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Abstract: Objectives: The effect of amino-bisphosphonates on osteoblastic 

lineage and its potential contribution to the pathogenesis of 

bisphosphonate-associated osteonecrosis of the jaw (BONJ) remain 

controversial. We assessed the effects of zoledronic acid (ZOL) on bone 

and vascular cells of the alveolar socket using a mouse model of BONJ. 

Material and Methods: Thirty-two mice were treated twice a week with 

either 100 ȝg/kg of ZOL or saline for 12 weeks. The first left maxillary 
molar was extracted at the third week. Alveolar sockets were assessed at 

both 3 weeks (intermediate) and 9 weeks (long-term) after molar 

extraction by semi-quantitative histomorphometry for empty lacunae, 

preosteoblasts (Osterix), osteoclasts (TRAP), and pericyte-like cells 

(CD146). Also, the bone microarchitecture was assessed by micro-CT. 

Results: Osteonecrotic-like lesions were observed in 21% of mice. 

Moreover, a decreased number of preosteoblasts contrasted with the 

increased number of osteoclasts at both time points. In addition, 

osteoclasts display multinucleation and detachment from the endosteal 

surface. Furthermore, the number of pericyte-like cells increased at the 

intermediate time point. The alveolar bone mass increased exclusively 

with long-term ZOL treatment.  

Conclusion: The severe imbalance between bone-forming cells and bone-

resorbing cells showed in this study could contribute to the pathogenesis 

of BONJ.  
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ABSTRACT  

 

Objectives: The effect of amino-bisphosphonates on osteoblastic lineage and its potential 

contribution to the pathogenesis of bisphosphonate-associated osteonecrosis of the jaw 

(BONJ) remain controversial. We assessed the effects of zoledronic acid (ZOL) on bone and 

vascular cells of the alveolar socket using a mouse model of BONJ. 

Material and Methods: Thirty-two mice were treated twice a week with either 100 ȝg/kg of 

ZOL or saline for 12 weeks. The first left maxillary molar was extracted at the third week. 

Alveolar sockets were assessed at both 3 weeks (intermediate) and 9 weeks (long-term) after 

molar extraction by semi-quantitative histomorphometry for empty lacunae, preosteoblasts 

(Osterix), osteoclasts (TRAP), and pericyte-like cells (CD146). Also, the bone 

microarchitecture was assessed by micro-CT. 

Results: Osteonecrotic-like lesions were observed in 21% of mice. Moreover, a decreased 

number of preosteoblasts contrasted with the increased number of osteoclasts at both time 

points. In addition, osteoclasts display multinucleation and detachment from the endosteal 

surface. Furthermore, the number of pericyte-like cells increased at the intermediate time 

point. The alveolar bone mass increased exclusively with long-term ZOL treatment.  

Conclusion: The severe imbalance between bone-forming cells and bone-resorbing cells 

showed in this study could contribute to the pathogenesis of BONJ.  

 

KEYWORDS: Osteonecrosis of the jaw, zoledronic acid, osteoclast, osteoblast, alveolar 

bone, basic multicellular unit. 

 

 

 

 

 

 

 

  



1. Introduction 

 

Bisphosphonate-associated osteonecrosis of the jaw (BONJ) is characterized by the 

persistent jaw bone exposure (>8 weeks) after a surgical procedure in patients with a history 

of use of bisphosphonates and without previous exposure to head and neck radiotherapy 

(Ruggiero et al. 2009). The long-term use of intravenous third-generation amino-

bisphosphonates (risedronate and zoledronic acid [ZOL]), the most powerful antiresorptive 

agents, is considered a critical risk factor related to the development of BONJ (Wessel, 

Dodson, and Zavras 2008; Basso et al. 2013). The pathogenesis of BONJ remains unknown 

and several hypothesis have been proposed; nevertheless, the suppression of bone remodeling 

induced by bisphosphonates seems to be the most consistent with their intrinsic mechanism of 

action (Mawardi et al. 2011; R. H. Kim et al. 2011; Allen and Burr 2009).  

 

Bone remodeling is the coupled process initiated by osteoclastic bone resorption 

followed by osteoblastic new bone formation (Natalie A. Sims and Martin 2014). This 

process occurs in the entire skeleton throughout life and it takes place in the basic 

multicellular units (BMUs) of cortical and trabecular bone (Natalie A. Sims and Martin 

2014). A tight control of bone remodeling in each BMU is essential for maintaining normal 

bone mass. This control is regulated by dynamic interactions between the cellular components 

and coupling factors released during bone resorption (N. A. Sims and Ng 2014). The formers 

include osteoclast precursor and mature osteoclasts, osteoblastic lineage, endothelial cells and 

pericytes, macrophages and dendritic cells (Natalie A. Sims and Martin 2014). On the other 

hand, the coupling factors are protein molecules released during the osteoclasts 

differentiation: cardiotrophin 1, sphingosine-1-phosphate (S1P), bone morphogenetic protein 

(BMP)-6 and Wnt10b, collagen triple helix repeat containing 1 (CTHRC1) and Sema4D. 

Also, the coupling factors include bone matrix proteins released during bone resorption: 

insulin growth factor (IGF)-1 and transforming growth factor (TGF)-ȕ (N. A. Sims and Ng 

2014).  

 

The clinical and preclinical benefits of blocking osteoclast differentiation and activity 

with subsequent increase of bone density using amino-bisphosphonates have been extensively 

reported (D Heymann 2010; Le Goff et al. 2010; D Heymann et al. 2005). However, their 

effects on the osteoblastic lineage remain poorly understood (Sakagami et al. 2005). Human 

biopsies show that the terminal stage of bisphosphonate-associated osteonecrotic lesions 



(bone sequestra) is characterized by the absence of the endosteal osteoblasts, empty osteocyte 

lacunae and damage in the canalicular system (Lesclous et al. 2009). These findings confirm 

the compromise of the entire osteoblastic lineage including preosteoblasts, osteoblasts, and 

osteocytes (Koch et al. 2011; Manzano-Moreno et al. 2015). On another hand, in vitro studies 

report cytotoxic effects of bisphosphonates on osteoblastic cells, decreasing their viability and 

osteogenic ability in a dose-dependent manner (Pozzi et al. 2009; Basso et al. 2013). 

Therefore, the understanding of the effect of amino-bisphosphonates on both osteoblastic 

lineage and bone remodeling in in vivo models is a crucial step to further understand the 

pathogenesis of BONJ. We postulated that osteoblastic cells are sensitive to the effect of 

amino-bisphosphonates after a surgical stimulus in alveolar bone.  The aim of this study was 

thus to assess – at the cellular level - the intermediate and long-term effects of clinically 

relevant high doses of ZOL on the bone and vascular cell components of alveolar socket 

BMU using a surgical mouse model for BONJ. 

 

 

 

 

 

 

 

 

  



2. Material and methods 

2.1. Animals, drug administration and surgical procedure 

 Thirty-two C57BL/6 male mice (Janvier, Le Genest-Saint Isle, France) aged 10 weeks 

were randomly divided into two groups and treated intra-peritoneally (i.p.) with either 100 

ȝg/kg of ZOL (kindly provided by Novartis, Switzerland) (experimental group; n=16) or 

saline solution (control group; n=16) twice a week for 12 weeks (Supplementary appendix 1). 

The drug tolerance of the mice was assessed daily by clinical examination. The total dose of 

ZOL administered was the equivalent of a lifetime dose of the drug over 4 years of therapy in 

a 70 kg adult multiple myeloma patients (Pozzi et al. 2009). At the end of the third week, the 

first left maxillary molar was surgically extracted from all the animals (Supplementary 

appendix 1). After 6 weeks of treatment with ZOL (or saline solution), and 3 weeks after the 

molar extraction, 50 % of the animals were sacrificed to assess the situation at an intermediate 

time point (the equivalent of 2 years according to Pozzi et al., 2009). The remaining 50 % of 

the animals was sacrificed at the end of the protocol, after 12 weeks of treatment with ZOL 

(or saline solution) (the equivalent of 4 years according to Pozzi et al., 2009) and 9 weeks 

after the molar extraction, for the long-term assessment.  

 

2.2. Histology analysis 

Harvested maxillae were fixed in 4% buffered formaldehyde for 48 hours and then 

decalcified with 4.13% ethylenediaminetetraacetic acid (EDTA) and 0.2% paraformaldehyde 

in phosphate-buffered saline (PBS) for 96 hours using the KOS microwave histostation 

(Milestone, Kalamazoo, MI, USA) before embedding in paraffin. Two 4 ȝm-thick sagittal 

sections were obtained from 2 levels of the alveolar socket site (each one separated by 50 

µm). All slides were stained with Masson trichrome to assess the bone matrix and empty 

lacunae in both, bone sequestra and submucosal bone. Furthermore, all slides were stained 

with tartrate-resistant acid phosphatase (TRAP) to identify osteoclasts (Supplementary 

appendix 1). The immunostaining for osteoblastic cells was performed using rabbit 

monoclonal anti-osterix antibody (1/800; Abcam). The immunostaining of the pericytes was 

carried out using rabbit monoclonal anti-CD146 antibody (1/200; Abcam). 

 

Histological images were acquired using a NanoZoomer 2.0-RS slide scanner 

(Hamamatsu, Japan). The region of interest (ROI) corresponded to a rectangular area of 

alveolar bone comprising the full length of the alveolar socket. Static histomorphometric 



analysis of the number of empty lacunae, percentage of osteoclasts (Gobin, Battaglia, et al. 

2014a; Gobin, Huin,  et al. 2014b; Lamoureux et al. 2014), number of osterix and CD146+ 

cells in their defined ROIs, were performed using ImageJ software (NIH, Bethesda, MD, 

USA).  

 

2.3. Micro-computed tomography assessment 

The analysis of alveolar bone microarchitecture was performed at the time of necropsy 

(6 and 12 weeks) using the high-resolution X-ray micro-computed tomography (micro-CT) 

system for small-animal imaging SkyScan-1076 (SkyScan, Kontich, Belgium) 

(Supplementary appendix 1). The assessment of alveolar bone density was performed by 

measuring the mineralized bone detected within the VOI (Bone Volume; BV) and expressed 

in cubic millimeters (mm3). 

 

2.4. Statistical analysis 

All analyses were performed using GraphPad InStat Version 3.02 software (GraphPad 

Software, La Jolla, CA, USA). The histological and micro-CT results were analyzed by 

comparisons between experimental and controls groups with unpaired parametric two-tailed t-

test. Results were considered significant at p-value < 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3. Results 

 

3.1. Zoledronic acid and molar extraction induce clinical osteonecrotic-like changes in 

alveolar bone  

A 12-week administration of high doses of ZOL was well tolerated by all mice demonstrated 

by their conservation of body weight (data not shown). In addition, 21 % of the ZOL-treated 

mice exhibited osteonecrotic-like changes, characterized by both exposed and necrotic bone 

(sequestra) in the operative site at the intermediate time point (3 weeks after molar 

extraction). The aspect of the sequestra was opaque and yellowish bone, slightly attached to 

the local mucosa (Figure 1A). Normal healing of oral mucosa was observed in mice assessed 

at the long-term time point (9 weeks after molar extraction).  

 

We next analyzed the alveolar socket by histology at two levels: bone sequestra and 

submucosal bone. All sequestrated bone displayed both the absence of osteocytes and empty 

lacunae in their whole surface (Figure 1B). On another hand, the submucosal bone exhibited 

empty lacunae exclusively in the superficial layer (Figure 1B). Their number was 

significantly higher at long-term (12 weeks) time point in the ZOL-treated group compared 

with the control (Figure 1C, p<0.01).  

 

3.2. Zoledronic acid and molar extraction decrease the number of osteoblastic cells in 

alveolar bone  

To reveal the effect of ZOL on alveolar osteoblastic cells, we performed first an histologic 

qualitative analysis followed by a semi-quantitative assessment of osterix positive cells using 

immunohistochemistry. We observed new trabecular bone in both the ZOL and saline-treated 

groups at the intermediate time point (Figure 2, upper panels). Otherwise, after long-term, the 

alveolar site exhibited a large surface of a calcified bone matrix with narrow marrow spaces 

compared with controls (Figure 2, lower panels). The osterix positive cells were detected in 

the superficial layer of the trabecular bone at both time points (Figure 2, upper and lower 

panels). Interestingly, ZOL-treated mice   significantly decreased the number of osterix 

positive cells at both intermediate (p<0.05) and long-term (p<0.01) time points. (Figure 2, 

upper and lower histograms). 

 

 



3.3. Zoledronic acid and molar extraction increase the number of aberrant giant 

multinucleated osteoclasts in alveolar bone  

Since it has been admitted that bisphosphonates, and particularly ZOL, increase the 

apoptosis of osteoclasts, thus decreasing bone remodeling, we next assessed the effect of our 

protocol on the osteoclasts in the alveolar bone. At intermediate and long-term time points, 

we observed clear changes in the morphology of TRAP+ cells between ZOL-treated mice and 

controls (Figure 3, upper and lower panels). In the former group, the shape of the osteoclasts 

was dramatically modified and the treatment resulted in the formation of large, multinucleated 

osteoclasts compared to those observed in the control group (Figure 3, upper and lower left 

panels). In addition, some of these cells were detached from the endosteal bone surface and 

located within the bone marrow spaces. Interestingly, the number of TRAP+ cells increase 

significantly in the mice that received both the intermediate (p<0.01) and long-term 

bisphosphonate treatments (p<0.05) (Figure 3, upper and lower histograms).  

 

3.4 Zoledronic acid and molar extraction increase the bone volume of the post-extraction 

alveolar socket  

Considering the high impact of ZOL on bone remodeling through its inhibition of 

osteoclastic bone resorption, we next assessed the bone mass of trabecular bone in the post-

extraction alveolar socket using a volumetric analysis by micro-tomography (micro-CT). We 

observed a significant increase in the percentage of alveolar bone volume (BV) of mice 

treated with long-term ZOL compared to controls (Figure 4, right histogram) (p<0.05). In 

contrast, no difference was observed at the intermediate time point of this protocol. 

 

3.5. Intermediate treatment with zoledronic acid and molar extraction increases the number 

of pericyte-like cells (CD146+) in alveolar bone  

Given the potentially anti-angiogenic effects of ZOL, we assessed the presence of 

CD146+ peri-vascular cells (pericytes-like) within the alveolar bone using 

immunohistochemistry. CD146+ positive cells located in the alveolar bone marrow spaces 

were clearly identified. Interestingly, a significant increase in the CD146+ pericyte-like cell 

number (p<0.05) was detected in mice treated with ZOL compared to controls at the 

intermediate time point (Supplementary appendix 2). On the contrary, no difference was 

detected in long-term ZOL-treated mice (data not shown).  



4. Discussion 

 

Maxillomandibular alveolar bone is a particular unit of the skeleton that undergoes periodic 

stimulus (e.g. facial and dental development, chewing, etc.), exhibiting a higher bone turnover 

than non-alveolar bone sites (Allen and Burr 2008). Bone turnover depends on the coupling 

activities of osteoblasts and osteoclasts in each BMUs (Natalie A. Sims and Martin 2014; N. 

A. Sims and Ng 2014). Otherwise, ZOL markedly decreases bone turnover by apoptosis of 

the osteoclasts, blocking the bone resorption and subsequently, increasing the bone mass 

(Dominique Heymann 2010). The powerful anti-resorptive effect is the main advantage for 

the treatment of human osteolytic diseases (Dominique Heymann et al. 2004; Dominique 

Heymann 2010; Le Goff et al. 2010). While the effects of bisphosphonates on bone tissue 

have been well-described in BMUs of the axial and appendicular skeleton, the specific effects 

of bisphosphonates on the maxillomandibular alveolar bone, the precise site affected by 

osteonecrosis, is still less understood. In addition, the effect of bisphosphonates on other cell 

components of BMUs such as osteoblastic, vascular and immune cells remain still 

misunderstood (N. A. Sims and Ng 2014; Pazianas 2011). We, therefore, assessed the effects 

of a human equivalent protocol of intermediate and long-term intravenous high doses of ZOL 

on bone and vascular cells involved in the bone remodeling cycle in alveolar BMUs using an 

adapted surgical mouse model of osteonecrosis of the jaw (Bi et al. 2010). 

 

We first confirmed that our protocol induced the major features of BONJ, reported in human 

series (Raje et al. 2008; Marx 2003). We showed osteonecrotic-like lesions characterized by 

the formation of sequestra and empty lacunae in the alveolar bone at the operative site. Bone 

sequestra were observed in a small number of samples at the intermediate time point of the 

treatment. Consequently, most samples showed normal healing at the operative site. The 

variable reproduction of osteonecrotic-like changes have been also reported in different 

murine models of ONJ and seems to be associated with the degree of surgical trauma (Marino 

et al. 2011). Otherwise, empty lacunae, the other key feature in human and experimental 

osteonecrotic diseases (Okazaki et al. 2009; Aghaloo et al. 2011), were recognized widely in 

the bone sequestra and selectively in the superficial layer of submucosal bone in the alveolar 

socket. Interestingly, the number of empty lacunae in the submucosal bone significantly 

increased after long-term treatment, suggesting that this finding may be associated with the 

cumulative doses fixed in the alveolar bone. This fact is in agreement with previous clinical 

and experimental reports (Ruggiero et al. 2009; Marx et al. 2005; Allen 2008; Aguirre et al. 



2012), supporting the hypothesis that long-term exposure to high doses of amino-

bisphosphonates determines their accumulation in alveolar BMUs, inducing local changes and 

constituting a potential first step in the development of osteonecrosis of the jaw (Allen 2008; 

Hoff et al. 2008; Daubiné et al. 2007; Pozzi et al. 2009).    

 

Interestingly, our study demonstrated that ZOL significantly decreased the number of 

osteoblastic cells in the alveolar BMUs. This observation was in agreement with the down-

regulation of gene expression implicated in osteoblast signalization, osteoprogenitor cell 

differentiation and activation that has been observed in patients treated with high doses of 

ZOL with and without BONJ by multiple myeloma (Raje et al. 2008). The same study 

showed that the suppression of bone formation markers was most pronounced in BONJ 

patients (Raje et al. 2008). In addition, a decrease in osteoblasts number was observed in the 

long bones after 3 weeks of systemic treatment with increasing doses of ZOL (Pozzi et al. 

2009). Moreover, the absence of woven bone in the alveolar socket after tooth extraction in 

mice treated with bisphosphonate and denosumab, two agents associated with osteonecrotic-

lesions, has recently been demonstrated (Williams et al. 2014). In this study, seric levels of 

bone-specific alkaline phosphatase, a biomarker of osteoblastic cell activity, was also 

decreased (Williams et al. 2014). Similarly, a cytotoxic effect characterized by the inhibition 

of viability, bone matrix secretion and mineralization was observed in osteoblasts after 

prolonged exposure to ZOL under in vitro conditions (Pozzi et al. 2009). While the main 

action of bisphosphonates occurs by the direct effect on osteoclasts in the bone matrix 

resorption phase of the remodeling cycle, the reduction in the number of osteoblastic cells in 

alveolar BMUs strongly suggests that ZOL has a potentially additional effect in the apposition 

phase of this cycle. Accordingly, these clinical and experimental data might be related to the 

successful use of human recombinant parathyroid hormone (rhPTH), a bone anabolic strategy, 

as a therapeutic approach for BONJ in the clinic. (Doh et al. 2015; Khan et al. 2015). 

 

Otherwise, ZOL induced an increase in the number of osteoclasts and a severe disruption in 

osteoclast morphology after both intermediate and long-term treatment. Indeed, we reported a 

significant increase in the percentage of TRAP+ cell observed in ZOL-treated mice at both 

time points and the detachment of them from the bone trabeculae surface. Taken together, 

these findings suggest a paradoxical effect of ZOL on osteoclasts, primarily supposed to 

decrease the number and activity of them. Osteoclasts with altered morphology were also 



reported in biopsies of patients under long-term of amino-bisphosphonate therapy, 

highlighting their dose-dependence (Weinstein, Roberson, and Manolagas 2009; Jobke, 

Pfeifer, and Minne 2009). The cytoskeletal reorganization of osteoclasts through inhibition of 

the protein prenylation induced by amino-bisphosphonates was proposed as an explanation 

for these facts (Jobke 2009; Roelofs et al. 2006). Similar data were observed in biopsies of 

patients after treatment with teriparatide and who had previously been treated with 

bisphosphonates (Jobke, Pfeifer, and Minne 2009). These aberrant osteoclasts may be subject 

to prolonged apoptosis or be functionally inhibited by ZOL (Weinstein, Roberson, and 

Manolagas 2009). Our study shows consistent findings to support the lack of osteoclast bone-

resorptive function in these aberrant osteoclasts. 

 

We also observed that ZOL increased the number of CD146+ pericyte-like cells 

exclusively after intermediate-term treatment. Pericytes are peri-endothelial cells that 

participate in normal tissue repair by secreting cytokines and growth factors promoting 

revascularization (Forbes and Rosenthal 2014). During aberrant tissue repair, activated 

pericytes become scar-producing myofibroblasts, which are considered a balance among 

fibrotic or full regenerative response (Forbes and Rosenthal 2014). Thus, we can hypothesize 

that the increased number of CD146+ pericyte-like cells contributed to the osteonecrotic-like 

changes observed in zoledronic acid-treated mice after a surgical injury (Bouacida et al. 

2012).  Pericytes may be increased in response to bisphosphonate in order to contribute to the 

bone remodeling. Indeed, pericytes are able to differentiate into osteoblast-like cells, 

nevertheless, pericytes show high immaturity and we can hypothesize that the differentiation 

process of pericytes towards osteoblastic lineage may be altered resulting of ONJ (Bouacida 

et al 2012). On another hand, our results are controversial considering the generic 

compromise of the vasculature in osteonecrotic diseases (e.g. femoral osteonecrosis and 

osteoradionecrosis) (H. K. W. Kim 2007; Hansen et al. 2006). Specifically, BONJ patients 

have shown vascular compromise through decreases in serum level of vascular-endothelial-

growth-factor (VEGF) (Santini et al. 2003). In addition, case report studies show an increase 

in the incidence and severity of osteonecrosis of the jaw after a single administration of 

bisphosphonates or associated with bevacizumab, a recombinant human monoclonal antibody 

that targets VEGF (Estilo et al. 2008; Lescaille et al. 2014). There are also numerous in vitro 

studies demonstrating the considerable impact of nitrogen-containing bisphosphonates over 

non nitrogen-containing bisphosphonates, decreasing the viability and migration of 

endothelial cells, as well as increasing their apoptosis (Ziebart et al. 2011; Walter et al. 2011). 



Despite this, only a restricted number of in vivo studies have shown the anti-angiogenic 

effects of nitrogen-containing bisphosphonates (Wood et al. 2002; Fournier et al. 2002; 

Stresing et al. 2011; Pabst et al. 2014). We hypothesize that our results are strongly influenced 

by the inflammatory and reparative response triggered following the molar extraction. 

 

The regulation of the bone mass is the product of the coupled phases of the bone 

remodeling cycle in each BMU: bone resorption is driven by mature osteoclasts, and 

formation is driven by pre- and mature osteoblasts. The increased alveolar bone mass at the 

long-term time point showed in our study, confirms the inactivation of osteoclasts and 

subsequent osteolysis. Interestingly, it occurs despite the decreased number of osteoblastic 

cells. We propose that the long-term treatment with ZOL affect both, the osteoclastic bone 

resorption for a long period and, transiently, the osteoblastic bone formation. Thus, a 

decreased number of osteoblastic cells were thus capable of synthesizing the bone matrix and 

increasing the alveolar bone mass. This hypothesis might be related to the reported increased 

bone turnover rate of alveolar bone rather than that of non-alveolar bone sites (Allen and Burr 

2008). Also, this finding could be explained by the bone anabolic effect of the early 

inflammatory stage in the alveolar socket after the molar extraction. The link between 

inflammation and bone repair was recently proposed and it may be regulated by oncostatin M-

signaling produced by monocyte/macrophage cells (Guihard et al. 2012). A STAT3 pathway 

activation in mesenchymal stem cells has also been reported (Nicolaidou et al. 2012).   

 

 

5. Conclusion 

 

Following administration of long-term high doses of ZOL and molar extraction in a mouse 

model of bisphosphonates-related osteonecrosis of the jaw, we confirm that the cell 

components of alveolar BMUs were significantly disrupted (Figure 5). The number of 

osteoblastic cells was dramatically reduced. In addition, the osteoclasts were inactivated, 

increased in number and exhibiting an aberrant morphology. The vascular precursors 

increased significantly after the intermediate-term treatment. Despite this evident cell 

imbalance, the alveolar bone mass increased, confirming that the effect of ZOL is mostly anti-

resorptive rather than anti-anabolic in the alveolar operative site. In short, consistent 

histological and micro-architectural findings support the disruption of the normal homeostasis 



of alveolar BMUs induced by the administration of ZOL, with an additional surgical dental 

stimulus.  
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Figure legends 
 
Figure 1: Zoledronic acid and a surgically-induced mouse model of osteonecrosis of the 
jaw (BONJ) assessed at intermediate and long-term treatment time points. (A) Clinical 
view of the sequestra after the intermediate term treatment (black arrows); (B) Masson’s 
trichrome stained slides showing empty lacunae (black arrows) in the sequestra and 
submucosal bone of alveolar BMUs and (C) number of empty lacunae within the assessed 
area. (BMUs, basic multicellular units; w6, intermediate assessment; w12, long delay 
assessment; ZOL, zoledronic acid; NaCl, sodium chloride; ROI, region of interest; **p<0.01).  
 
 
Figure 2: Osteoblast number decreases in alveolar BMUs after zoledronic acid 
treatment and molar extraction. Immunostaining of osteoblasts (osterix+ cells) confirms 
that ZOL-treated mice show a significant decrease in the number of osteoblastic cells in 
alveolar BMUs at both time points assessed. (BMUs, basic multicellular units; week 6 (w6), 
intermediate assessment; w12, long-term assessment; ZOL, zoledronic acid; NaCl, sodium 
chloride; ROI, region of interest; *p<0.05). 
 
Figure 3: An increased number of aberrant osteoclasts were observed in alveolar BMUs 
after zoledronic acid treatment and molar extraction. TRAP-stained slices showing the 
aberrant morphology of the osteoclasts and a significant increase in the percentage of TRAP+ 
cells observed in alveolar BMUs after intermediate and long-term administration of ZOL. 
(BMUs, basic multicellular units; week 6 (w6), intermediate assessment; w12, long-term 
assessment; ZOL, zoledronic acid; NaCl, sodium chloride; *p<0.05 and **p<0.01). 
 
Figure 4: Bone volume of the extraction socket is upmodulated by bisphosphonate 
treatment and molar extraction. Volumetric assessment of the alveolar BMU shows an 
increase in the bone volume (BV) at the long-term time point. (2D, two dimensional view; 
3D, tridimensional view; 2M, second maxillary left molar; 3M, third maxillary left molar; 
BMUs, basic multicellular units; week 6, (w6) intermediate assessment; w12, long delay 
assessment; ZOL, zoledronic acid; NaCl, sodium chloride; VOI, volume of interest; *p<0.05). 
 
Figure 5: Scheme representing the disruption of cell components of alveolar BMUs induced 
by zoledronic acid. 
 
Figure legend of supplementary appendix 
 
Supplementary appendix 2: CD146+ perivascular cells are affected in alveolar BMUs by 
the intermediate zoledronic acid treatment associated with molar extraction. 
Immunodetection of CD146+ cells confirms that ZOL-treated mice show a significant 
increase in the number of perivascular cells (black arrows) in alveolar BMUs at the 
intermediate delay. (BMUs, basic multicellular units; week 6 (w6), intermediate assessment; 
w12, long delay assessment; ZOL, zoledronic acid; NaCl, sodium chloride; ROI, region of 
interest; *p<0.05). 
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Material and methods 

Ethical issues of animal housing and animal procedures  

The mice (Elevages Janvier, Le Genest Saint Isle, France) were housed in accordance 

with the institutional guidelines of the French Ethical Committee (CEEA PdL 06 ethical 

committee, authorization number: 1280.01) and the procedures were performed according to 

international ethical guidelines for animal care (authorization number: 00568.01). 

 

Surgical procedure – molar extraction 

Under general anaesthesia (an intra-peritoneal [i.p.] solution of ketamine 100 mg/kg 

and xylazine 10 mg/kg), the mice were placed in dorsal decubitus. The molar was luxated and 

then its three roots were carefully removed using an adapted dental luxator in a previously 

decontaminated intraoral area (Betadine, France). A subcutaneous injection of Buprenorphine 

(Buprecar 0.1 mg/Kg) was performed after the surgical procedure (Palier 1 protocol). 

 

TRAP staining technique 

All slides were stained with tartrate-resistant acid phosphatase (TRAP) to identify 

osteoclasts with 1 hour of incubation in a 1 mg/mL naphthol AS-TR phosphate, 60 mmol/L 

N,Ndimethylformamide, 100 mmol/L sodium tartrate, and 1 mg/mL Fast red TR salt solution 

(Sigma Aldrich, Saint Quentin Fallavier, France) and counterstained with haematoxylin. 

 

Micro-computed tomography assessment 

All maxillae were scanned using the same parameters (pixel size 9 ȝm, 50 kV, 0.5 mm 

Al filter and 0.8 degree of rotation step). Three-dimensional reconstruction and quantification 

of bone parameters were performed in a cylindrical volume of interest (VOI) using ANT and 

CTvol software (Skyscan). 
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ABSTRACT  

Objectives: The effect of amino-bisphosphonates on osteoblastic lineage and its potential 

contribution to the pathogenesis of bisphosphonate-associated osteonecrosis of the jaw (BONJ) 

remain controversial. We assessed the effects of zoledronic acid (ZOL) on bone and vascular 

cells of the alveolar socket using a mouse model of BONJ. 

Material and Methods: Thirty-two mice were treated twice a week with either 100 ȝg/kg of 

ZOL or saline for 12 weeks. The first left maxillary molar was extracted at the third week. 

Alveolar sockets were assessed at both 3 weeks (intermediate) and 9 weeks (long-term) after 

molar extraction by semi-quantitative histomorphometry for empty lacunae, preosteoblasts 

(Osterix), osteoclasts (TRAP), and pericyte-like cells (CD146). Also, the bone microarchitecture 

was assessed by micro-CT. 

Results: Osteonecrotic-li ke lesions were observed in 21% of mice. Moreover, a decreased 

number of preosteoblasts contrasted with the increased number of osteoclasts at both time points. 

In addition, osteoclasts display multinucleation and detachment from the endosteal surface. 

Furthermore, the number of pericyte-like cells increased at the intermediate time point. The 

alveolar bone mass increased exclusively with long-term ZOL treatment.  

Conclusion: The severe imbalance between bone-forming cells and bone-resorbing cells shown 

mailto:lcordova@stanford.edu


in this study could contribute to the pathogenesis of BONJ.  

 

KEYWORDS: Osteonecrosis of the jaw, zoledronic acid, osteoclast, osteoblast, alveolar bone, 

basic multicellular unit. 

 

1. Introduction 

Bisphosphonate-associated osteonecrosis of the jaw (BONJ) is characterized by the 

persistent jaw bone exposure (>8 weeks) after a surgical procedure in patients with a history of 

use of bisphosphonates and without previous exposure to head and neck radiotherapy (Ruggiero 

et al. 2009). The long-term use of intravenous third-generation amino-bisphosphonates 

(risedronate and zoledronic acid [ZOL]), the most powerful antiresorptive agents, is considered a 

critical risk factor related to the development of BONJ (Wessel, Dodson, and Zavras 2008; Basso 

et al. 2013). The pathogenesis of BONJ remains unknown and several hypothesis have been 

proposed; nevertheless, the suppression of bone remodeling induced by bisphosphonates seems 

to be the most consistent with their intrinsic mechanism of action (Mawardi et al. 2011; R. H. 

Kim et al. 2011; Allen and Burr 2009).  

Bone remodeling is the coupled process initiated by osteoclastic bone resorption followed 

by osteoblastic new bone formation (Natalie A. Sims and Martin 2014). This process occurs in 

the entire skeleton throughout life and it takes place in the basic multicellular units (BMUs) of 

cortical and trabecular bone (Natalie A. Sims and Martin 2014). Tight control of bone 

remodeling in each BMU is essential for maintaining normal bone mass. This control is 



regulated by dynamic interactions between the cellular components and coupling factors released 

during bone resorption (N. A. Sims and Ng 2014). The former includes osteoclast precursor and 

mature osteoclasts, osteoblastic lineage, endothelial cells and pericytes, macrophages and 

dendritic cells (Natalie A. Sims and Martin 2014). On the other hand, the coupling factors are 

protein molecules released during the osteoclasts differentiation: cardiotrophin 1, sphingosine-1-

phosphate (S1P), bone morphogenetic protein (BMP)-6 and Wnt10b, collagen triple helix repeat 

containing 1 (CTHRC1) and Sema4D. Also, the coupling factors include bone matrix proteins 

released during bone resorption: insulin growth factor (IGF)-1 and transforming growth factor 

(TGF)-ȕ (N. A. Sims and Ng 2014).  

The clinical and preclinical benefits of blocking osteoclast differentiation and activity 

with subsequent increase of bone density using amino-bisphosphonates have been extensively 

reported (D Heymann 2010; Le Goff et al. 2010; D Heymann et al. 2005). However, their effects 

on the osteoblastic lineage remain poorly understood (Sakagami et al. 2005). Human biopsies 

show that the terminal stage of bisphosphonate-associated osteonecrotic lesions (bone sequestra) 

is characterized by the absence of the endosteal osteoblasts, empty osteocyte lacunae and damage 

in the canalicular system (Lesclous et al. 2009). These findings confirm the compromise of the 

entire osteoblastic lineage including preosteoblasts, osteoblasts, and osteocytes (Koch et al. 

2011; Manzano-Moreno et al. 2015). On the other hand, in vitro studies report cytotoxic effects 

of bisphosphonates on osteoblastic cells, decreasing their viability and osteogenic ability in a 

dose-dependent manner (Pozzi et al. 2009; Basso et al. 2013). Therefore, the understanding of 

the effect of amino-bisphosphonates on both osteoblastic lineage and bone remodeling in in vivo 

models is a crucial step to further understand the pathogenesis of BONJ. We postulated that 

osteoblastic cells are sensitive to the effect of amino-bisphosphonates after a surgical stimulus in 



alveolar bone. The aim of this study was thus to assess – at the cellular level - the intermediate 

and long-term effects of clinically relevant high doses of ZOL on the bone and vascular cell 

components of alveolar socket BMU using a surgical mouse model for BONJ. 

 

2. Material and methods 

2.1. Animals, drug administration and surgical procedure 

 Thirty-two C57BL/6 male mice (Janvier, Le Genest-Saint Isle, France) aged 10 weeks 

were randomly divided into two groups and treated intra-peritoneally (i.p.) with either 100 ȝg/kg 

of ZOL (kindly provided by Novartis, Switzerland) (experimental group; n=16) or saline solution 

(control group; n=16) twice a week for 12 weeks (Supplementary appendix 1). The drug 

tolerance of the mice was assessed daily by clinical examination. The total dose of ZOL 

administered was the equivalent of a lifetime dose of the drug over 4 years of therapy in a 70 kg 

adult multiple myeloma patients (Pozzi et al. 2009). At the end of the third week, the first left 

maxillary molar was surgically extracted from all the animals (Supplementary appendix 1). After 

6 weeks of treatment with ZOL (or saline solution), and 3 weeks after the molar extraction, 50 % 

of the animals were sacrificed to assess the situation at an intermediate time point (the equivalent 

of 2 years according to Pozzi et al., 2009). The remaining 50 % of the animals was sacrificed at 

the end of the protocol, after 12 weeks of treatment with ZOL (or saline solution) (the equivalent 

of 4 years according to Pozzi et al., 2009) and 9 weeks after the molar extraction, for long-term 

assessment.  

 



2.2. Histology analysis 

Harvested maxillae were fixed in 4% buffered formaldehyde for 48 hours and then 

decalcified with 4.13% ethylenediaminetetraacetic acid (EDTA) and 0.2% paraformaldehyde in 

phosphate-buffered saline (PBS) for 96 hours using the KOS microwave histostation (Milestone, 

Kalamazoo, MI, USA) before embedding in paraffin. Two 4 ȝm-thick sagittal sections were 

obtained from 2 levels of the alveolar socket site (each one separated by 50 µm). All slides were 

stained with Masson trichrome to assess the bone matrix and empty lacunae in both, bone 

sequestra and submucosal bone. Furthermore, all slides were stained with tartrate-resistant acid 

phosphatase (TRAP) to identify osteoclasts (Supplementary appendix 1). The immunostaining 

for osteoblastic cells was performed using rabbit monoclonal anti-osterix antibody (1/800; 

Abcam). The immunostaining of the pericytes was carried out using rabbit monoclonal anti-

CD146 antibody (1/200; Abcam). 

Histological images were acquired using a NanoZoomer 2.0-RS slide scanner 

(Hamamatsu, Japan). The region of interest (ROI) corresponded to a rectangular area of alveolar 

bone comprising the full length of the alveolar socket. Static histomorphometric analysis of the 

number of empty lacunae, percentage of osteoclasts (Gobin, Battaglia, et al. 2014a; Gobin, Huin, 

et al. 2014b; Lamoureux et al. 2014), number of osterix and CD146+ cells in their defined ROIs, 

were performed using ImageJ software (NIH, Bethesda, MD, USA).  

 

2.3. Micro-computed tomography assessment 

The analysis of alveolar bone microarchitecture was performed at the time of necropsy (6 

and 12 weeks) using the high-resolution X-ray micro-computed tomography (micro-CT) system 



for small-animal imaging SkyScan-1076 (SkyScan, Kontich, Belgium) (Supplementary appendix 

1). The assessment of alveolar bone density was performed by measuring the mineralized bone 

detected within the VOI (Bone Volume; BV) and expressed in cubic millimeters (mm3). 

 

2.4. Statistical analysis 

All analyses were performed using GraphPad InStat Version 3.02 software (GraphPad 

Software, La Jolla, CA, USA). The histological and micro-CT results were analyzed by 

comparisons between experimental and controls groups with unpaired parametric two-tailed t-

test. Results were considered significant at p-value < 0.05. 

 

3. Results 

3.1. Zoledronic acid and molar extraction induce clinical osteonecrotic-like changes in alveolar 

bone  

A 12-week administration of high doses of ZOL was well tolerated by all mice demonstrated by 

their conservation of body weight (data not shown). In addition, 21 % of the ZOL-treated mice 

exhibited osteonecrotic-like changes, characterized by both exposed and necrotic bone 

(sequestra) in the operative site at the intermediate time point (3 weeks after molar extraction). 

The aspect of the sequestra was opaque and yellowish bone, slightly attached to the local mucosa 

(Figure 1A). Normal healing of oral mucosa was observed in mice assessed at the long-term time 

point (9 weeks after molar extraction).  



We next analyzed the alveolar socket by histology at two levels: bone sequestra and submucosal 

bone. All sequestrated bone displayed both the absence of osteocytes and empty lacunae in their 

whole surface (Figure 1B). On the other hand, the submucosal bone exhibited empty lacunae 

exclusively in the superficial layer (Figure 1B). Their number was significantly higher at long-

term (12 weeks) time point in the ZOL-treated group compared with the control (Figure 1C, 

p<0.01).  

 

3.2. Zoledronic acid and molar extraction decrease the number of osteoblastic cells in alveolar 

bone  

To reveal the effect of ZOL on alveolar osteoblastic cells, we performed first an histologic 

qualitative analysis followed by a semi-quantitative assessment of osterix positive cells using 

immunohistochemistry. We observed new trabecular bone in both the ZOL and saline-treated 

groups at the intermediate time point (Figure 2, upper panels). Otherwise, in the long-term, the 

alveolar site exhibited a large surface of a calcified bone matrix with narrow marrow spaces 

compared with controls (Figure 2, lower panels). The osterix positive cells were detected in the 

superficial layer of the trabecular bone at both time points (Figure 2, upper and lower panels). 

Interestingly, ZOL-treated mice significantly decreased the number of osterix positive cells at 

both intermediate (p<0.05) and long-term (p<0.01) time points. (Figure 2, upper and lower 

histograms). 

 

 



3.3. Zoledronic acid and molar extraction increase the number of aberrant giant multinucleated 

osteoclasts in alveolar bone  

Since it has been admitted that bisphosphonates, and particularly ZOL, increase the 

apoptosis of osteoclasts, thus decreasing bone remodeling, we next assessed the effect of our 

protocol on the osteoclasts in the alveolar bone. At intermediate and long-term time points, we 

observed clear changes in the morphology of TRAP+ cells between ZOL-treated mice and 

controls (Figure 3, upper and lower panels). In the former group, the shape of the osteoclasts was 

dramatically modified and the treatment resulted in the formation of large, multinucleated 

osteoclasts compared to those observed in the control group (Figure 3, upper and lower left 

panels). In addition, some of these cells were detached from the endosteal bone surface and 

located within the bone marrow spaces. Interestingly, the number of TRAP+ cells increase 

significantly in the mice that received both the intermediate (p<0.01) and long-term 

bisphosphonate treatments (p<0.05) (Figure 3, upper and lower histograms).  

 

3.4 Zoledronic acid and molar extraction increase the bone volume of the post-extraction 

alveolar socket  

Considering the high impact of ZOL on bone remodeling through its inhibition of 

osteoclastic bone resorption, we next assessed the bone mass of trabecular bone in the post-

extraction alveolar socket using a volumetric analysis by micro-tomography (micro-CT). We 

observed a significant increase in the percentage of alveolar bone volume (BV) of mice treated 

with long-term ZOL compared to controls (Figure 4, right histogram) (p<0.05). In contrast, no 

difference was observed at the intermediate time point of this protocol. 



 

3.5. Intermediate treatment with zoledronic acid and molar extraction increases the number of 

pericyte-like cells (CD146+) in alveolar bone  

Given the potentially anti-angiogenic effects of ZOL, we assessed the presence of 

CD146+ peri-vascular cells (pericytes-like) within the alveolar bone using 

immunohistochemistry. CD146+ positive cells located in the alveolar bone marrow spaces were 

clearly identified. Interestingly, a significant increase in the CD146+ pericyte-like cell number 

(p<0.05) was detected in mice treated with ZOL compared to controls at the intermediate time 

point (Supplementary appendix 2). On the contrary, no difference was detected in long-term 

ZOL-treated mice (data not shown). 

 

4. Discussion 

Maxillomandibular alveolar bone is a particular unit of the skeleton that undergoes periodic 

stimulus (e.g. facial and dental development, chewing, etc.), exhibiting a higher bone turnover 

than non-alveolar bone sites (Allen and Burr 2008). Bone turnover depends on the coupling 

activities of osteoblasts and osteoclasts in each BMUs (Natalie A. Sims and Martin 2014; N. A. 

Sims and Ng 2014). Otherwise, ZOL markedly decreases bone turnover by apoptosis of the 

osteoclasts, blocking the bone resorption and subsequently, increasing the bone mass 

(Dominique Heymann 2010). The powerful anti-resorptive effect is the main advantage for the 

treatment of human osteolytic diseases (Dominique Heymann et al. 2004; Dominique Heymann 

2010; Le Goff et al. 2010). While the effects of bisphosphonates on bone tissue have been well-



described in BMUs of the axial and appendicular skeleton, the specific effects of 

bisphosphonates on the maxillomandibular alveolar bone, the precise site affected by 

osteonecrosis, is still less understood. In addition, the effect of bisphosphonates on other cell 

components of BMUs such as osteoblastic, vascular and immune cells remain still 

misunderstood (N. A. Sims and Ng 2014; Pazianas 2011). We, therefore, assessed the effects of a 

human equivalent protocol of intermediate and long-term intravenous high doses of ZOL on 

bone and vascular cells involved in the bone remodeling cycle in alveolar BMUs using an 

adapted surgical mouse model of osteonecrosis of the jaw (Bi et al. 2010). 

We first confirmed that our protocol induced the major features of BONJ, reported in human 

series (Raje et al. 2008; Marx 2003). We showed osteonecrotic-like lesions characterized by the 

formation of sequestra and empty lacunae in the alveolar bone at the operative site. Bone 

sequestra were observed in a small number of samples at the intermediate time point of the 

treatment. Consequently, most samples showed normal healing at the operative site. The variable 

reproduction of osteonecrotic-like changes have been also reported in different murine models of 

ONJ and seems to be associated with the degree of surgical trauma (Marino et al. 2011). 

Otherwise, empty lacunae, the other key feature in human and experimental osteonecrotic 

diseases (Okazaki et al. 2009; Aghaloo et al. 2011), were recognized widely in the bone 

sequestra and selectively in the superficial layer of submucosal bone in the alveolar socket. 

Interestingly, the number of empty lacunae in the submucosal bone significantly increased after 

long-term treatment, suggesting that this finding may be associated with the cumulative doses 

fixed in the alveolar bone. This fact is in agreement with previous clinical and experimental 

reports (Ruggiero et al. 2009; Marx et al. 2005; Allen 2008; Aguirre et al. 2012), supporting the 

hypothesis that long-term exposure to high doses of amino-bisphosphonates determines their 



accumulation in alveolar BMUs, inducing local changes and constituting a potential first step in 

the development of osteonecrosis of the jaw (Allen 2008; Hoff et al. 2008; Daubiné et al. 2007; 

Pozzi et al. 2009).  

Interestingly, our study demonstrated that ZOL significantly decreased the number of 

osteoblastic cells in the alveolar BMUs. This observation was in agreement with the down-

regulation of gene expression implicated in osteoblast signalization, osteoprogenitor cell 

differentiation and activation that has been observed in patients treated with high doses of ZOL 

with and without BONJ by multiple myeloma (Raje et al. 2008). The same study showed that the 

suppression of bone formation markers was most pronounced in BONJ patients (Raje et al. 

2008). In addition, a decrease in osteoblasts number was observed in the long bones after 3 

weeks of systemic treatment with increasing doses of ZOL (Pozzi et al. 2009). Moreover, the 

absence of woven bone in the alveolar socket after tooth extraction in mice treated with 

bisphosphonate and denosumab, two agents associated with osteonecrotic-lesions, has recently 

been demonstrated (Williams et al. 2014). In this study, seric levels of bone-specific alkaline 

phosphatase, a biomarker of osteoblastic cell activity, was also decreased (Williams et al. 2014). 

Similarly, a cytotoxic effect characterized by the inhibition of viability, bone matrix secretion 

and mineralization was observed in osteoblasts after prolonged exposure to ZOL under in vitro 

conditions (Pozzi et al. 2009). While the main action of bisphosphonates occurs by the direct 

effect on osteoclasts in the bone matrix resorption phase of the remodeling cycle, the reduction in 

the number of osteoblastic cells in alveolar BMUs strongly suggests that ZOL has a potentially 

additional effect in the apposition phase of this cycle. Accordingly, these clinical and 

experimental data might be related to the successful use of human recombinant parathyroid 

hormone (rhPTH), a bone anabolic strategy, as a therapeutic approach for BONJ in the clinic. 



(Doh et al. 2015; Khan et al. 2015). 

Otherwise, ZOL induced an increase in the number of osteoclasts and a severe disruption in 

osteoclast morphology after both intermediate and long-term treatment. Indeed, we reported a 

significant increase in the percentage of TRAP+ cell observed in ZOL-treated mice at both time 

points and the detachment of them from the bone trabeculae surface. Taken together, these 

findings suggest a paradoxical effect of ZOL on osteoclasts, primarily supposed to decrease the 

number and activity of them. Osteoclasts with altered morphology were also reported in biopsies 

of patients under long-term of amino-bisphosphonate therapy, highlighting their dose-

dependence (Weinstein, Roberson, and Manolagas 2009; Jobke, Pfeifer, and Minne 2009). The 

cytoskeletal reorganization of osteoclasts through inhibition of the protein prenylation induced 

by amino-bisphosphonates was proposed as an explanation for these facts (Jobke 2009; Roelofs 

et al. 2006). Similar data were observed in biopsies of patients after treatment with teriparatide 

and who had previously been treated with bisphosphonates (Jobke, Pfeifer, and Minne 2009). 

These aberrant osteoclasts may be subject to prolonged apoptosis or be functionally inhibited by 

ZOL (Weinstein, Roberson, and Manolagas 2009). Our study shows consistent findings to 

support the lack of osteoclast bone-resorptive function in these aberrant osteoclasts. 

We also observed that ZOL increased the number of CD146+ pericyte-like cells 

exclusively after intermediate-term treatment. Pericytes are peri-endothelial cells that participate 

in normal tissue repair by secreting cytokines and growth factors promoting revascularization 

(Forbes and Rosenthal 2014). During aberrant tissue repair, activated pericytes become scar-

producing myofibroblasts, which are considered a balance among fibrotic or full regenerative 

response (Forbes and Rosenthal 2014). Thus, we can hypothesize that the increased number of 

CD146+ pericyte-like cells contributed to the osteonecrotic-like changes observed in zoledronic 



acid-treated mice after a surgical injury (Bouacida et al. 2012). Pericytes may be increased in 

response to bisphosphonate in order to contribute to the bone remodeling. Indeed, pericytes are 

able to differentiate into osteoblast-like cells, nevertheless, pericytes show high immaturity and 

we can hypothesize that the differentiation process of pericytes towards osteoblastic lineage may 

be altered resulting of ONJ (Bouacida et al 2012). On the other hand, our results are 

controversial considering the generic compromise of the vasculature in osteonecrotic diseases 

(e.g. femoral osteonecrosis and osteoradionecrosis) (H. K. W. Kim 2007; Hansen et al. 2006). 

Specifically, BONJ patients have shown vascular compromise through decreases in serum level 

of vascular-endothelial-growth-factor (VEGF) (Santini et al. 2003). In addition, case report 

studies show an increase in the incidence and severity of osteonecrosis of the jaw after a single 

administration of bisphosphonates or associated with bevacizumab, a recombinant human 

monoclonal antibody that targets VEGF (Estilo et al. 2008; Lescaille et al. 2014). There are also 

numerous in vitro studies demonstrating the considerable impact of nitrogen-containing 

bisphosphonates over non nitrogen-containing bisphosphonates, decreasing the viability and 

migration of endothelial cells, as well as increasing their apoptosis (Ziebart et al. 2011; Walter et 

al. 2011). Despite this, only a restricted number of in vivo studies have shown the anti-

angiogenic effects of nitrogen-containing bisphosphonates (Wood et al. 2002; Fournier et al. 

2002; Stresing et al. 2011; Pabst et al. 2014). We hypothesize that our results are strongly 

influenced by the inflammatory and reparative response triggered following the molar extraction. 

The regulation of the bone mass is the product of the coupled phases of the bone 

remodeling cycle in each BMU: bone resorption is driven by mature osteoclasts, and formation is 

driven by pre- and mature osteoblasts. The increased alveolar bone mass at the long-term time 

point showed in our study, confirms the inactivation of osteoclasts and subsequent osteolysis. 



Interestingly, it occurs despite the decreased number of osteoblastic cells. We propose that the 

long-term treatment with ZOL affect both, the osteoclastic bone resorption for a long period and, 

transiently, the osteoblastic bone formation. Thus, a decreased number of osteoblastic cells were 

thus capable of synthesizing the bone matrix and increasing the alveolar bone mass. This 

hypothesis might be related to the reported increased bone turnover rate of alveolar bone rather 

than that of non-alveolar bone sites (Allen and Burr 2008). Also, this finding could be explained 

by the bone anabolic effect of the early inflammatory stage in the alveolar socket after the molar 

extraction. The link between inflammation and bone repair was recently proposed and it may be 

regulated by oncostatin M-signaling produced by monocyte/macrophage cells (Guihard et al. 

2012). A STAT3 pathway activation in mesenchymal stem cells has also been reported 

(Nicolaidou et al. 2012).  

 

5. Conclusion 

Following administration of long-term high doses of ZOL and molar extraction in a mouse 

model of bisphosphonates-related osteonecrosis of the jaw, we confirm that the cell components 

of alveolar BMUs were significantly disrupted (Figure 5). The number of osteoblastic cells was 

dramatically reduced. In addition, the osteoclasts were inactivated, increased in number and 

exhibiting an aberrant morphology. The vascular precursors increased significantly after the 

intermediate-term treatment. Despite this evident cell imbalance, the alveolar bone mass 

increased, confirming that the effect of ZOL is mostly anti-resorptive rather than anti-anabolic in 

the alveolar operative site. In short, consistent histological and micro-architectural findings 

support the disruption of the normal homeostasis of alveolar BMUs induced by the 



administration of ZOL, with an additional surgical dental stimulus.  
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Figure legends 

Figure 1: Zoledronic acid and a surgically-induced mouse model of osteonecrosis of the jaw 

(BONJ) assessed at intermediate and long-term treatment time points. (A) Clinical view of 

the sequestra after the intermediate term treatment (black arrows); (B) Masson’s trichrome 

stained slides showing empty lacunae (black arrows) in the sequestra and submucosal bone of 

alveolar BMUs and (C) number of empty lacunae within the assessed area. (BMUs, basic 



multicellular units; w6, intermediate assessment; w12, long delay assessment; ZOL, zoledronic 

acid; NaCl, sodium chloride; ROI, region of interest; **p<0.01).  

 

Figure 2: Osteoblast number decreases in alveolar BMUs after zoledronic acid treatment 

and molar extraction. Immunostaining of osteoblasts (osterix+ cells) confirms that ZOL-treated 

mice show a significant decrease in the number of osteoblastic cells in alveolar BMUs at both 

time points assessed. (BMUs, basic multicellular units; week 6 (w6), intermediate assessment; 

w12, long-term assessment; ZOL, zoledronic acid; NaCl, sodium chloride; ROI, region of 

interest; *p<0.05). 

 

Figure 3: An increased number of aberrant osteoclasts were observed in alveolar BMUs 

after zoledronic acid treatment and molar extraction. TRAP-stained slices showing the 

aberrant morphology of the osteoclasts and a significant increase in the percentage of TRAP+ 

cells observed in alveolar BMUs after intermediate and long-term administration of ZOL. 

(BMUs, basic multicellular units; week 6 (w6), intermediate assessment; w12, long-term 

assessment; ZOL, zoledronic acid; NaCl, sodium chloride; *p<0.05 and **p<0.01). 

 

Figure 4: Bone volume of the extraction socket is upmodulated by bisphosphonate 

treatment and molar extraction. Volumetric assessment of the alveolar BMU shows an 

increase in the bone volume (BV) at the long-term time point. (2D, two dimensional view; 3D, 

tridimensional view; 2M, second maxillary left molar; 3M, third maxillary left molar; BMUs, 



basic multicellular units; week 6, (w6) intermediate assessment; w12, long delay assessment; 

ZOL, zoledronic acid; NaCl, sodium chloride; VOI, volume of interest; *p<0.05). 

 

Figure 5: Scheme representing the disruption of cell components of alveolar BMUs induced by 

zoledronic acid. 

 

Figure legend of supplementary appendix 

Supplementary appendix 2: CD146+ perivascular cells are affected in alveolar BMUs by the 

intermediate zoledronic acid treatment associated with molar extraction. Immunodetection 

of CD146+ cells confirms that ZOL-treated mice show a significant increase in the number of 

perivascular cells (black arrows) in alveolar BMUs at the intermediate delay. (BMUs, basic 

multicellular units; week 6 (w6), intermediate assessment; w12, long delay assessment; ZOL, 

zoledronic acid; NaCl, sodium chloride; ROI, region of interest; *p<0.05). 

 

 


