we mix
states projected from the antialigned configurations that
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are listed in Table VII. The reference states can be
divided into two classes. The first four configurations
do not involve any cross-shell excitations. They cor-
respond to the |K⟩ ⊗ |K⟩ 0p-0h (νf7/2)2 configura-
tions with magnetic quantum number of K=1/2, 3/2,
5/2, and 7/2, respectively. The three remaining con-
figurations are the lowest MF configurations involving
two f4

7/2d
−2
3/2 : (νf7/2)2 ⊗ (πf7/2)2 ⊗ (πd3/2)−2, four

f6
7/2d

−4
3/2 : (νf7/2)4⊗(νd3/2)−2⊗(πf7/2)2⊗(πd3/2)−2, and

six f8
7/2d

−6
3/2 : (νf7/2)4⊗ (νd3/2)−2⊗ (πf7/2)4⊗ (πd3/2)−4

holes in d3/2 shell, respectively.

TABLE VII. Similar as in Table III, but for 42Ca. Here, the
Slater determinants are labeled by spherical quantum num-
bers pertaining to active neutron orbitals. The last column
shows excitation energies of the lowest 0+ states projected
from a given Slater determinant.

i |42Ca; i⟩ ∆EHF β2 γ ∆EI=0

1 | 1
2
⟩ ⊗ | 1

2
⟩ 0.000 0.069 0◦ 0.000

2 | 3
2
⟩ ⊗ | 3

2
⟩ 0.516 0.033 0◦ 0.765

3 | 5
2
⟩ ⊗ | 5

2
⟩ 0.544 0.007 60◦ 0.770

4 | 7
2
⟩ ⊗ | 7

2
⟩ 0.084 0.061 60◦ 0.315

5 f4
7/2 d

−2
3/2 10.001 0.288 14◦ 6.860

6 f6
7/2 d

−4
3/2 10.986 0.414 22◦ 6.498

7 f8
7/2 d

−6
3/2 14.937 0.542 12◦ 9.619

The results of the NCCI calculations in 42Ca are de-
picted in Figs. 6 and 8 and collected in Tables V and
VII. Figure 6 shows the I = 0+, 2+, 4+, and 6+ states –
the isovector T=1 multiplet – obtained within the NCCI
calculations involving only (νf7/2)2 reference states. The

results are qualitatively similar to those in 42Sc. In both
cases, theoretical spectra are compressed as compared to
data. Detailed quantitative comparison reveals, however,
surprisingly large differences between the theoretical and
experimental spectra.

First, the energy differences δEI = ∆EI(42Ca) −
∆EI(42Sc) for I = 2+, 4+, 6+ are positive (negative) in
theory (experiment), respectively. Second, the absolute
values of |δEI| are a few times larger in theory as com-
pared to the data. It means that the model tends to over-
estimate the ISB effects in clearly an unphysical manner.
This influences the ISB correction to the 0+ −→ 0+ Fermi
β-decay matrix element, which in the present NCCI cal-
culation rises to δC ≈ 2.2%. Most likely, the unphysical
component in the ISB effect is related to the time-odd
polarizations and matrix elements originating from these
fields, which are essentially absent in even-even systems.
One should also remember that in the Skyrme function-
als, including, of course, the SV force used here, the time-
odd terms are very purely constrained.

Figure 8 shows the 0+ states calculated using function-
als SV. The left part of the figure depicts the lowest 0+

states projected from the reference states (f7/2)2 (0p-

0h), (f7/2)4(d3/2)−2 (2p-2h), (f7/2)6(d3/2)−4 (4p-4h),
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FIG. 8. The lowest 0+ states projected from (f7/2)2 (0p-

0h), (f7/2)4(d3/2)−2 (2p-2h), (f7/2)6(d3/2)−4 (4p-4h), and

(f7/2)8(d3/2)−6 (6p-6h) reference states. Open (filled) dia-
monds refer to calculations performed using the SV and SVSO

functionals, respectively. These results do not include config-
uration mixing. The right part shows excitation energies of
the intruder state obtained within the NCCI theory with SV
and SVSO interactions.

and (f7/2)8(d3/2)−6 (6p-6h). These results do not include
configuration mixing. Note, that symmetry restora-
tion itself changes the optimal intruder configuration to
(νf7/2)4 ⊗ (νd3/2)−2 ⊗ (πf7/2)2 ⊗ (πd3/2)−2 as compared

to MF, which favors (νf7/2)2 ⊗ (πf7/2)2 ⊗ (πd3/2)−2.
The right part of the figure shows excitation energies

of the intruder states as obtained within the NCCI cal-
culations. Here, all reference states listed in Table VII
were included. For the SV force, the excitation energy
of the lowest intruder configuration equals 7.5 MeV, and
exceeds the data by 5.7 MeV. The main reason of the dis-
agreement is related to an unphysically large N = Z = 20
shell gap: the bare N = 20 gap deduced directly from the
s.p. HF levels in 40Ca equals as much as 11.5 MeV. Its
value exceeds the experimental gap by almost 4.5 MeV
(for an overview of experimental data, see Ref. [54] and
references cited therein). It is therefore not surprising
that the combined effects of deformation and rotational
correction are unable to compensate for the large energy
needed to lift the particles from the d3/2 to f7/2 shell, see
Fig. 7.

To investigate interplay between the s.p. and collec-
tive effects, we repeated the NCCI calculations using the
functional SVSO, which differs from SV in a single as-
pect, namely, we increased its spin-orbit strength by a
factor of 1.2. This readjustment allows to reduce a dis-
agreement between theoretical and experimental binding
energies in N ≈ Z sd and lower-pf shell nuclei to ±1%
level as shown in Ref. [58]. When applied to the heavi-
est N = Z nucleus 100Sn and its neighbor 100In it gives
827.710 MeV and 833.067 MeV what is in an impressive
agreement with the experimental binding energies equal
825.300 MeV (833.110 MeV) in 100Sn (100In), respec-
tively. Ability to reproduce masses is among the most
important indicators of a quality of DFT-based mod-
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els. Such a readjustment of the SO strength is also the
simplest and most efficient mechanism allowing us to re-
duce the magic Z = N = 20 gap [59]. For the SVSO

force, the bare gap equals 9.6 MeV, which is by almost
1.9 MeV smaller than the original SV gap, but still it
is much larger, by circa 2.6 MeV, than the experimen-
tal value. Results of the NCCI calculations obtained
using functional SVSO are shown in Fig. 8. Now the
projected and NCCI calculations both favor the configu-
ration (νf7/2)4 ⊗ (νd3/2)−2 ⊗ (πf7/2)2 ⊗ (πd3/2)−2. We
also note that for both the SV and SVSO functionals, geo-
metrical properties of the reference states (deformations)
are very similar.

When discussing the influence of various effects on the
final position of the intruder state, it is worth stressing
the role of the symmetry restoration. The rotational cor-
rection lowers the intruder state by 4.9 MeV, bringing
its excitation energy to 2.3 MeV, which is only 0.5 MeV
above the experiment. However, after the configura-
tion mixing, the excitation energy of the intruder state
increases to about 3.6 MeV, that is, it becomes again
1.7 MeV higher as compared to data. This is due to the
configuration mixing in the ground state, which lowers its
energy by almost 1 MeV, whereas it leaves the position of
the intruder state almost unaffected. The reason for that
is the fact that the (νf7/2)2 antialigned reference states
(states 1–4 in Tables VII and VIII) are almost linearly
dependent and thus mix relatively strongly. Conversely,
at deformations corresponding to the intruder configu-
ration (νf7/2)4 ⊗ (νd3/2)−2 ⊗ (πf7/2)2 ⊗ (πd3/2)−2, the
Nilsson scheme prevails. Therefore, the intruder configu-
rations become almost linearly independent and appear
to mix very weakly. The amount of the mixing was tested
by performing additional calculations of matrix elements
between the lowest (νf7/2)4 ⊗ (νd3/2)−2 ⊗ (πf7/2)2 ⊗
(πd3/2)−2 configuration and the excited configurations

involving the same number of (d3/2)−4 holes. All these
matrix elements turned out to be negligibly small.

TABLE VIII. Same as in Table VII, but for the functional
SVSO.

i |42Ca; i⟩ ∆EHF β2 γ ∆EI=0

1 | 1
2
⟩ ⊗ | 1

2
⟩ 0.000 0.064 0◦ 0.000

2 | 1
2
⟩ ⊗ | 1

2
⟩ 0.517 0.032 0◦ 0.679

3 | 1
2
⟩ ⊗ | 1

2
⟩ 0.496 0.007 60◦ 0.676

4 | 1
2
⟩ ⊗ | 1

2
⟩ 0.006 0.061 60◦ 0.200

5 f4
7/2 d

−2
3/2 8.399 0.276 15◦ 5.085

6 f6
7/2 d

−4
3/2 7.377 0.402 22◦ 2.548

7 f8
7/2 d

−6
3/2 9.955 0.532 15◦ 4.103

D. A=62 nuclei: 62Zn and 62Ga

For 62Zn, the results of the NCCI calculations of
the low-lying 0+ states were communicated in Ref. [18].
Here, for the sake of completeness, we briefly summarize
the results obtained therein. The calculated spectrum
of the 0+ states below the excitation energy of 5 MeV is
shown in Fig. 9. The NCCI calculations were based on
six reference states that include: the ground state, the
two lowest neutron p-h excitations ν1 and ν2, the two
lowest proton p-h excitations π1 and π2, and the lowest
proton 2p-2h excitation ππ1. Their properties are listed
in Table IX.

As discussed in Ref. [18], the calculated spectrum of
0+ states is in a very good agreement with the recent
data communicated by Leach et al. [60]. As shown
in Fig. 10(a), the calculated total g.s. energy is stable
with increasing the number of reference configurations.
Its value of −526.595 MeV (N = 12 harmonic oscilla-
tor shells were used) underestimates the experiment by
roughly 2%.

TABLE IX. Similar as in Table III, but for 62Zn. Here, the
Slater determinants are labeled by neutron and proton con-
figurations described in the text. The last column shows en-
ergies of the lowest 0+ states projected from a given Slater
determinant.

i |62Zn; i⟩ ∆EHF β2 γ jν jπ k ∆EI=0

1 g.s. −521.549 0.270 31◦ 0.000 0.000 −526.405

2 π1 1.433 0.286 20◦ 0.005 0.152 Y 2.036

3 ν1 3.347 0.255 40◦ 0.689 0.318 X 3.703

4 ν2 4.287 0.240 25◦ −0.281 −0.325 Y 3.852

5 π2 5.251 0.246 48◦ −0.103 −0.076 X 5.672

6 ππ1 3.381 0.251 38◦ 0.000 0.000 3.471

TABLE X. Same as in Table IX, but for 62Ga.

i |62Ga; i⟩ ∆EHF β2 γ jν jπ k ∆EI=0

1 Y −512.122 0.268 30◦ −0.138 0.149 Y −516.930

2 X 0.007 0.268 30◦ 0.180 −0.170 X −0.001

3 Z 0.190 0.269 30◦ −0.299 0.264 Z 0.005

4 π1 1.266 0.284 20◦ −0.012 −0.264 X 2.175

5 ν1 1.977 0.255 35◦ −0.440 −0.351 X 3.151

In spite of the fact that the total binding energy is
relatively stable, the calculated ISB corrections to super-
allowed transition 62Ga→62Zn strongly depend on the
details of the calculation. This is illustrated in Fig.10(b),
which shows values of δC in function of the number of con-
figurations taken for the NCCI calculations in the daugh-
ter nucleus 62Zn. The four different curves correspond to
different model spaces taken for the NCCI calculation
in the parent nucleus 62Ga, see Table X and Fig. 10(c).
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FIG. 9. The low-lying 0+ states in 62Zn. The first two
columns show old and new experimental data, see [60] for
details. The next three columns collect the results of
the shell-model calculations using interactions MSDI3 [61],
GXPF1 [62], and GXPF1A [63], respectively. The last three
columns show results obtained within the NCCI approach,
angular-momentum projection, and pure HF method, respec-
tively. From Ref. [18].

In terms of Nilsson numbers, counted relatively to the
64Zn32 even-even core, the configurations X,Y,Z corre-
spond to differently aligned ν|312 3/2⟩−1 ⊗ π|312 3/2⟩−1

two-hole states, π1 denotes ν|312 3/2⟩−1 ⊗ π|312 5/2⟩−1,
two hole state while ν1 is ν|321 1/2⟩−1 ⊗ π|312 3/2⟩−1.
The three curves labeled with open dots, and open and
filled triangles correspond to states 0+ projected from
the [X,Y], [X,Y,Z], and [X,Y,Z,π1] configurations, respec-
tively. These curves essentially overlap with each other,
thus showing no influence of the configuration-mixing (in
this restricted model space) on the structure of the 0+

state in the parent nucleus. Note, however, that an ex-
tension of the model space by adding the lowest neutron
p-h excitation, [X,Y,Z,π1,ν1], leads to an increase in δC
of about 1%. Note also, that all curves are particularly
sensitive to an admixture of the ν2 configuration in the
daughter nucleus. This admixture increases δC by almost
4%. The analysis clearly shows that, within the present
implementation of the model, it is essentially impossi-
ble to match the spaces of states used to calculate the
parent and daughter nuclei. The reasons are manifold.
The lack of representability of the T = 1, I = 0 states
in the N = Z nucleus within the conventional MF us-
ing products of neutron and proton wave functions and
difficulties in constraining the time-odd part of the func-
tional are two of them. Difficulty of matching the model
spaces in the parent and daughter nuclei introduce here
an artificial ISB effect. As a result, beyond a simple mix-
ing of orientations used in the result given in Table I, the
NCCI approach cannot be used for determining the ISB
corrections to the transition 62Ga→62Zn.
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FIG. 10. (a) The low-lying 0+ states in 62Zn in function of the
number of configurations included in the NCCI calculations.
(b) Calculated ISB corrections versus the number of configu-
rations taken into account in the daughter nucleus. Different
curves correspond to different sets of configurations taken to
calculate 0+ state in 62Ga. (c) The HF energies of configura-
tions included in the calculation of 62Ga, see Table X. Further
details are given in the text.

V. SUMMARY AND PERSPECTIVES

In this work, we introduced the NCCI model involv-
ing the isospin and angular-momentum projections and
subsequent mixing of states having good angular momen-
tum and properly treated Coulomb isospin mixing. The
model is capable of treating rigorously both the funda-
mental (spherical, particle-number) as well as approxi-
mate (isospin) nuclear symmetries. Its potentially un-
restricted range of applicability and a natural ability to
treat the core-polarization effects resulting from a sub-
tle interplay between the long-range Coulomb force and
short-range hadronic nucleon-nucleon forces, which are
treated on the same footing, makes it an interesting al-
ternative to the nuclear shell-model.

The NCCI model employs states projected from low-
lying (multi)particle-(multi)hole deformed Slater deter-
minants (configurations) calculated self-consistently us-
ing Hartree-Fock method. In the present realization, the
same SV Skyrme functional was used both to compute
the configurations and to mix the states. This restric-
tion, however, can be easily relaxed opening a room for
various generalizations of the model. In particular, one
can attempt to correct an interaction used at the mixing
stage in order to improve a description of T = 0, I = 1+

states in 6Li and 42Sc N = Z nuclei.

We demonstrated that our NCCI formalism is capable
of capturing many features of the low-lying energy spec-
tra in such diverse systems as 8Li, A=38 isospin triplet
nuclei, or 62Zn and 62Ga nuclei. A reasonable agree-
ment with experiment was obtained when using a rel-
atively small number of configurations, which supports
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our claims that the model can indeed be applicable to
medium heavy nuclei with an affordable numerical cost.
Our recent systematic study of Gamow-Teller matrix el-
ements in Tz = 1/2 sd- and lower pf -shell mirror nuclei
performed in Ref. [58], see also [64], confirms that the
model can incorporate in a controlled way many impor-
tant correlations into the nuclear wave function.

Finally, we also calculated the new set of the ISB cor-
rections to superallowed T = 1, I = 0+ → T = 1, I = 0+

beta transitions. The refined corrections are collected in
Table I for a canonical set of precisely measured tran-
sitions and in Table II for transitions that were either
unmeasured or measured with the accuracy insufficient
for the Standard Model tests. These results are based on
mixing the I = 0+ states projected from the so-called
X,Y , and Z configurations corresponding to different
shape-current orientations in odd-odd nuclei. Unfortu-
nately, an attempt to perform more advanced calculation

for the transition 62Ga→62Zn, which would take into ac-
count more configurations, failed because of difficulties
in matching the model spaces in even-even and odd-odd
nuclei.
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