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Abstract

Motivated by the problem of stability in droop-controlled microgrids with delays, we consider a class of port-Hamiltonian
systems with delayed interconnection matrices. For this class of systems, delay-dependent stability conditions are derived
via the Lyapunov-Krasovskii method. The theoretical results are applied to an exemplary microgrid with distributed
rotational and electronic generation and illustrated via a simulation example. The stability analysis is complemented by
providing an estimate of the region of attraction of a microgrid with delays.
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1. Introduction

1.1. Motivation

Time delays are a highly relevant phenomenon in many
engineering applications. They appear, e.g., in networked
control, sampled-data and biological systems [6]. In partic-
ular, time delays may substantially deteriorate the perfor-
mance of a system, e.g., with regards to stability properties
of its equilibria. Therefore, it is of paramount importance
in a large variety of applications to explicitly consider time
delays in the system design and analysis process.

In this paper, we derive conditions for stability of a
class of port-Hamiltonian (pH) systems with delays. PH
systems theory provides a systematic framework for mod-
eling and analysis of network models of a large range of
physical systems and processes [30, 31]. In particular, the
geometric structure of a pH model underscores the impor-
tance of the energy function, the interconnection pattern
and the dissipation of a system. With regards to stability
analysis, the main advantage of a pH representation is that
the Hamiltonian usually is a natural candidate Lyapunov
function [30]. Unfortunately, in the presence of delays this
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does not apply in general. Yet, it seems natural to seek
to construct alternative Lyapunov function candidates by
using the Hamiltonian as a point of departure aiming to
exploit the structural properties of pH systems.

The present work is further motivated by the problem
of the effect of time delays on microgrid (µG) operation.
The µG is an emerging concept for an efficient integration
of renewable distributed generation (DG) units [11, 13]. A
µG is a locally controllable subset of a larger electrical net-
work and is composed of several DG units, storage devices
and loads [11]. A particular characteristic of a µG is that
it can be operated either in grid-connected or in islanded
mode, i.e., disconnected from a larger power system.

Typically, a large share of the power units in a µG
are renewable and storage units connected to the network
via DC/AC inverters. On the contrary, most conventional
generation units are interfaced to the grid via synchronous
generators (SGs). As inverters possess significantly differ-
ent physical properties from SGs, many challenging prob-
lems arise in future power grids [13, 11]. Amongst these,
system stability is one of the most relevant and critical [11].

So far, most stability analysis of µGs has focussed on
purely inverter-based µGs [37, 34, 24]. Yet, from a prac-
tical point of view, most present and near-future applica-
tions concern µGs with a mixed generation pool consisting
of SG- and inverter-interfaced units. Following [33], we re-
fer to such a system as a µG with distributed rotational and
electronic generation (MDREG). The predominant type of
conventional units in MDREGs are diesel gensets [16] and,
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hence, we focus on these in the present work.
The most commonly employed control scheme to op-

erate MDREGs is droop control. This is a decentralized
proportional control scheme, the main objectives of which
are stability and power sharing. Droop control is the stan-
dard basic control scheme for SG-based networks [19] and
has also been adapted to inverter-interfaced units [11]. As
shown, e.g., in [33], droop control ensures a compatible
joint operation of SG- and inverter-interfaced DG units.

In MDREGs, time delays appear due to several reasons
and also in several network components. First, the power-
stroke and ignition delay of a diesel engine is represented
by a time delay in standard models [28, 12, 17]. Second, in
a practical setup, the droop control scheme is applied to
an inverter, respectively an SG, via digital control. Dig-
ital control usually introduces additional effects such as
clock drifts [35] and time delays [18, 23, 25], which may
have a deteriorating impact on the system performance.
According to [25], the main reasons for the appearance of
time delays are sampling of control variables and calcula-
tion time of the digital controller. In the case of inverters,
the generation of the pulse-width-modulation (PWM) to
determine the switching signals for the inverter induces an
additional delay. We refer the reader to, e.g., [25] for fur-
ther details. Hence, time delays are a relevant phenomenon
in MDREGs, which makes it important to investigate their
influence on stability. This motivates the analysis below.

1.2. About the paper

The present paper focusses on the impact of time delays
on stability of MDREGs. To that end, and following [34,
32], we represent the MDREG as a pH system with delays.
Motivated by this, we derive delay-dependent conditions
for stability for a class of pH systems with delays, contain-
ing the MDREGmodel as a special case. The stability con-
ditions are established by following [8, 7, 15] and construct-
ing a nonlinear and non-quadratic Lyapunov-Krasovskii
functional (LKF) from the Hamiltonian and its gradient.
That the LKF can be nonlinear and non-quadratic follows
from the fact that both the Hamiltonian and its gradient
are, in general, nonlinear functions of the system states.
Compared to that, standard LMI-based approaches [7, 6]
rely on LKFs, which are quadratic in the state variables.
The latter is, in general, very restrictive.

The main contributions of the present paper are (i) to
introduce a model of a droop-controlled MDREG which
explicitly considers delays of the DG unit dynamics, (ii)
to represent this MDREG model as a pH system with
fast- and slowly-varying delays, (iii) to provide stability
conditions for a class of pH systems with fast- and slowly-
varying delays via the LK method, (iv) to provide an esti-
mate of the region of attraction of an MDREG with delays
and (v) to illustrate the usefulness of our conditions on an
exemplary µG. Hence, the present paper extends our pre-
vious work [32] in several regards: we take diesel engines
into account, provide stability conditions for slowly- and

fast-varying delays and derive an estimate of the region of
attraction of an MDREG with delays.

1.3. Existing literature

Stability analysis of pH systems with delays has been
the subject of previous research [27, 38, 15, 2, 1]. The main
motivation of that work is a scenario in which several pH
systems are interconnected via feedback paths which ex-
hibit a delay. This setup yields a closed-loop system with
skew-symmetric interconnections, which can be split into
non-delayed skew-symmetric and delayed skew-symmetric
parts. However, the model of an MDREG with delays de-
rived in this work is not comprised in the class of pH sys-
tems studied in [27, 38, 15, 2], since the delays do not ap-
pear skew-symmetrically. In that regard, the class of sys-
tems considered in the present work generalizes the class
studied in [27, 38, 15, 2], see Section 3. Unlike [27, 15, 2],
we also provide conditions for stability in the presence of
fast-varying delays, which typically arise in the context of
digital control [20, 7]. In addition, we apply the derived
approach to a practically relevant application, namely an
MDREG. Compared to this, in [27, 38, 15, 2] only aca-
demic examples were considered. The effect of time delays
on µG stability has only been investigated in [4, 5] for
a two-inverter-scenario. In particular, none of the afore-
mentioned analyses on µG stability [37, 34, 24, 33] take
the effect of time delays into account.

The remainder of the paper is structured as follows. A
model of an MDREG with delays is derived in Section 2.
In Section 3, the considered class of pH systems with de-
lays is introduced, for which delay-dependent conditions
for stability are provided in Section 4. In Section 5, the
results are applied to an exemplary MDREG for which we
also provide an estimate of the region of attraction. Con-
clusions and topics of future work are given in Section 6.

Notation. We define the sets n̄ = {1, 2, . . . , n}, R≥0 =
{x ∈ R|x ≥ 0}, R>0 = {x ∈ R|x > 0}, R<0 = {x ∈ R|x <
0}, Z≥0 = {0, 1, 2, . . .}. For a set V, let |V| denote its car-
dinality. For a set of, possibly unordered, positive natural
numbers V = {l, k, . . . , n}, the short-hand i ∼ V denotes
i = l, k, . . . , n. Let x = col(xi) ∈ R

n denote a vector with
entries xi for i ∼ n̄, 0n the zero vector, 1n the vector
with all entries equal to one, In the n×n identity matrix,
0n×n the n × n matrix with all entries equal to zero and
diag(ai), i ∼ n̄, an n × n diagonal matrix with diagonal
entries ai ∈ R. Likewise, A = blkdiag(Ai) denotes a block-
diagonal matrix with matrix entries Ai. We employ the
notation In×mn =

[

In, . . . , In
]

∈ R
n×mn. For A ∈ R

n×n,
A > 0 means that A is symmetric positive definite. The
elements below the diagonal of a symmetric matrix are de-
noted by ∗. We denote by W [−h, 0]n, h ∈ R>0, the Banach
space of absolutely continuous functions φ : [−h, 0] → R

n,
h ∈ R>0, with φ̇ ∈ L2(−h, 0)n and with the norm ‖φ‖W =

maxθ∈[a,b] |φ(θ)| +
(

∫ 0

−h
φ̇2dθ

)0.5

. For x : R≥0 → R
n, we

denote xt(σ) = x(t + σ), σ ∈ [−h, 0]. Also, ∇f denotes
the transpose of the gradient of a function f : Rn → R,
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∇2H its Hessian matrix and we employ the notation ∇ḟ =
d(∇f)/dt. If f takes the form f = f(x(t−h)), x ∈ R

n, we
use the short-hand ∇fh = ∇f(x(t− h)).

2. Motivating application: microgrids with distri-

buted rotational and electronic generation

2.1. Network model

We consider a Kron-reduced [19] generic MDREG in
which DG units are interfaced to the network either via
SGs or inverters and loads are modeled by constant impe-
dances. The network is composed of n1 ≥ 1 inverters and
n2 ≥ 1 SGs and the set of network nodes is denoted by
n̄ = n̄1 ∪ n̄2 with n̄1 = {1, . . . , n1}, n̄2 = {n1 + 1, . . . , n}
and n = n1+n2. Following [37, 34], we assume that the line
admittances are purely inductive. Then, two nodes i and
k in the network are connected by a nonzero susceptance
Bik ∈ R<0. We denote the set of neighbors of the i-th node
by n̂i = {k ∈ n̄ |Bik 6= 0}, associate a time-dependent
phase angle δi : R≥0 → R to each node i ∈ n̄ and use the
short-hand δik(t) = δi(t)− δk(t), i ∈ n̄, k ∈ n̄.

In addition, we conduct our analysis under the frequent
assumption of constant voltage amplitudes Vi ∈ R>0 at all
nodes i ∈ n̄, see, e.g., [37]. The active power injection
Pi : R

n → R of the i-th inverter is then given by [19]1

Pi(δ1, . . . , δn) = GiiV
2
i +

∑

i∼n̂i

aik sin(δik), (2.1)

where aik = |Bik|ViVk > 0 and Gii ∈ R≥0 denotes the
shunt conductance (representing the load) at the i-th node2.

Finally, we assume that the µG is connected, i.e., for all
pairs (i, k) ∈ n̄× n̄, i 6= k, there exists an ordered sequence
of nodes from i to k such that any pair of consecutive nodes
in the sequence is connected by a power line.

2.2. Inverter model with input delay

Usually, inverter-based DG units are controlled via dig-
ital control [25]. As discussed in Section 1, this leads to an
input delay. In MDREGs, these delays are heterogeneous,
as not all inverters are identical with respect to their hard-
ware and the implementation of the digital controls.

Typically, the delay induced by digital control is com-
posed of two main parts: a constant delay η ∈ R>0 origi-
nating from the calculation time of the control signal3 and
the PWM and an additional delay caused by the sample-
and-hold function of control variables [25]. Following [20,

1To simplify notation the time argument of all signals is omitted,
whenever clear from the context.

2For constant voltage amplitudes, any constant power load can
equivalently be represented by a constant impedance load.

3The delay η may also represent the dynamics of the internal
control system of the inverter, which is not considered explicitly in
the model (2.7). See [36] for a detailed model derivation of the non-
delayed version of (2.7).

6], we assume that the sampling intervals are bounded,
i.e., tκ+1 − tκ ≤ hs, κ ∈ Z≥0. Then,

tκ+1 − tκ + η ≤ hs + η = h̄, (2.2)

where h̄ denotes the maximum time interval between the
time tκ − η, where the measurement is sampled and the
time tκ+1, where the next control input update arrives.

By following [20, 6] and [35], the inverter at the i-th
node, i ∈ n̄1, with input delay and zero-order-hold update
characteristic with sampling instants ti,κ, κ ∈ Z≥0 can be
represented for ti,κ ≤ t < ti,κ+1, κ ∈ Z≥0 by4

δ̇i(t) = uδ
i (ti,κ − ηi),

τPi
Ṗm
i (t) = −Pm

i (t) + Pi(t),
(2.3)

where uδ
i : R≥0 → R is the control input, ηi ∈ R>0 is a

constant delay, Pi is given by (2.1), Pm
i : R≥0 → R is the

measured active power and τPi
∈ R>0 is the time constant

of the measurement filter. We assume that the inverters
are controlled via the usual frequency droop control [11]

uδ
i (t) = ωd − kPi

(Pm
i (t)− P d

i ), (2.4)

where ωd ∈ R>0 is the desired (nominal) network fre-
quency, kPi

∈ R>0 is the feedback (or droop) gain and
P d
i ∈ R>0 is the desired active power setpoint.

2.3. Diesel genset with fuel actuator and engine delay

The most common type of SG-interfaced DG units in
µGs are diesel gensets [16]. A typical diesel genset consists
of a diesel engine with fuel actuator, an SG, as well as
speed and excitation controls. Based on [28, 12, 17], the
dynamics of the SG with fuel actuator at the i-th node,
i ∈ n̄2, are given for ti,κ ≤ t < ti,κ+1, κ ∈ Z≥0 by

δ̇i(t) = ωi(t),

Miω̇i(t) = −Diωi(t)− Pi(t) + PMi
(t),

τMi
Φ̇i(t) = −Φi(t) + kMi

uM
i (ti,κ − ηi),

PMi
(t) = kciΦi(t− gi(t)),

(2.5)

where ωi : R≥0 → R is the frequency of the SG, Mi ∈ R>0

its inertia constant, Di ∈ R>0 its damping coefficient,
Pi the active power given by (2.1) and PMi

: R≥0 → R

the mechanical power input. The fuel actuator is repre-
sented by a first-order filter with input uM

i : R≥0 → R,
output Φi : R≥0 → R (the fuel flow), gain kMi

∈ R>0

and time constant τMi
∈ R>0. As in (2.3), we assume

that the implementation of the digital control leads to
an input delay and zero-order-hold update characteristic
with sampling instants ti,κ, κ ∈ Z≥0 and constant delay
ηi ∈ R>0, see [12]. The fuel conversion gain is denoted by

4An underlying assumption to this model is that whenever the
inverter connects a fluctuating renewable generation source to the
grid, it is equipped with some sort of storage, see [36].
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kci ∈ R>0. The conversion process is additionally affected
by the power-stroke and ignition delay, caused by the dis-
crete firing of the cylinders, as well as the period of time
between the start of injection and the start of combustion
[28, 17]. This delay is, in general, considered as an un-
certain constant [12] or time-varying bounded parameter
[28, 17]. Hence, for the sake of generality, it is represented
by a slowly-varying bounded time delay gi : R≥0 → [0, ḡi],
ḡi ∈ R>0, ġi ≤ di < 1, di ∈ R>0 in the present paper.

As usual, we assume that the engine speed is controlled
via the well-known droop control for SGs given by [33]

uM
i (t) = P d

i −R−1
i (ωi(t)− ωd), (2.6)

where P d
i ∈ R>0 is the nominal power setpoint, Ri ∈ R>0

the droop gain and, as in (2.4), ωd ∈ R>0 the reference
frequency. Since we assume constant voltage amplitudes,
the excitation control is neglected in the model.

2.4. Closed-loop MDREG model

It has been shown in [20, 6] that the type of delay
appearing in the open-loop systems (2.3) and (2.5) results
in a fast-varying delay, once the loop is closed. Following
[20, 6], we define hi(t) = t − ti,κ + ηi, ti,κ ≤ t < ti,κ+1.
Combining (2.3) with (2.4), yields the closed-loop system

δ̇i(t) = ωd − kPi
(Pm

i (t− hi(t))− P d
i ),

τPi
Ṗm
i (t) = −Pm

i (t) + Pi(t).
(2.7)

Note that (2.2) implies that ηi ≤ hi(t) ≤ ti,κ+1−ti,κ+ηi ≤

h̄i and ḣi(t) = 1. As standard in sampled-data networked
control systems [9, 7], the delay hi is piecewise-continuous.
Via the affine state transformation (see [33, 34])

[

δi
ωi

]

=

[

1 0
0 −kPi

] [

δi
Pm
i

]

+

[

0 0
0 1

] [

0
ωd + kPi

P d
i

]

,

we write the system (2.7), (2.4) as

δ̇i(t) = ωi(t− hi(t)),

τPi
ω̇i(t) = −ωi(t) + ωd − kPi

(

Pi(t)− P d
i

)

.
(2.8)

By combining (2.5) and (2.6), the closed-loop system
of the diesel genset with fast-varying delay hi and slowly-
varying delay gi at the i-th node, i ∈ n̄2, is given by

δ̇i(t) = ωi(t),

Miω̇i(t) = −Diωi(t)− Pi(t) + kciΦi(t− gi(t)),

τMi
Φ̇i(t)=−Φi(t)+kMi

(

P d
i −R

−1
i (ωi(t−hi(t))−ωd)

)

,

(2.9)

with ηi ≤ hi(t) ≤ ti,κ+1 − ti,κ + ηi ≤ h̄i and ḣi(t) = 1.

2.5. Synchronized motion and error states

It is convenient to introduce the notion of a desired
synchronized motion.

Definition 2.1. A solution col(δs, ωs
1n,Φ

s) ∈ R
(2n+n2)

of the system (2.1), (2.8), (2.9), i ∼ n̄, is a desired syn-
chronized motion if ωs and Φs are constant and δs ∈ Θ,
where

Θ =
{

δ(t) ∈ R
n
∣

∣ |δik| <
π

2
, i ∼ n̄, k ∼ n̂i

}

,

such that δsik = δsi −δsk are constant, i ∼ n̄, k ∼ n̂i, ∀t ≥ 0.

Remark 2.2. It can be shown that the system (2.1), (2.8),
(2.9) possesses at most one synchronized motion (modulo
a uniform shift in δs), see [3, Corollary 1].

For our subsequent analysis, we make the following nat-
ural power-balance feasibility assumption, see also [34].

Assumption 2.3. The system (2.1), (2.8), (2.9), i ∼ n̄,
possesses a desired synchronized motion.

We denote the vector of phase angles by δ = col(δi) ∈
R

n, the vector of frequencies ωi = δ̇i by ω = col(ωi) ∈
R

n and the vector of fuel flows by Φ ∈ R
n2 . Note that

the power flows (2.1) only depend upon angle differences.
Hence, under Assumption 2.3, we introduce the error states

ω̃(t) = ω(t)− ωs
1n ∈ R

n, Φ̃(t) = Φ(t)− Φs ∈ R
n2 ,

θ(t) = C
(

δ(0)− δs(0) +

∫ t

0

ω̃(τ)dτ
)

∈ R
(n−1),

C =
[

I(n−1) −1(n−1)

]

∈ R
(n−1)×n,

where we have expressed all angles relative to an arbitrary
reference node, here node n. For ease of notation, we define
the constant θn = 0, which is not part of θ. In the reduced
coordinates, the power flows (2.1) between nodes are given
by

Pi(δ(θ)) =
∑

k∼n̂i

aik sin(θik + δsik). (2.10)

Furthermore, by introducing τPk
= MkD

−1
k , kPk

= D−1
k ,

cl = ωd − ωs + kPl
(P d

l −GllV
2
l ), ck = −ωs − kPk

GkkV
2
k +

kckkPk
Φs

k, c = col(ci) ∈ R
n with i ∼ n̄, l ∼ n̄1, k ∼ n̄2, as

well as the matrices

KP =diag(kPi
) ∈ R

n×n, TP = diag(τPi
) ∈ R

n×n,

E =

[

0n1×n2

In2

]

∈ R
n×n2 , KC = diag(kck) ∈ R

n2×n2 ,

TM =diag(τMi
) ∈ R

n2×n2 ,KM = diag(kMi
/Ri) ∈ R

n2×n2 ,

the error dynamics of (2.1), (2.8), (2.9) are given in re-
duced coordinates x = col(θ, ω̃, Φ̃) ∈ R

(2n−1+n2) by

θ̇(t) = C1ω̃h + C2ω̃,

TP
˙̃ω(t) = −ω̃(t)−KPP (δ(θ)) +KPEKCΦ̃g + c,

TM
˙̃Φ = −Φ̃−KME⊤ω̃h.

(2.11)
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Here, we have defined, with Pi(δ(θ)) given in (2.10),

P (δ(θ)) = col(Pi(δ(θ))) ∈ R
n,

ω̃h=col(ω̃k(t−hk)) ∈ R
n, Φ̃g = col(Φ̃l(t− gl)) ∈ R

n2 ,

C1 = C

[

In1
0n1×n2

0n2×n1
0n2×n2

]

, C2 = C − C1.

Clearly, with Assumption 2.3, the system (2.10), (2.11)
possesses an equilibrium point xs = 0(2n−1+n2)

, the asymp-
totic stability of which implies asymptotic convergence of
all trajectories of the system (2.1), (2.8), (2.9), i ∼ n̄,
to the synchronized motion (up to a uniform shift of all
angles).

We are interested in the following problem.

Problem 2.4. Consider the system (2.1), (2.8), (2.9), i ∼
n̄, with Assumption 2.3. Given h̄i, i ∼ n̄, ḡi and di, i ∼ n̄2,
derive conditions, such that the corresponding equilibrium
point of (2.10), (2.11) is (locally) asymptotically stable.

3. A class of port-Hamiltonian systems with delays

To address Problem 2.4 and by following [34], we note
that with x = col(θ, ω̃, Φ̃) ∈ R

(2n−1+n2) the system (2.10),
(2.11) can be written as a perturbed pH system with delays

ẋ =(J −R)∇H+
∑

i∼n̄

Ti(∇Hhi
−∇H)+

∑

k∼n̄2

Fk(∇Hgk−∇H),

(3.1)

with Hamiltonian H : R(2n−1+n2) → R

H=
∑

i∼n̄

τPi
ω̃2
i

2kPi

−
∑

i∼n̄\{n}

ciθi
kPi

+
∑

i∼n̄2

kciτMi
RiΦ̃

2
i

2kMi

−U(θ), (3.2)

U(θ)=1
2

∑

i∼n̄

∑

k∼n̂i
aikcos(θik+δsik), interconnection matrix

J =





0(n−1)×(n−1) CKPT
−1
P 0(n−1)×n2

−
(

CKPT
−1
P

)⊤
0n×n J1

0n2×(n−1) −J⊤
1 0n2×n2



 ,

with J1 = KPT
−1
P ET−1

M KM , damping matrix

R = diag
(

0(n−1), KP (T
−2
P )1n, (KMK−1

C T−2
M )1n2

)

and Ti = JNi, i ∼ n̄1, Ti = NiJ , i ∼ n̄2, Fk = JNk,
k ∼ n̄2, with Ni ∈ R

(2n−1+n2)×(2n−1+n2), the (n−1+i, n−
1+i)-th entry of Ni is one and all its other entries are zero,
i ∼ n̄1, respectively the (2n−1−n1+ i, 2n−1−n1+ i)-th
entry of Ni is one and all its other entries are zero, i ∼ n̄2.

In light of this fact, it is natural to analyze (2.10),
(2.11) by exploiting its pH structure (3.1). Consequently,
we consider a generic nonlinear time-delay system in per-
turbed Hamiltonian form

ẋ = (J (x)−R(x))∇H +

m
∑

i=1

(Ti(∇Hhi
−∇H)) , (3.3)

with state vector x : R≥0 → R
n, m > 0 delays hi : R≥0 →

[0, h̄i], h̄i ∈ R≥0, ḣi(t) ≤ di ≤ 1, HamiltonianH : Rn → R,
matrices J (x) = −J (x)⊤ ∈ R

n×n, R(x) ≥ 0 ∈ R
n×n

and Ti ∈ R
n×n, i = 1, . . .m. For the following analysis,

we consider initial conditions x0 ∈ W [−h, 0]n, where h =
maxi∼n̄ h̄i, and make the assumption below.

Assumption 3.1. The system (3.3) possesses an equilib-
rium point xs = 0n ∈ R

n.

Stability conditions for delayed pH systems of the form

ẋ = (J (x)−R(x))∇H +

m
∑

i=1

Ti∇Hhi
, (3.4)

where Ti are arbitrary interconnection matrices and hi are
time-varying delays have been derived in [27, 38, 15, 2]. It
is straight-forward to verify that the system (2.10), (2.11)
cannot be written in the form (3.4). In addition, the class
of systems (3.4) is a special case of the class (3.3). More
precisely, the non-delayed part of (3.4) is restricted to the
form (J (x) − R(x)), while the non-delayed part of (3.3)
given by (J (x)−R(x)−Ti) allows to consider more general
structures. To illustrate this, consider two pH systems and
feedback interconnections

ẋ1 = (J1(x1)−R1(x1))∇H1 + ζ1u1,

ẋ2 = (J2(x2)−R2(x2))∇H2 + ζ2u2,

y1 = ζ⊤1 ∇H1, u1 = −y2(t− h(t)),

y2 = ζ⊤2 ∇H2, u2 = y1(t− h(t)),

(3.5)

where h(t) is a transmission delay (uniform, for ease of pre-
sentation). Then, the resulting closed-loop system is of the
form (3.3) withH = H1+H2,R(x) = diag(R1(x1),R2(x2)),

J (x) =

[

J1(x1) −ζ1ζ
⊤
2

ζ2ζ
⊤
1 J2(x2)

]

, T1 =

[

0n×n −ζ1ζ
⊤
2

ζ2ζ
⊤
1 0n×n

]

.

Now, assume the delay h(t) appears only in one of the
feedback interconnections of (3.5). Then the closed-loop
system also takes the form (3.3), but not that in (3.4).

4. Delay-dependent stability conditions for time-

varying delays

This section is dedicated to the stability analysis of pH
systems with bounded time-varying delays represented by
(3.3). The approach is based on a strict LKF. To stream-
line our main result, we note that

∇Ḣ = ∇2H
(

(J −R−

m
∑

i=1

Ti)∇H +

m
∑

i=1

Ti∇Hhi

)

(4.1)

and make the assumption below.

Assumption 4.1. Consider the system (3.3) with As-
sumption 3.1. Set hi = 0, i = 1, . . . ,m. Then, the equilib-
rium point xs = 0n of the system (3.3) is (locally) asymp-
totically stable with Lyapunov function V1 = H.
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Our main result is as follows.

Proposition 4.2. Consider the system (3.3) with As-
sumptions 3.1 and 4.1. Given h̄i ≥ 0 and di ∈ [0, 1),
i = 1, . . . ,m, assume that there exist n×n matrices Y > 0,
Ri > 0, Qi > 0, Si > 0 and S12,i, i = 1, . . . ,m, such that

Ψ =





Ψ11 Ψ12 Ψ13

∗ −S −R R− S⊤
12

∗ ∗ Ψ33



 < 0, (4.2)

where

R =blkdiag(Ri), S = blkdiag(Si), S12 = blkdiag(S12,i),

W =∇2H(J −R−

m
∑

i=1

Ti), M = ∇2HIn×nm,

B =
[

T ⊤
1 (R1 − S12,1) . . . T ⊤

m (Rm − S12,m)
]

,

(4.3)

Ψ11 =−R− 0.5

(

m
∑

i=1

Ti +

m
∑

i=1

T ⊤
i

)

+W⊤Y + YW

+

m
∑

i=1

(

h̄2
i (TiW)

⊤
Ri (TiW) + T ⊤

i (Si +Qi −Ri)Ti

)

,

Ψ12 =
[

T ⊤
1 S12,1 . . . T ⊤

m S12,m

]

,

Ψ13 =0.5In×nm +

(

Y +

m
∑

i=1

h̄2
i

(

(TiW)⊤RiTi
)

)

M+ B,

Ψ33 =blkdiag
(

− (1− di)Qi − 2Ri + S12,i + S⊤
12,i

)

+

m
∑

i=1

h̄2
i (TiM)

⊤
Ri (TiM) ,

(4.4)

and
[

R S12

∗ R

]

≥ 0 (4.5)

are feasible in some neighborhood of xs. Then the equilib-
rium xs = 0n is (locally) uniformly asymptotically stable
for all delays hi(t) ∈ [0, h̄i], where ḣi(t) ≤ di. In addition,
assume that (4.2) and (4.5) are feasible for di = 1, respec-
tively Qi = 0n×n, ∀i = 1, . . . ,m. Then xs = 0n is (locally)
uniformly asymptotically stable for all fast-varying delays
hi(t) ∈ [0, h̄i].

Proof. Inspired by [8, 7, 15], let h = maxi=1,...,m h̄i and
consider the LKF V : R≥0×W [−h, 0]n×L2(−h, 0)n → R,

V = V1 + V2 +

m
∑

i=1

(V3i + V4i + V5i) , V1 = H,

V2 = ∇H⊤Y∇H, V3i = h̄i

∫ t

t−h̄i

(h̄i + s− t)σi(s)ds,

V4i =

∫ t

t−h̄i

(Ti∇H(s))
⊤
Si (Ti∇H(s)) ds,

V5i =

∫ t

t−hi(t)

(Ti∇H(s))
⊤
Qi (Ti∇H(s)) ds,

(4.6)

where σi(·) = (Ti∇Ḣ(·))⊤Ri(Ti∇Ḣ(·)), i = 1, . . . ,m.
Under the made assumptions H is (locally) positive

definite around xs = 0n and ∇H|xs = 0n, which implies
that V is an admissible LKF for the system (3.3) with
equilibrium xs = 0n. Let ζ ∈ R

(2m+1)n,

ζ=col(∇H, T1∇Hh̄1
, ...,Tm∇Hh̄m

, T1∇Hh1
, ...,Tm∇Hhm

).

The time-derivative of V1 is given by

V̇1 = ζ⊤





−R− 0.5(T ⊤ + T ) 0n×mn 0.5In×mn

∗ 0mn×mn 0mn×mn

∗ ∗ 0mn×mn



 ζ,

where T =
∑m

i=1 Ti. With ∇Ḣ given by (4.1), W given in
(4.3) and M given in (4.3), we have that

V̇2 = ζ⊤





W⊤Y + YW 0n×mn YM
∗ 0mn×mn 0mn×mn

∗ ∗ 0mn×mn



 ζ.

Next, V̇3i = h̄2
iσi(t)− h̄i

∫ t

t−h̄i

σi(s)ds, where

σi(t)=ζ⊤





(TiW)
⊤
Ri (TiW) 0n×nm (TiW)

⊤
RiTiM

∗ 0nm×nm 0nm×nm

∗ ∗ (TiM)
⊤
RiTiM



ζ,

with M given in (4.3). By following [7],

−h̄i

∫ t

t−h̄i

σi(s)ds =−h̄i

∫ t−hi(t)

t−h̄i

σi(s)ds−h̄i

∫ t

t−hi(t)

σi(s)ds.

(4.7)
The LMI (4.5) is feasible by assumption. Hence, applying
Jensen’s inequality together with Lemma 1 in [7], see also
[26], to both right-hand side terms in (4.7) yields

−h̄i

∫ t

t−h̄i

σi(s)ds ≤−

[

ei1
ei2

]⊤[
Ri S12,i

∗ Ri

][

ei1
ei2

]

, i = 1, . . . ,m,

with ei1 = Ti(∇H−∇Hhi
), ei2 = Ti(∇Hhi

−∇Hh̄i
). Thus,

m
∑

i=1

(

−h̄i

∫ t

t−h̄

σi(s)ds

)

≤

ζ⊤





−
∑m

i=1(T
⊤
i RiTi) Ψ12 B

∗ −R R− S⊤
12

∗ ∗ −2R+ S12 + S⊤
12



 ζ,

with R, S, S12, B and Ψ12 defined in (4.3), (4.4). Also,

V̇4i =(Ti∇H)
⊤
Si (Ti∇H)−

(

Ti∇Hh̄i

)⊤
Si

(

Ti∇Hh̄i

)

,

V̇5i =(Ti∇H)
⊤
Qi(Ti∇H)−(1−ḣi) (Ti∇Hhi

)
⊤
Qi(Ti∇Hhi

)

≤(Ti∇H)
⊤
Qi(Ti∇H)−(1−di) (Ti∇Hhi

)
⊤
Qi(Ti∇Hhi

) .

Consequently, V̇ ≤ ζ⊤Ψζ, where Ψ is defined in (4.2).
As Ψ < 0 by assumption, we have that V̇ ≤ −ε‖x(t)‖2
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Figure 1: Benchmark model adapted from [29] with 6 main buses,
an SG-interfaced combined heat and power (CHP) plant, as well
as inverter-interfaced photovoltaic (PV), fuel cell (FC) and battery
(Bat) units. PCC denotes the point of common coupling to the main
grid. The sign ↓ denotes loads.

for some ε > 0. Uniform asymptotic stability follows by
invoking the LK theorem [7] and arguments from [9] for
systems with piecewise-continuous delays.

For the case of purely fast-varying delays, i.e., di = 1
for all i = 1, . . . ,m, we see that the negative definite term
in V̇5i vanishes. Hence, by the same arguments as above,
if (4.2) is feasible for di = 1, or equivalently, Qi = 0n×n,
for all i = 1, . . . ,m, then xs = 0n is (locally) uniformly
asymptotically stable for all fast-varying delays hi(t) ∈
[0, h̄i], completing the proof. ���

Remark 4.3. The conditions given in Proposition 4.2 are,
in general, state-dependent. In many cases, the conditions
can be conveniently implemented numerically via a poly-
topic approach [14, 6, 2], see Section 5 of the present paper.

5. Application example: microgrids with distributed

rotational and electronic generation

The analysis is illustrated via an example based on the
CIGRE benchmark MV distribution network [29]. The
network consists of six main buses and is shown in Fig. 1.
A combined heat and power (CHP) diesel genset is con-
nected at bus 9c (i = 4). The remaining DG units are
inverter-interfaced. We assume that the DG units at buses
9b (i = 1), 9c, 10b (i = 2) and 10c (i = 3) are operated
with droop control, while all other sources are operated
in PQ-mode, i.e., their power injections are regulated to
prespecified values [36]. To each droop-controlled unit a
power rating is associated, i.e., SN = [0.517, 0.333, 0.023,
0.353] pu. The parameters for the diesel engine are taken
from [28]. We refer the reader to [29] or [34] for a detailed
discussion of the employed benchmark model.

5.1. Stability of the non-delayed system

We prove Assumption 4.1 for the system (2.10), (2.11),
i.e., that a given equilibrium point of the non-delayed dy-

namics (2.10), (2.11) is locally asymptotically stable with
Lyapunov function V = H, with H given by (3.2).

Lemma 5.1. Consider the system (2.10), (2.11) with As-
sumption 2.3. Suppose that h̄i = 0, i ∼ n̄, gk = 0,
k ∼ n̄2. The equilibrium point xs = 0(2n−1+n2)

of the sys-
tem (2.10), (2.11) is locally asymptotically stable.

Proof. The stability claim is established via [30, Lemma
3.2.4]. Recall that the system (2.10), (2.11) is equivalent
to (3.1). From (3.1) it follows that Ḣ = −∇H⊤R∇H ≤ 0.
It is easily verified that ∇H |xs = 0(2n−1+n2), i.e., x

s is
a critical point of H, see also [34, Proposition 5.9]. The
Hessian of H is given by

∇2H(x) = blkdiag
(

L(θ), diag
( τPi

kPi

)

, diag
(kciτMi

Ri

kMi

))

,

where L : R(n−1) → R
(n−1)×(n−1), lii =

∑

k∼n̄ aik cos(θik+
δsik), lip = −aip cos(θip + δsip), i ∼ n̄ \ {n}, p ∼ n̄ \ {n}.
Under the standing assumptions, [34, Lemma 5.8] implies
that ∇2H(xs) > 0. Hence, H is locally positive definite
and xs is stable. To prove asymptotic stability, we proceed
as in [34] and recall that Ḣ ≤ 0, as well as that R(x) ≥ 0.
Hence, xs is asymptotically stable if—along the trajecto-
ries of the system (3.1)—the implication below holds

R(x(t))∇H(x(t)) ≡ 0(2n−1+n2)
⇒ lim

t→∞
x(t) = xs. (5.1)

From (5.1) it follows that ∂H
∂ω̃

= 0n,
∂H

∂Φ̃
= 0n2

, which im-

plies ω̃ = 0n and Φ̃ = 0n2
. Hence, θ is constant. Therefore,

the invariant set where Ḣ(x(t)) ≡ 0 is an equilibrium. To
prove that this is the desired equilibrium xs = 0(2n−1+n2)

we recall that xs is an isolated minimum of H(x), see also
Remark 2.2. Thus, there is a neighborhood of xs where no
other equilibrium exists, completing the proof. ���

5.2. Stability of the delayed system

We provide a solution to Problem 2.4 by means of
Proposition 4.2. In the present case, the state-dependency
of the conditions in Proposition 4.2 is only on the vari-
ables θi. Note that Ψ defined in (4.2) is continuous in the
argument x. Hence, if the stability conditions are veri-
fied at an equilibrium xs, then the local positive definite-
ness of V given in (4.6) together with the continuity of
Ψ in x implies that there exists a small neighborhood
X ⊂ W [−h, 0](2n−1+n2) (h = maxi=1,...,m h̄i) of xs

t (σ) =

xs ∈ X, σ ∈ [−h, 0], such that V > 0 and V̇ < 0, for all
xt ∈ X, xt 6= xs. Thus, all trajectories of the system (2.10),
(2.11) starting in X asymptotically converge to xs.

The Kron-reduced model of the considered µG pos-
sesses 4 nodes. We assume that the fast-varying delays (see
Section 2.2) are uniformly upper bounded by h̄i = 0.001s,
i ∼ n̄. The power-stroke and ignition delay of the diesel
engine at node 9c is assumed constant5 and initially set

5We note that although it is frequently stated in the literature
that this delay is time-varying and somewhat dependent on the en-
gine speed, to the best of our knowledge there are no widely-accepted
analytic models to represent the time-dependence of this delay.
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to g4 = 0.125s—the average value in [28], Table 1. The
verification of conditions (4.2), (4.5) is done in Yalmip [22].

For this setup, the conditions of Proposition 4.2 are sat-
isfied. Further numerical evaluations show that the equi-
librium of the system (2.10), (2.11) is locally asymptoti-
cally stable for g4 ≤ 0.225s. Stability for larger values of
g4 can be guaranteed via Proposition 4.2 by reducing the
magnitude of the gain 1/R4 of the control (2.6) of the SG.

5.3. Region of attraction of the delayed system

It is important to stress that the analysis in Section 5.2
only guarantees stability of an equilibrium for initial condi-
tions within a small neighborhood of that equilibrium. Yet
in many applications, including µGs, it is often desirable
to guarantee stability for a larger set of initial conditions
[10]. This can be achieved by providing an estimate of the
region of attraction of an equilibrium and, subsequently,
verifying conditions (4.2), (4.5) in that whole region rather
than just at the equilibrium itself. By following [10], we
address this aspect for the MDREG (2.10), (2.11) by ex-
ploiting the convexity properties of the Hamiltonian H in
(3.2). The lemma below is useful to formulate our result.

Lemma 5.2. Consider the function H(x(t)) in (3.2). Fix
a small positive number ϑ, such that |θik + δsik| <

π
2 − ϑ,

i ∼ n̄, k ∼ n̂i and an arbitrarily large positive number
β ≫ ϑ. The sublevel sets ΩD = {x ∈ R

(2n−1+n2) |H(x) ≤
c} contained in

D={x∈R
(2n−1+n2)|‖x‖≤β, |θik+δsik|≤

π

2
−ϑ, i∼ n̄, k∼ n̄}.

(5.2)
are compact.

Proof. The proof follows in an analogous manner to that
of [32, Lemma 5.1] and is omitted here for space reasons.
���

Our main result of this section is as follows.

Proposition 5.3. Consider the system (2.10), (2.11) with
Assumption 2.3. Recall the set D defined in (5.2). Suppose
that the equilibrium point xs = 0(2n−1+n2) of the system
(2.10), (2.11) is locally asymptotically stable with the LKF
V (xt, ẋt) defined in (4.6). Let h = maxi=1,...,m h̄i and

c̄ = max
x∈D

(H(x)), (5.3)

such that the sublevel sets ΩD={x ∈ R
(2n−1+n2)|H(x)≤ c̄}

are completely contained in D. Denote

Ωc = {xh = x(h+ ·) ∈ W [−h, 0](2n−1+n2) |V (xh, ẋh) ≤ c̄}.

Suppose that V̇ ≤ −ǫ‖x(t)‖ ∀xt ∈ Ωc and t ≥ h. Then, an
estimate of the region of attraction of xs is the set Ωc.

Proof. To establish the claim, recall that the sublevel sets
ΩD = {x ∈ R

(2n−1+n2) |H(x) ≤ c̄} are completely con-
tained in D by assumption. Hence, Lemma 5.2 implies

that ΩD is a bounded set on which H(x(t)) is strongly
convex. Furthermore, the strong convexity of H on ΩD

together with the fact that V̇ ≤ 0 for all xt ∈ Ωc by as-
sumption implies that 0 ≤ V (xt, ẋt) ≤ V (xh, ẋh) ≤ c̄, for
all (xh, ẋh) such that V (xh, ẋh) ≤ c̄ and c̄ given in (5.3).
By following [21], we have that 0 ≤ H(x(t)) ≤ V (xt, ẋt) ≤
V (xh, ẋh) ≤ c̄. Hence, Ωc is an estimate of the region of at-
traction of the equilibrium xs of the system (2.10), (2.11),
completing the proof. ���

We provide a solution to Problem 2.4 by means of
Propositions 4.2 and 5.3. Recall the Hamiltonian H(x) in
(3.2) and that the variables θi only appear as arguments of
the cosine-function in condition (4.2). Thus, it is straight-
forward to adopt a polytopic approach, i.e., to represent
the set {∇2H(x) |x ∈ D} as ∇H2 =

∑q
i=1 αi∇

2Hi, 0 ≤
αi ≤ 1,

∑q
i=1 αi = 1, where ∇2Hi denote the vertices

of the polytope containing all values that ∇2H can take
on the set D. To ensure asymptotic stability, it then suf-
fices to verify the conditions of Proposition 4.2 for all ver-
tices ∇2Hi, see Remark 4.3. The Kron-reduced model
of the considered µG possesses 4 nodes. Thus, there are
n(n− 1)/2 = 6 angle differences and the set {∇2H(x) |x ∈
D} can be fully described with q = 26 vertices. We set
ϑ = 10−8. As before, the implementation of (4.2), (4.5) is
carried out with Yalmip [22].

The delays are set to the same values as in Section 5.2.
For the nominal configuration with g4 = 0.125s, the con-
ditions of Proposition 4.2 are satisfied within the whole
region D. Thus, by Proposition 4.2 the considered equilib-
rium of the system (2.10), (2.11) is locally asymptotically
stable and an estimate of its region of attraction is given by
Proposition 5.3. Via further numerical evaluations, we ver-
ify asymptotic stability of the equilibrium for g4 ≤ 0.14s.
As to be expected, this value is considerably lower as that
of g4 ≤ 0.225s obtained in Section 5.2 and illustrates
the natural (as in the considered model delays deterio-
rate the performance) trade-off between the magnitudes of
admissible delays and the size of the region of attraction.

5.4. Simulation example

The analysis of Section 5.3 is illustrated via a simula-
tion example. The largest R/X ratio in the Kron-reduced
network corresponding to the MDREG in Fig. 1 is 0.30.
For high voltage transmission lines it typically is 0.31, see
[34]. Hence, the assumption of dominantly inductive ad-
mittances is satisfied.

The simulation results in Fig. 2 show that the trajec-
tories of the system (2.10), (2.11) with h̄i = 0.001s, i ∼ n̄,
and constant g4 = 0.14s converge to an equilibrium if con-
ditions (4.2), (4.5) are satisfied. Here, we assumed con-
stant sampling intervals hi,s = 2 · 10−4s, see (2.2). The
maximum admissible delay in simulation is g4 = 0.155s
and, hence, only 1.1 times larger as that of g4 = 0.14s
derived in Section 5.3. This indicates that our sufficient
conditions are very effective for the system under investi-
gation.
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Figure 2: Simulation example of a droop-controlled MDREG with
fast-varying delays with h̄i = 0.001s, i ∼ n̄ and constant power-
stroke and ignition delay g4 = 0.14s. Trajectories of the power
outputs relative to source rating Pi/S

N

i
, and the relative inverter

frequencies ∆fi in Hz of the controllable sources. The lines corre-
spond to the following sources: FC CHP 9b, i = 1 ’–’, battery 10b,
i = 2 ’+-’ and FC 10c, i = 3 ’* -’, diesel CHP 9c, i = 4 ’- -’.

6. Conclusions and future work

We have shown that the dynamics of both SG- and
inverter-interfaced DG units in µGs exhibit time delays.
Motivated by this, we have given sufficient delay-dependent
conditions for stability of a class of pH systems with de-
lays, which—as a particular case—contains a model of an
MDREG. The conditions are derived via a LKF and are
valid in the presence of slowly- and fast-varying delays.
Furthermore, we have provided an estimate of the region
of attraction of an MDREG and the stability conditions
have proven to be effective in a practical example. The lat-
ter also demonstrates that actuation and power generation
delays can, in fact, impair MDREG stability.

In future work, we plan to extend the conducted anal-
ysis to further classes of nonlinear systems. With respect
to MDREGs, we seek to consider more detailed models
of SGs, inverters and network interconnections, e.g., by
considering time-varying power lines and variable voltage
amplitudes. Furthermore, building upon the presented ap-
proaches, we plan to investigate the impact of time delays
on communication-based control schemes for µGs.
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